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Abstract

In this note, by proving two combinatorial identities, we compute the energy of
Kneser graphs.

Let I' be a graph with n vertices and eigenvalues Ay, ..., A,. The energy of I' is defined
as E(T') = |\| 4+ -+ |Au]. A graph I is said to be hyperenergetic if E(T') > 2n — 2. The
concept of hyperenergeticity was first introduced by Gutman in [3]. Hyperenergetic graphs
are important because molecular graphs with maximum energy pertain to maximality
stable m-electron systems.

The Kneser graph K (v, k) is the graph with k-subsets of a fixed v-set as its vertices,
with two vertices adjacent if they are disjoint. By [2, Theorem 9.4.3], if v > 2k + 1 then
the eigenvalues of K(v,k) are (—1)7 (”Z:J) with multiplicity (;’) — (jfl)7 j=0,1,...,k.
Then the energy of K (v, k) is

b v v v—k—j
s =2 ((6) - (L))

Akbari [1] proved that K (v, k) is hyperenergetic for any integers v and k > 2 with

v > 2k + 1. In this note, we shall compute the energy of Kneser graphs.

We start with two combinatorial identities.
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Lemma 1 For any odd number n and any integer k with 2k > n > 0, we have

S ()
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Proof. Note that

R0 = per()6ED)
x5 ()

Since n is odd number, the desired result follows. m]

Lemma 2 For any integer r and positive integer k, we have

Xk:(,l)k—; (T) (2::;) _(r=1)(r—3) - (r = 2k + 1)2"

Jj=0 J

Proof. Consider the polynomial

o) = 31 ()(3or) - et D2

=0 J

The degree of g(z) is at most k. Lemma 1 implies that 1,3,...,2k — 1 are k distinct roots
)

of g(x). Since g(0) = 0, we have g(z) = 0. Hence g(r) = 0, as desired. O

Theorem 1 For v > 2k + 1, the energy of K(v, k) is

(v—=1)(v—3)-(v—2k+1)2~
k! ’

E(K(v, k) =
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by Lemma 2 the desired result follows. o

Proof.  Since
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