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Abstract

Let Tn(d) be the set of all trees with n vertices, diameter d and perfect matchings. We show

that the Laplacian energy of any tree in Tn(d), where d = 4, 5, is no less than the Laplacian

energy of the path Pn. Thus, we partly show that a conjecture by Radenković and Gutman is

true.

1 Introduction

Let A be adjacency matrix of a simple graph G with vertex set V (G) = {v1, v2, . . . , vn}.
In chemistry, there is a closed relation between the molecular orbital energy levels of π-

electrons in conjugated hydrocarbons and the eigenvalues of the corresponding molecular

graph. In 1970s, Gutman [1] extended the concept of energy to simple graph G, and

defined that

E(G) =
n∑

i=1

|λi|

where λi , (i = 1, 2, . . . , n) are the eigenvalues of the adjacency matrix A of G. Let

μ1 ≥ μ2 ≥ · · · ≥ μn = 0 be eigenvalues of the Laplacian matrix L = D − A of G, where

D is the diagonal matrix of vertex degrees. Gutman and Zhou [2] define the Laplacian

energy as follows:

LE(G) =
n∑

i=1

|μi − d|
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where d is average degree. When G is a tree, then d = 2− 2/n.

Many researchers established a lower and upper bounds of LE(G) for some classes of

graphs. For further details, we refer the readers to [3–8].

Besides these aspects, there were works aimed at finding the extremal values of LE(G)

over a class of graphs, and characterizing the elements of this class that achieve this

extremal value. As an illustration, the connected graphs on n vertex with the smallest or

highest Laplacian energy are not known for general n, not even when the class is restricted

to trees. In [9], Radenković and Gutman found that the energy and the Laplacian energy

behave very differently for trees, namely that the energy and the Laplacian energy of a

tree are inversely proportional, and gave the following conjecture.

Conjecture 1. Let T be a tree on n vertices. Then

LE(Pn) ≤ LE(T ) ≤ LE(Sn) .

In a recent paper [10] by Trevisan et al., it has been shown that the conjecture is true

for trees of diameter 3. Furthermore, the authors of [11] proved the right–hand side of

the conjecture.

Let a, b be two integers satisfying a ≥ b ≥ 1 and a+b = n
2
−1. Denote by Tn(4, a, b) the

tree with n vertices, that is obtained by attaching a+b paths of length 2 and one pendent

edge to a vertex u0 . Tn(4, a, b) is shown in Fig. 1. It is obvious that Tn(4) = {Tn(4, a, b)}.
Let T 1

n(5, a, b) be the tree with n vertices obtained from an edge e by attaching a

paths of length 2 to one end vertex v0 of the edge e and b ones to the other end vertex

v1 of the edge e. Let T 2
n(5, a − 1, b) be the tree with n vertices which can be obtained

from T 1
n(5, a, b) by replacing a pendent path of length 2 connected with vertex v0 with

a pendent edge and attaching a pendent edge to vertex v1. Two graphs T 1
n(5, a, b) and

T 2
n(5, a − 1, b) are shown in Fig. 1. Obviously, the set Tn(5) consists of only these two

classes of trees.
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In this paper, we show that the Laplacian energy of any tree in Tn(d), where d = 4, 5,

is not less than the Laplacian energy of the path Pn, which partly confirms the validity

of the above conjecture.

2 Preliminaries

First, using the algorithm described in [10], the characteristic polynomials of the Laplacian

matrices of Tn(4, a, b), T
1
n(5, a, b) and T 2

n(5, a− 1, b) are given by

p(Tn(4, a, b)) = λ(λ− 2)(λ2 − 3λ+ 1)
n
2
−2[λ2 − (3 + a+ b)λ+ a+ b+ 1] (1)

p(T 1
n(5, a, b)) = λ(λ− 2)(λ2 − 3λ+ 1)

n
2
−3f(λ) (2)

p(T 2
n(5, a− 1, b)) = λ(λ− 2)(λ2 − 3λ+ 1)

n
2
−4f ′(λ) (3)

where

f(λ) = λ4 + (−a− b− 6)λ3 + (ab+ 4b+ 4a+ 11)λ2

+ (−2ab− 4b− 4a− 6)λ+ a+ b+ 1

f ′(λ) = λ6 + (−a− b− 9)λ5 + (ab+ 6b+ 7a+ 30)λ4

+ (−4ab− 13b− 17a− 45)λ3 + (5ab+ 12b+ 17a+ 30)λ2

+ (−2ab− 5b− 7a− 9)λ+ a+ b+ 1 .

Next, we describe an algorithm [11] that can be used to estimate the Laplacian eigen-

values of a given tree. It counts the number of eigenvalues of the Laplacian matrix of a

tree T lying in any real interval. The algorithm is based on the diagonalization of the

matrix L(T ) +αI, where L(T ) is the Laplacian matrix of T and α is a real number. One

of the main features of this algorithm is that it can be executed directly on the tree, so

that the Laplacian matrix is not needed explicitly. Denote by d(v) the degree of vertex v.

Input: tree T , scalar α
Output: diagonal matrix D congruent to L(T ) + αI

Algorithm Diagonalize(T, α)
initialize a(v) := d(v) + α, for all vertices v
order vertices bottom up
for k = 1 to n

if vk is a leaf then continue
else if a(c) �= 0 for all children c of vk then

a(vk) := d(vk)−
∑

1
a(c)

, summing over all children of vk
else
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select one child vj of vk for which a(vj) = 0
a(vk) := −1

2

a(vj) := 2
if vk has a parent vl, remove the edge vkvl.

end loop

Lemma 2.1 [11]. Let T be a tree and let D be the diagonal matrix produced by the

algorithm Diagonalize (T,−α). The following assertions hold.

(a) The number of positive entries in D is the number of the Laplacian eigenvalues of

T that are greater than α.

(b) The number of negative entries in D is the number of the Laplacian eigenvalues

of T that are smaller than α.

(c) If there are j zero entries in D, then α is the Laplacian eigenvalue of T with

multiplicity j.

Lemma 2.2 [12]. Let G be a connected graph on n vertices having at least one

edge. Then μ1(G) ≥ Δ(G) + 1, with equality if and only if Δ(G) = n− 1, where Δ(G) is

maximum degree of G.

Lemma 2.3 [10]. Let Pn be the path on n vertices. Then

LE(Pn) = 2 + 4

�n/2	∑
i=1

cos
πi

n
+

1

n
[(−1)n − 1] .

Lemma 2.4 [11]. Let T be a tree on n vertices. Then LE(T ) ≤ LE(Sn) and equality

holds if and only if T ∼= Sn .

3 Main results

In this section, we first use diagonalization algorithm to get some properties on the Lapla-

cian eigenvalues of two classes of trees, and then prove our main results.

Lemma 3.1. The Laplacian eigenvalues of Tn(4, a, b) satisfy the following properties:

(a) Tn(4, a, b) has
n
2
eigenvalues greater than 1 and n

2
eigenvalues smaller than 1.

(b) Tn(4, a, b) has
n
2
+1 eigenvalues greater than 3−√

5
2

and n
2
−2 eigenvalues with value

equal to 3−√
5

2
.

Proof. Apply the algorithm to the tree with α = −1. The initialization step assigns

0 to all leaves and 1 to the vertices of degree 2, respectively, and lets a(uo) = n
2
− 1.
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After processing, there are n
2
vertices with value 2, and n

2
vertices with value −1

2
. By

Lemma 2.1, then (a) follows. Fig. 2 and Fig. 3 show the two statuses of initialization

and diagonalization, respectively.
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− 1
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Fig. 2. Initialization

�
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2

2 −1
2

−1
2

2 2

Fig. 3. Diagonalization

With the same as the above proof of (a), then (b) follows immediately. �

By Lemma 2.1, we have Lemma 3.2

Lemma 3.2. The number of the Laplacian eigenvalues in an interval (α1, α2) is

the number of positive entries in the diagonalization of (T, −α1), minus the number of

positive entries in the diagonalization of (T, −α2).

Lemma 3.3. Let μ1 and μn−2 be the largest eigenvalue and the third smallest eigen-

value of Tn(4, a, b), respectively. Then μ1 >
3+

√
5

2
and 3−√

5
2

< μn−2 < 1.

Proof. By Lemma 2.2, obviously, μ1 > 3+
√
5

2
. From the characteristic polynomial

(1) of the Laplacian matrix of Tn(4, a, b), it has one eigenvalue 0, one eigenvalue 2, n
2
− 2

eigenvalues with value 3+
√
5

2
and n

2
− 2 eigenvalues with value 3−√

5
2

. Then by (1) and

μ1 > 3+
√
5

2
, μ1 is the root of equation λ2 − (3 + a + b)λ + a + b + 1 = 0 . From Lemma

3.1-(b) and (1), μn−2 is the root of equation λ2 − (3+ a+ b)λ+ a+ b+1 = 0. By Lemma

3.1-(a), Lemma 3.1-(b) and Lemma 3.2, then 3−√
5

2
< μn−2 < 1. �

Theorem 3.4. When n ≥ 6, then LE(Pn) < LE(Tn(4, a, b)).

Proof. By (1), Lemma 3.3 and the definition of the Laplacian energy,

LE(Tn(4, a, b)) = d+
(n
2
− 2

)(
d− 3−√

5

2

)
+ (d− μn−2) + (2− d)

+
(n
2
− 2

)(3 +
√
5

2
− d

)
+ (μ1 − d)

=
(n
2
− 2

)√
5 + μ1 − μn−2 + 2 . (4)
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Hence, by Lemma 2.3,

LE(Pn)− LE(Tn(4, a, b)) = 4

�n/2	∑
i=1

cos
πi

n
+

1

n
[(−1)n − 1]−

√
5

2
(n− 4)

+ μn−2 − μ1 .

Since

π

n

[n
2
]∑

j=1

cos
πj

n
≤
∫ π

2

0

cosxdx = 1

then

LE(Pn) ≤ 2 +
4n

π
. (5)

According to (5)

LE(Pn)− LE(Tn(4, a, b)) = 4

�n/2	∑
i=1

cos
πi

n
+

1

n
[(−1)n − 1]−

√
5

2
(n− 4)

− 1

2

√
(n− 2)2 + 4(n− 2) + 20

≤ 4n

π
−

√
5

2
(n− 4)− 1

2

√
(n− 2)2 + 4(n− 2) + 20 .

Let

g(n) =
4n

π
−

√
5

2
(n− 4)− 1

2

√
(n− 2)2 + 4(n− 2) + 20.

When g(n) = 0, then we have(
1 +

16

π2
− 4

√
5

π

)
n2 +

(
16
√
5

π
− 10

)
n+ 16 = 0 .

Let n1, n2 be two roots of the equation g(n) = 0, where n1 ≤ n2. By direct computing,

n1 ≈ −5.880, n2 ≈ 12.056. Thus, when n > 12, LE(Pn) < LE(Tn(4, a, b). When n =

6, 8, 10, 12, we have

n = 6, LE(P6) = 7.4641, LE(Tn(4, a, b)) = 7.8417

n = 8, LE(P8) = 10.0548, LE(Tn(4, a, b)) = 10.9443

n = 10, LE(P10) = 12.6276, LE(Tn(4, a, b)) = 14.0935

n = 12, LE(P12) = 15.1916, LE(Tn(4, a, b)) = 17.2690

Hence, the result follows. �

In an analogous manner as in the proof of Lemma 3.1, we have
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Lemma 3.5. When n ≥ 8, the Laplacian eigenvalues of T 1
n(5, a, b) satisfy the following

properties:

(a) T 1
n(5, a, b) has

n
2
+1 eigenvalues greater than 1 and n

2
− 1 eigenvalues smaller than

1;

(b) T 1
n(5, a, b) has two eigenvalues greater than 3+

√
5

2
and n

2
− 3 eigenvalues with value

3+
√
5

2
;

(c) T 1
n(5, a, b) has

n
2
+1 eigenvalues greater than 3−√

5
2

and n
2
−3 eigenvalues with value

3−√
5

2
;

(d) T 1
n(5, a, b) has

n
2
eigenvalues greater than d and n

2
eigenvalues smaller than d.

Lemma 3.6. Let λ1 ≥ λ2 ≥ λ3 ≥ λ4 be the roots of f(λ) = 0, where f(λ) is a factor

of the characteristic polynomial (2) of the Laplacian matrix of T 1
n(5, a, b). Then

λ1 ≥ λ2 >
3 +

√
5

2
, 1 < λ3 < d, 0 < λ4 <

3−√
5

2
.

Proof. By Lemma 3.5-(b) and (2), λ1 ≥ λ2 > 3+
√
5

2
; From Lemma 3.5-(a), Lemma

3.5-(d) and Lemma 3.2 , we have 1 < λ3 < d. Since T 1
n(5, a, b) is connected, λ4 > 0. And

λ4 <
3−√

5
2

follows by Lemma 3.5-(c) and (2). Thus, 0 < λ4 <
3−√

5
2

. �

Theorem 3.7. When n ≥ 6, then LE(Pn) ≤ LE(T 1
n(5, a, b)).

Proof. When n = 6, then Pn
∼= T 1

n(5, a, b), so that the result follows.

Next, we discuss the case of n > 6. By (2), Lemma 3.6 and the definition of the

Laplacian energy,

LE(T1(5, a, b)) = 2 + (
n

2
− 3)

√
5 + λ1 + λ2 − λ3 − λ4 . (6)

Since λ3 < 2, λ4 < 1, and
∑4

i=1 λi =
n
2
+ 5 ,

n

2
− 1 <

n

2
+ 5− 2(λ3 + λ4) = λ1 + λ2 − λ3 − λ4 .

Hence, by Lemma 2.3, (5) and (6),

LE(Pn)− LE(T1(5, a, b)) = 4

�n/2	∑
i=1

cos
πi

n
+

1

n
[(−1)n − 1]−

(n
2
− 3

)√
5

− (λ1 + λ2 − λ3 − λ4)

≤ 4n

π
−
(n
2
− 3

)√
5− (λ1 + λ2 − λ3 − λ4)

<
4n

π
−

√
5n

2
− n

2
+ 3

√
5 + 1 .
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When n > 22, 4n
π
−

√
5n
2

− n
2
+ 3

√
5 + 1 < 0 and the result follows. For 8 ≤ n ≤ 22, the

result is checked from the table at the end of this section. �

With the analogous proof as of Lemma 3.1, we have

Lemma 3.8. The Laplacian eigenvalues of T 2
n(5, a − 1, b) satisfy the following prop-

erties:

(a) T 2
n(5, a− 1, b) has n

2
− 1 eigenvalues greater than 2 and one eigenvalue 2;

(b) T 2
n(5, a− 1, b) has n

2
eigenvalues smaller than 1 and n

2
eigenvalues greater than 1.

Lemma 3.9. Let λ′
1 ≥ λ′

2 ≥ λ′
3 ≥ λ′

4 ≥ λ′
5 ≥ λ′

6 be the roots of the equation

f ′(λ) = 0, where f ′(λ) is a factor of the characteristic polynomial (3) of the Laplacian

matrix of T 2
n(5, a− 1, b). Then

2 < λ′
3 ≤ λ′

2 ≤ λ′
1, 0 < λ′

6 ≤ λ′
5 ≤ λ′

4 < 1 .

Proof. By (3), T 2
n(5, a−1, b) has one eigenvalue 0, one eigenvalue 2, n

2
−4 eigenvalues

with value 3+
√
5

2
and n

2
− 4 eigenvalues with value 3−√

5
2

. Then from Lemma 3.8-(a) and

Lemma 3.8-(b), there are three eigenvalues larger than 2 and three eigenvalues smaller

than 1, respectively. Since T 2
n(5, a− 1, b) is connected, λ′

6 > 0. Thus, we have

2 < λ′
3 ≤ λ′

2 ≤ λ′
1, 0 < λ′

6 ≤ λ′
5 ≤ λ′

4 < 1 .

�

Theorem 3.10. When n ≥ 8, then LE(Pn) < LE(T 2
n(5, a− 1, b)).

Proof. By (3), Lemma 3.8 and the definition of the Laplacian energy,

LE(T 2
n(5, a− 1, b)) = 2 +

(n
2
− 4

)√
5 +

∑
i=1,2,3

λ′
i −

∑
i=4,5,6

λ′
i . (7)

Since
∑6

i=1 λ
′
i =

n
2
+ 8 and

∑
i=4,5,6 λ

′
i < 3, by Lemma 3.9, then

n

2
+ 2 <

n

2
+ 8− 2

∑
i=4,5,6

λ′
i =

∑
i=1,2,3

λ′
i −

∑
i=4,5,6

λ′
i .
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Thus, by (5), (7) and Lemma 2.3,

LE(Pn)− LE(T 2
n(5, a− 1, b)) = 4

�n/2	∑
i=1

cos
πi

n
+

1

n
[(−1)n − 1]

−
(n
2
− 4

)√
5−

( ∑
i=1,2,3

λ′
i −

∑
i=4,5,6

λ′
i

)

<
4n

π
−

√
5n

2
− n

2
+ 4

√
5− 2 .

When n > 20, 4n
π
−

√
5n
2

− n
2
+ 4

√
5 − 2 < 0 and the result follows. For 8 ≤ n ≤ 20, the

result is checked from the table at the end of this section . �

By Theorem 3.4, Theorem 3.7, Theorem 3.10 and Lemma 2.4, we have shown that,

for ∀ T ∈ {T n(d)|d = 4, 5 },
LE(Pn) ≤ LE(T ) ≤ LE(Sn) .

The following table contains the Laplacian energies of Tn(4, a, b), T
1
n(5, a, b), T

2
n(5, a−

1, b), and Pn when 8 ≤ n ≤ 22.

n a b LE(Tn(4, a, b)) LE(T 2
n(5, a, b)) LE(T 1

n(5, a, b)) LE(Pn)
8 2 1 10.9443 10.8693 10.3898 10.0548
10 2 2 14.0935 13.9835 13.2908 12.6276
10 3 1 14.0935 13.9835 13.4548 12.6276
12 3 2 17.269 17.106 16.3556 15.1916
12 4 1 17.269 17.1413 16.5869 15.1916
14 3 3 20.4606 20.2696 19.4297 17.7504
14 4 2 20.4606 20.2696 19.4935 17.7504
14 5 1 20.4606 20.3232 19.7542 17.7504
16 4 3 23.6628 23.4372 22.5764 20.3064
16 5 2 23.6628 23.4558 22.6673 20.3064
16 6 1 23.6628 23.5199 22.9419 20.3064
18 4 4 26.8722 26.6263 25.7304 22.86
18 5 3 26.8722 26.6263 25.7574 22.86
18 6 2 26.8722 26.6557 25.8608 22.86
18 7 1 26.8722 26.726 26.1422 22.86
20 5 4 30.0868 29.8175 28.9167 25.4124
20 6 3 30.0868 29.8284 28.9566 25.4124
20 7 2 30.0868 29.8643 29.0661 25.4124
20 8 1 30.0868 29.9386 29.3508 25.4124
22 5 5 33.3052 33.0211 32.1069 27.9636
22 6 4 33.3052 33.0211 32.1199 27.9636
22 7 3 33.3052 33.0387 32.1665 27.9636
22 8 2 33.3052 33.0789 32.2791 27.9636
22 9 1 33.3052 33.1558 32.5652 27.9636

-775-



References

[1] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz. Graz 103
(1978) 1–22.

[2] I. Gutman, B. Zhou, Laplacian energy of a graph, Lin. Algebra Appl. 414 (2006)
29–37.

[3] I. Gutman, X. Li, J. Zhang, Graph energy, in: M. Dehmer, F. Emmert–Streib (Eds.),
Analysis of Complex Networks: From Biology to Linguistics , Wiley–VCH, Weinheim,
2009, pp. 145–174.

[4] B. Zhou, More on energy and Laplacian energy, MATCH Commun. Math. Comput.
Chem. 64 (2010) 75–84.
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