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Abstract

The energy of a graph is defined as the sum of the absolute values of the eigenval-
ues of the graph. A k-subdivision graph Ge(k) is a graph obtained from a graph G
by subdividing a cut edge e of G by k times. In this paper, we present a new method
to compare the energies of two k-subdivision bipartite graphs of the same order. As
an application of this method, we determine the first largest to the �n−7

2 �th largest
energy trees of order n for n ≥ 31 (which is a partial result on a conjecture proposed
by Andriantiana in [1]), and also give a simplified proof of the conjecture on the
fourth maximal energy tree.

1 Introduction

Let G be a graph with n vertices and A be its adjacency matrix. Let λ1, · · · , λn

be the eigenvalues of A, then the energy of G, denoted by E(G), is defined [3, 4] as

E(G) =
n∑

i=1

|λi|.
The characteristic polynomial det(xI −A) of the adjacency matrix A of a graph G is

also called the characteristic polynomial of G, written as φ(G, x) =
n∑

i=0

ai(G)xn−i.

In this paper, we write bi(G) = |ai(G)|, and also write

φ̃(G, x) =
n∑

i=0

bi(G)xn−i.
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If G is a bipartite graph, then it is well known that φ(G, x) has the form

φ(G, x) =

�n
2
	∑

i=0

a2i(G)xn−2i =

�n
2
	∑

i=0

(−1)ib2i(G)xn−2i (1.1)

and thus

φ̃(G, x) =

�n
2
	∑

i=0

b2i(G)xn−2i. (b2i(G) = |a2i(G)| = (−1)ia2i) (1.2)

In case G is a forest, then b2i(G) = m(G, i), the number of i-matchings of G.

The following integral formula by Gutman and Polansky ([5]) on the difference of the

energies of two graphs is the starting point of this paper.

E(G1)− E(G2) =
1

π

+∞∫
−∞

ln

∣∣∣∣φ(G1, ix)

φ(G2, ix)

∣∣∣∣ dx (i =
√−1) (1.3)

Now suppose again that G is a bipartite graph of order n. Then by (1.1) and (1.2) we

have

φ(G, ix) = inφ̃(G, x) (G is bipartite, i =
√−1) (1.4)

Using (1.4) we can derive the following new formula from (1.3) which does not involve

the complex number i.

Theorem 1.1. If G1, G2 are both bipartite graphs of order n, then we have

E(G1)− E(G2) =
2

π

+∞∫
0

ln
φ̃(G1, x)

φ̃(G2, x)
dx (1.5)

Proof. Since G1, G2 are both bipartite graphs of order n, it is easy to see that

φ̃(G1, x)

φ̃(G2, x)
=

�n
2
	∑

j=0

b2j(G1)x
n−2j

�n
2
	∑

j=0

b2j(G2)xn−2j

is an even function and
φ̃(G1, x)

φ̃(G2, x)
> 0 for x > 0.

So from (1.3) and (1.4) we have

E(G1)− E(G2) =
1

π

+∞∫
−∞

ln

∣∣∣∣φ(G1, ix)

φ(G2, ix)

∣∣∣∣ dx =
1

π

+∞∫
−∞

ln

∣∣∣∣∣ φ̃(G1, x)

φ̃(G2, x)

∣∣∣∣∣ dx =
2

π

+∞∫
0

ln
φ̃(G1, x)

φ̃(G2, x)
dx.

Definition 1.1. Let f(x) =
n∑

i=0

aix
n−i and g(x) =

n∑
i=0

bix
n−i be two monic polynomials of

degree n with nonnegative coefficients.

(1). If ai ≤ bi for all 0 ≤ i ≤ n, then we write f(x) � g(x).
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(2). If f(x) � g(x) and f(x) �= g(x), then we write f(x) ≺ g(x).

Now we define the following quasi-order for bipartite graphs (which is equivalent to

the well known quasi-order defined by Gutman and Polansky in [5] ).

Definition 1.2. Let G1 and G2 be two bipartite graphs of order n. Then we write

G1 � G2 if φ̃(G1, x) � φ̃(G2, x), write G1 ≺ G2 if φ̃(G1, x) ≺ φ̃(G2, x) and write G1 ∼ G2

if φ̃(G1, x) = φ̃(G2, x).

According to the integral formula in Theorem 1.1, we can see that for two bipartite

graphs G1 and G2 of order n,

G1 � G2 =⇒ E(G1) ≤ E(G2); and G1 ≺ G2 =⇒ E(G1) < E(G2).

The method of the quasi-order relation “�” is an important tool in the study of graph

energy.

Graphs with extremal energies are extensively studied in literature. Gutman [2] de-

termined the first and second maximal energy trees of order n; N.Li, S.Li [9] determined

the third maximal energy tree; Gutman et al. [6] conjectured that the fourth maximal

energy tree is Pn(2, 6, n− 9) (see Fig.3 for this graph); B. Huo et al. [8] proved that this

conjecture is true.

In this paper, we first consider in §2 a recurrence relation for the polynomial φ̃(G(k), x)

of a k-subdivision graph G(k) which is obtained from a bipartite graph G) by subdividing

some cut edge e of it k times. Then in §3 we present a new method of directly comparing

the energies of two k-subdivision bipartite graphs G(k) and H(k) if they are quasi-order

incomparable. Using this new method, we are able to provide a simplified proof of the

above mentioned conjecture on the fourth maximal energy tree. By further using the new

method in §4 and §5, we can determine the first �n−7
2
� largest energy trees of order n for

all n ≥ 31.

Notice that recently Andriantiana [1] showed that, when n is sufficiently large, then

the list of the first 3n − 84 (for odd n) and the first 3n − 87 (for even n) largest energy

trees of order n can be determined. But from the proof in [1] it seems to be difficult

to get a bound for how sufficiently large n should be, since the method used in [1] is to

compare the limits of certain kinds of energy differences, and the integrand function in

the integral formula for the energy difference may not be uniformly convergent to the

limit function. In fact, it is also conjectured in [1] that the ordering in the list is true

for all odd n ≥ 21777 and for all even n ≥ 30866. Now our ordering for the first �n−7
2
�
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largest energy trees of order n is true for all n ≥ 31, so actually we have shown that the

conjecture in [1] is true for the part of the first �n−7
2
� graphs in the list.

2 Some recurrence relations of φ(G, x) and φ̃(G, x) for

k-subdivision bipartite graphs

The following lemma is an alternative form of Heilbronner’s recurrence formula [7].

Lemma 2.1. [7] Let uv be a cut edge of a graph G, then φ(G, x) = φ(G−uv, x)−φ(G−
u− v, x).

e
G1 G2u v

H1

e1 e2
G1 G2u v

w

H2

e′
G1 G2u v

w y

H3

Fig. 1: The graphs H1, H2 and H3

For the sake of simplicity, we sometimes abbreviate φ(G, x) by φ(G).

The following relation can be derived from Lemma 2.1.

Lemma 2.2. Let H1, H2, H3 be graphs as shown in Fig.1. Then we have

φ(H3, x) = xφ(H2, x)− φ(H1, x)

Proof. Let G′
1 be the graph obtained from G1 by attaching a new pendent edge uw to G1

at u, and G′
2 be the graph obtained from G2 by attaching a new pendent edge vy to G2

at v. Then by using Lemma 2.1 we have

φ(G′
1) = xφ(G1)− φ(G1 − u), and φ(G′

2) = xφ(G2)− φ(G2 − v).

Now using Lemma 2.1 for H3 and its cut edge e′ = wy, we have

φ(H3) = φ(H3 − e′)− φ(H3 − w − y) = φ(G′
1)φ(G

′
2)− φ(G1)φ(G2)

=(xφ(G1)− φ(G1 − u))(xφ(G2)− φ(G2 − v))− φ(G1)φ(G2)

=(x2 − 1)φ(G1)φ(G2)− xφ(G1)φ(G2 − v)− xφ(G2)φ(G1 − u) + φ(G1 − u)φ(G2 − v)

Also using Lemma 2.1 for H2 and H2 − e1 we have

φ(H2) =φ(H2 − e1)− φ(H2 − u− w) = φ(H2 − e1 − e2)− φ(H2 − e1 − w − v)

−φ((G1 − u) ∪G2) = xφ(G1)φ(G2)− φ(G1)φ(G2 − v)− φ(G1 − u)φ(G2)

Using Lemma 2.1 for H1 we also have

φ(H1) = φ(H1 − e)− φ(H1 − u− v) = φ(G1)φ(G2)− φ(G1 − u)φ(G2 − v)

Now it is easy to verify from the above three equations that φ(H3) = xφ(H2)−φ(H1).

-724-



e
u v

G

· · ·u v

G(k)

Pk+2

Fig. 2: Graph G and its k-subdivision graph

Definition 2.1. Let e be a cut edge of a graph G, and let Ge(k) denote the graph

obtained by replacing e with a path of length k+1 (for simplicity of notations, we usually

abbreviate Ge(k) by G(k) ). We say that G(k) is a k-subdivision graph of G on the cut

edge e. We also set G(0) = G.

From Lemma 2.2, we have the following recurrence relation for φ(G(k), x).

Theorem 2.1. Let G(k) be a k-subdivision graph of G on the cut edge e of G, then we

have

φ(G(k + 2), x) = xφ(G(k + 1), x)− φ(G(k), x) (k ≥ 0)

Proof. Take H1 = G(k) in Lemma 2.2 and let e be an edge in H1 on the path of length

k + 1 obtained by k-subdividing the edge e. Then H2 = G(k + 1) and H3 = G(k + 2).

The result now follows from Lemma 2.2.

Theorem 2.2. Let G be a bipartite graph of order n and let G(k) be a k-subdivision graph

(of order n+ k) of G on some cut edge e. Then we have

φ̃(G(k + 2), x) = xφ̃(G(k + 1), x) + φ̃(G(k), x) (k ≥ 0) (2.1)

Proof. By Theorem 2.1, we have

φ(G(k + 2), x) = xφ(G(k + 1), x)− φ(G(k), x)

replace x by ix, we get

φ(G(k + 2), ix) = ixφ(G(k + 1), ix)− φ(G(k), ix).

Now using (1.4) for G(k + 2), G(k + 1) and G(k) (since they are all bipartite) we have

in+k+2φ̃(G(k + 2), x) = in+k+1i̇xφ̃(G(k + 1), x)− in+kφ̃(G(k), x)

Dividing both sides by in+k+2 we get (2.1).
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Theorem 2.3. Let e, e′ be cut edges of bipartite graphs G and H of order n , respectively.

If G(0) � H(0) and G(1) � H(1), then we have G(k) � H(k) for all k ≥ 2, with

G(k) ∼ H(k) if and only if both the two relations H(0) ∼ G(0) and H(1) ∼ G(1) hold.

Proof. The result follows directly from Theorem 2.2 and induction on k.

Theorem 2.4. Let G,H be bipartite graphs of order n, e1, e2 be two cut edges of G and

e′1, e
′
2 be two cut edges of H. Let G(a, b) denote the graph obtained from G by subdivid-

ing e1, e2 a and b times, respectively and H(c, d) denote the graph obtained from H by

subdividing e′1, e
′
2 c and d times, respectively. If

G(0, 0) � H(0, 0) and G(0, 1) � H(0, 1), (2.2)

G(1, 0) � H(1, 0) and G(1, 1) � H(1, 1) (2.3)

then we have G(l, k) � H(l, k) for all l ≥ 0 and k ≥ 0. Moreover, if one of l and k is

at least 2, then G(l, k) ≺ H(l, k) if each of (2.2) and (2.3) contains at least one strict

relation.

Proof. Using Theorem 2.3 for e2 and e′2 we have

(2.2) =⇒ G(0, k) � H(0, k) (k ≥ 0), (2.4)

(2.3) =⇒ G(1, k) � H(1, k) (k ≥ 0). (2.5)

Now using Theorem 2.3 for e1 and e′1 we also have

(2.4) and (2.5) =⇒ G(l, k) � H(l, k) (l ≥ 0).

When (2.2) and (2.3) both contain strict relations, we have both strict relations in

(2.4) and (2.5) for k ≥ 2. Thus G(l, k) ≺ H(l, k) for all k ≥ 2 by Theorem 2.3. Similar

arguments apply to the case l ≥ 2.

3 A new method of directly comparing the energies

of k-subdivision bipartite graphs

Notice that if the conditions in Theorem 2.3 do not hold, then G(k) and H(k) might be

quasi-order incomparable. In this section, we present a new method to directly compare

the energies of two k-subdivision bipartite graphs G(k) and H(k) when they are quasi-

order incomparable. Using this method, we give a simplified proof of the conjecture on

the fourth maximal energy tree.

In the following, we always write gk = φ̃(G(k), x), hk = φ̃(H(k), x), and dk =
hk

gk
.
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Lemma 3.1. Let G(k), H(k) be k-subdivision graphs on some cut edges of the bipartite

graphs G and H of order n, respectively (k ≥ 0), gk, hk and dk be defined as above. Then

for each fixed x > 0, we have

(1). If d1 > d0, then d0 < dk < d1 for all k ≥ 2;

(2). If d1 < d0, then d1 < dk < d0 for all k ≥ 2;

(3). If d1 = d0, then dk = d0 for all k.

(So in any case we have dk ≥ min{d0, d1}.)
Proof. By the recurrence relations in Theorem 2.2, we have

dk =
hk

gk
=

xhk−1 + hk−2

xgk−1 + gk−2

=
xdk−1gk−1 + dk−2gk−2

xgk−1 + gk−2

=

(
xgk−1

xgk−1 + gk−2

)
dk−1 +

(
gk−2

xgk−1 + gk−2

)
dk−2

This tells us that dk is a convex combination of dk−1 and dk−2 with positive coefficients,

which implies that dk lies in the open interval (dk−1, dk−2) or (dk−2, dk−1) if dk−1 �= dk−2.

Using this fact and the induction on k we obtain that dk always lies in the open interval

(d0, d1) or (d1, d0) when d0 �= d1, and dk = d0 when d1 = d0.

The following theorem can be derived from Lemma 3.1:

Theorem 3.1. (1). If h1g0 − h0g1 = φ̃(H(1), x)φ̃(G(0), x) − φ̃(H(0), x)φ̃(G(1), x) > 0

(which is equivalent to d1(x) > d0(x)) for all x > 0, then we have

E(H(k))− E(G(k)) > E(H(0))− E(G(0)) (for all k > 0.)

(2). If h1g0−h0g1 = φ̃(H(1), x)φ̃(G(0), x)− φ̃(H(0), x)φ̃(G(1), x) < 0(which is equivalent

to d1(x) < d0(x)) for all x > 0, then we have

E(H(k))− E(G(k)) > E(H(1))− E(G(1)) for all k �= 1.

Proof. (1). Since d1(x) > d0(x) for all x > 0, by (1) of Lemma 3.1 we have dk(x) > d0(x)

for all x > 0 and k > 0. So by (1.5) we have

E(H(k))− E(G(k)) =
2

π

+∞∫
0

ln
φ̃(H(k), x)

φ̃(G(k), x)
dx =

2

π

+∞∫
0

ln dk(x)dx

>
2

π

+∞∫
0

ln d0(x)dx =
2

π

+∞∫
0

ln
φ̃(H(0), x)

φ̃(G(0), x)
dx = E(H(0))− E(G(0)) (k > 0).

The proof of (2) is similar to that of (1).
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In [10], Shan et al. show that the fourth largest energy tree is either Pn(2, 6, n − 9)

or Tn(2, 2|2, 2) (see Fig.3 and Fig.4 in §4 for the definitions of these two graphs). B. Huo

et al.[8] proved that the conjecture on the fourth maximal energy tree is true by showing

that E(Pn(2, 6, n− 9)) > E(Tn(2, 2|2, 2)). Now by using Theorem 3.1, we are able to give

a simplified proof of the conjecture on the fourth maximal energy tree.

Theorem 3.2. If n ≥ 10, then

E(Pn(2, 6, n− 9)) > E(Tn(2, 2|2, 2))

Proof. Let H = P10(2, 6, 1) and G = T10(2, 2|2, 2), e be the pendent edge on the pendent

path of length 1 in H, and e′ be the edge between the two vertices of degree 3 in G. Then

we have Pn(2, 6, n− 9) = H(n− 10) and Tn(2, 2|2, 2) = G(n− 10). By direct calculations,

we have

φ̃(H(0), x) = φ̃(P10(2, 6, 1), x) = x10 + 9 x8 + 27 x6 + 31 x4 + 12 x2 + 1,

φ̃(G(0), x) = φ̃(T10(2, 2|2, 2), x) = x10 + 9 x8 + 26 x6 + 30 x4 + 13 x2 + 1,

φ̃(H(1), x) = φ̃(P11(2, 6, 2), x) = x11 + 10 x9 + 35 x7 + 52 x5 + 32 x3 + 6 x,

φ̃(G(1), x) = φ̃(T11(2, 2|2, 2), x) = x11 + 10 x9 + 34 x7 + 48 x5 + 29 x3 + 6 x.

So we have

φ̃(H(1), x)φ̃(G(0), x)− φ̃(H(0), x)φ̃(G(1), x) = 2x15+22x13+89x11+168x9+156x7+

66x5 + 9x3 > 0 (x > 0).

Also by using a computer we can obtain

E(H(0))
.
= 11.937511, E(G(0))

.
= 11.924777, So E(H(0))−E(G(0))

.
= 0.012734 >

0.

So by Theorem 3.1 we have for n ≥ 10,

E(Pn(2, 6, n − 9)) − E(Tn(2, 2|2, 2)) = E(H(n − 10)) − E(G(n − 10)) ≥ E(H(0)) −
E(G(0)) > 0.

Combining Theorem 3.2 with the result that the fourth largest energy tree is either

Pn(2, 6, n − 9) or Tn(2, 2|2, 2) ([10]), we conclude that the fourth maximal energy tree is

Pn(2, 6, n− 9).

Remark: Here we would like to mention that, the main points of the simplification in

the proof of Theorem 3.2 are:
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1. We use the integral formula (1.5) (instead of (1.3)) which uses the real polynomial

φ̃(Gj, x) instead of the complex polynomial φ(Gj, ix) for j = 1, 2.

2. The recurrence relation (2.1) for φ̃(G(k), x) allows us to use Lemma 3.1 to directly

compare dk(x) and d0(x) (namely directly compare the integrands ln dk(x) and ln d0(x)

in the formula (1.5) for E(H(k)) − E(G(k)) and E(H(0)) − E(G(0))), without the need

of solving the recurrence relation (2.1) to obtain explicit expressions for hk = φ̃(H(k), x)

and gk = φ̃(G(k), x).

Notice that in Theorem 3.1, we need either d1(x) > d0(x) for all x > 0 or d0(x) > d1(x)

for all x > 0. Now if neither of these two conditions holds, then neither d0(x) nor d1(x)

is a lower bound for dk(x) (k ≥ 2). Although in this case we cannot use Theorem 3.1,

but by Lemma 3.1 we still have min{d0(x), d1(x)} as a lower bound for dk(x) (for all

x > 0). Thus we can still obtain the following lower bound (which is independent of k)

for E(H(k))− E(G(k)).

Theorem 3.3. Let G(k), H(k) be k-subdivision graphs of bipartite graphs G and H on

some cut edges. Let dk(x) =
φ̃(H(k), x)

φ̃(G(k), x)
and let D = {x > 0|d0(x) > d1(x)}, Let DC be

the complement of D in (0,∞). Then :

E(H(k))− E(G(k)) ≥ 2

π

+∞∫
0

lnmin{d0(x), d1(x)}dx =
2

π

∫
D

ln d1(x)dx+
2

π

∫
DC

ln d0(x)dx

(3.1)

where the right hand side of (3.1) can also be written as:

2

π

∫
D

ln d1(x)dx+
2

π

∫
DC

ln d0(x)dx =
2

π

+∞∫
0

ln d1(x)dx− 2

π

∫
DC

ln d1(x)dx (3.2)

+
2

π

∫
DC

ln d0(x)dx = E(H(1))− E(G(1))− 2

π

∫
DC

ln
d1(x)

d0(x)
dx

or equivalently,

2

π

∫
D

ln d1(x)dx+
2

π

∫
DC

ln d0(x)dx = E(H(0))− E(G(0)) +
2

π

∫
D

ln
d1(x)

d0(x)
dx (3.3)

Theorem 3.3 will be used several times in §4 and §5 in the proof of our main results.
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4 Some upper bounds for the energies of non-starlike

trees

In the following discussions, we will divide the trees into two classes. One is called the

starlike trees, and the other one is the non-starlike trees. In this section, we will give some

upper bounds for the energies of the non-starlike trees. We will show that the energy of a

non-starlike tree is bounded above either by the energy of Pn(1, 2, n−4), or by the energy

of Tn(2, 2|2, 2) (see Fig.3 and Fig.4).

Let N3(G) be the number of vertices in G with degree at least 3, and Δ(G) be the

maximal degree of G. A tree T is called starlike if N3(T ) ≤ 1, and is called non-starlike

if N3(T ) ≥ 2.

It is easy to see that if N3(T ) = 0, then T is the path Pn. Now if N3(T ) = 1, then

T consists of some internally disjoint pendent paths starting from its unique vertex with

degree at least 3. Suppose that the lengths of these pendent paths are positive integers

a1, a2, · · · , ak. Then we denote this tree T by Pn(a1, a2, · · · , ak), where a1 + a2 + · · · +
ak = n − 1 and k = Δ(T ) (see Fig.3). Sometimes we also denote Pn(a1, a2, · · · , ak) by

Pn(a1, a2, · · · , ak−1, ∗), since ∗ is uniquely determined by n and a1, a2, · · · , ak−1.

· · ·
· · ·
· · ·· · ·

··
·

Pa1

Pa2

Pak−1

Pak

Fig. 3: The starlike tree Pn(a1, a2, · · · , ak)

··· · · ·

· · ·
···

· · ·

Pa

Pb

Pc

Pd

Fig. 4: The tree Tn(a, b|c, d)

Let a, b, c, d be positive integers with a+ b+ c+d ≤ n− 2. Let Tn(a, b|c, d) be the tree
of order n obtained by attaching two pendent paths of lengths a and b to one end vertex

of the path Pn−a−b−c−d, and attaching two pendent paths of lengths c and d to another

end vertex of the path Pn−a−b−c−d (see Fig.4).

It is not difficult to see that if T is a tree of order n with Δ(T ) = 3 and N3(T ) = 2,

then T must be of the form Tn(a, b|c, d), where a+ b+ c+ d ≤ n− 2.

In [10] and [11], Shan et al. studied how graph energies change under edge grafting

operations on unicyclic or bipartite graphs and proved the following result on the quasi-

order on unicyclic or bipartite graphs:

Lemma 4.1. ([10], The edge grafting operation) Let u be a vertex of a graph G. Denote

Gu(a, b) the graph obtained by attaching to G two (new) pendent paths of lengths a and b
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u

· · ·

· · ·
e

Pa

Pb

G

Fig. 5: The graph Gu(a, b)

at u. Let a, b, c, d be nonnegative integers with a+ b = c+ d. Assume that 0 ≤ a ≤ b, 0 ≤
c ≤ d and a < c. If u is a non-isolated vertex of a unicyclic or bipartite graph G, then

the following statements are true:

(1). If a is even, then Gu(a, b) � Gu(c, d).

(2). If a is odd, then Gu(a, b) ≺ Gu(c, d).

If a = 0, then we say that Gu(0, b) is obtained from Gu(c, d) by a total edge grafting

operation.

The following result in [10] was obtained directly by using the edge grafting operation.

Theorem 4.1. [10] Let T be a tree of order n with N3(T ) ≥ 2. Then there exists a tree

T ′ of order n with N3(T
′) = N3(T )− 1 and Δ(T ′) = Δ(T ) such that T ≺ T ′.

In the following, we will give some upper bounds for the energies of trees of the form

Tn(a, b|c, d). First we consider the case 1 ∈ {a, b, c, d} in the following Theorem 4.2. The

other case where min{a, b, c, d} ≥ 2 will be considered in Lemma 4.3, 4.4 and Theorem

4.3.

Theorem 4.2. [10] Let T = Tn(1, b|c, d). Then T ≺ Pn(1, 2, n− 4).

Proof. By using total edge grafting on the two pendent paths of lengths c and d, we have

T ≺ Pn(1, b, n−2−b). Using the edge grafting operation again, we have Pn(1, b, n−2−b) �
Pn(1, 2, n− 4). Thus the result follows.

· · ·
Pa

· · ·
Pb

u
vG

Fig. 6: Gu,v(a, b)

The following Lemma generalizes Lemma 4.1, and is called “edge grafting operation

at different vertices”.
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Lemma 4.2. [11] Let u, v be two vertices of a unicyclic or bipartite graph G. Let Gu,v(a, b)

be the graph obtained from G by attaching a pendent path of length a to u and attaching

a pendent path of length b to v (as shown in Fig.6). Suppose that G satisfies:

(i). Gu,v(0, 2) � Gu,v(1, 1).

(ii). For any nonnegative integers p, q, Gu,v(p, q) = Gu,v(q, p).

Let a, b, c, d be nonnegative integers with a ≤ b, c ≤ d, a+ b = c+ d, and a < c, then we

have

(1) If a is even, then Gu,v(a, b) � Gu,v(c, d).

(2) If a is odd, then Gu,v(a, b) ≺ Gu,v(c, d).

e2e1 e′1 e′2

Fig. 7: T12(3, 2|2, 2) and T12(2, 2|2, 2)
Now we use the methods given in §3 to prove the following two lemmas, which consider

the tree Tn(a, 2|2, 2) in two cases 3 ≤ a ≤ n − 9 and a = n − 8. These two lemmas will

only be used in the proof of Theorem 4.3 later.

Lemma 4.3. Let 3 ≤ a ≤ n− 9. Then Tn(a, 2|2, 2) ≺ Tn(2, 2|2, 2).

Proof. Let e1, e2 be the cut edges of G = T12(3, 2|2, 2) and e′1, e
′
2 be the cut edges of H =

T12(2, 2|2, 2) as shown in Fig.7. respectively. Then we have Tn(a, 2|2, 2) = G(a−3, n−9−a)

and Tn(2, 2|2, 2) = H(a− 3, n− 9− a).

By direct calculations, we have

φ̃(H(0, 0), x) =φ̃(T12(2, 2|2, 2), x) = x12 + 11 x10 + 43 x8 + 74 x6 + 59 x4 + 19 x2 + 1,

φ̃(G(0, 0), x) =φ̃(T12(3, 2|2, 2), x) = x12 + 11 x10 + 43 x8 + 74 x6 + 57 x4 + 17 x2,

φ̃(H(1, 0), x) =φ̃(H(0, 1), x) = φ̃(T13(2, 2|2, 2), x) = x13 + 12 x11 + 53 x9 + 108 x7+

107x5 + 48 x3 + 7 x,

φ̃(G(1, 0), x) =φ̃(T13(4, 2|2, 2), x) = x13 + 12 x11 + 53 x9 + 108 x7 + 105 x5 + 46 x3 + 7 x,

φ̃(G(0, 1), x) =φ̃(T13(3, 2|2, 2), x) = x13 + 12 x11 + 53 x9 + 108 x7 + 106 x5 + 46 x3 + 6 x,

φ̃(H(1, 1), x) =φ̃(T14(2, 2|2, 2), x) = x14 + 13 x12 + 64 x10 + 151 x8 + 181 x6 + 107 x4

+26x2 + 1,

φ̃(G(1, 1), x) =φ̃(T14(4, 2|2, 2), x) = x14 + 13 x12 + 64 x10 + 151 x8 + 180 x6 + 105 x4

+25x2 + 1.
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By comparing the coefficients of the polynomials above, we find that

G(0, 0) ≺ H(0, 0), G(0, 1) ≺ H(0, 1), G(1, 0) ≺ H(1, 0), G(1, 1) ≺ H(1, 1).

So by Theorem 2.4 we have Tn(a, 2|2, 2) = G(a − 3, n − 9 − a) ≺ H(a − 3, n − 9 − a) =

Tn(2, 2|2, 2).

e e′

Fig. 8: G = T11(3, 2|2, 2) and H = T11(2, 2|2, 2)

Now we consider the remaining case a = n− 8 for the trees of the form Tn(a, 2|2, 2).

Lemma 4.4. E(Tn(n− 8, 2|2, 2)) < E(Tn(2, 2|2, 2)) for all n ≥ 11.

Proof. Consider the cut edges e of G = T11(3, 2|2, 2) and e′ of H = T11(2, 2|2, 2) as

shown in Fig.8. Let G(k), H(k) be graphs obtained by subdividing the cut edges e of

G and e′ of H respectively k times. Then we have Tn(n − 8, 2|2, 2) = G(n − 11) and

Tn(2, 2, 2, 2) = H(n− 11). Denote gk = φ̃(G(k), x) and hk = φ̃(H(k), x).

By direct calculations, we have

h0 =φ̃(T11(2, 2|2, 2), x) = x11 + 10 x9 + 34 x7 + 48 x5 + 29 x3 + 6 x,

g0 =φ̃(T11(3, 2|2, 2), x) = x11 + 10 x9 + 34 x7 + 49 x5 + 29 x3 + 5 x,

h1 =φ̃(T12(2, 2|2, 2), x) = x12 + 11 x10 + 43 x8 + 74 x6 + 59 x4 + 19 x2 + 1,

g1 =φ̃(T12(4, 2|2, 2), x) = x12 + 11 x10 + 43 x8 + 75 x6 + 59 x4 + 18 x2 + 1.

So we have

h1g0 − h0g1 = x(x− 1)(x+ 1)(x6 + 7 x4 + 11 x2 + 1)(x2 + 1)3.

Thus

D = {x|h1g0 − h0g1 < 0, x > 0} = (0, 1).

Also by using a computer we can find:

E(H(0))
.
= 13.059967, E(G(0))

.
= 13.015698

and by using computer to calculate the integral we can further obtain

E(H(0))− E(G(0)) +
2

π

∫
D

ln
d1(x)

d0(x)
dx = E(H)− E(G) +

2

π

1∫
0

ln
h1g0
h0g1

dx
.
= 0.005951 > 0.
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So using Theorem 3.3, we obtain E(H(k)) − E(G(k)) > 0 for all k ≥ 0. Thus E(Tn(n −
8, 2|2, 2)) < E(Tn(2, 2|2, 2)).

Theorem 4.3. Let n ≥ 11, and assume that a, b, c, d ≥ 2 and a, b, c, d are not all equal

to 2. Then we have

E(Tn(a, b|c, d)) < E(Tn(2, 2|2, 2)).

Proof. By using the edge grafting operation in Lemma 4.1, we have

Tn(a, b|c, d) � Tn(a+ b− 2, 2|2, c+ d− 2).

By using Lemma 4.2 (edge grafting on different vertices), we also have

Tn(a+ b− 2, 2|2, c+ d− 2) � Tn(a+ b+ c+ d− 6, 2|2, 2).

Write x = a + b + c + d− 6, then we have 3 ≤ x ≤ n− 8 since at least one of a, b, c, d is

greater than 2.

Now If 3 ≤ x ≤ n − 9, then by Lemma 4.3 we have Tn(x, 2|2, 2) ≺ Tn(2, 2|2, 2). So

E(Tn(a, b|c, d)) ≤ E(Tn(x, 2|2, 2)) < E(Tn(2, 2|2, 2)).
If x = n − 8, then by Lemma 4.4 we have E(Tn(a, b|c, d)) ≤ E(Tn(x, 2|2, 2)) <

E(Tn(2, 2|2, 2)).

5 The trees of order n with the first �n−7
2 � largest

energies

In this section, we will determine the first �n−7
2
� largest energy trees of order n ≥ 31

by using the method of directly comparing energies given in §3.
First, we divide the class of starlike trees into the following four subclasses:

(C1). The path Pn.

(C2). The class Sn = {Pn(2, a, b) | a+ b = n− 3, 1 ≤ a ≤ b}.

(C3). The starlike trees T of order n with Δ(T ) = 3 and T /∈ Sn.

(C4). The starlike trees T of order n with Δ(T ) ≥ 4.

For convenience, we also define the following class (C5):

(C5). The class of non-starlike trees of order n (i.e., N3(T ) ≥ 2).

It is obvious that the union of the classes (C1)-(C5) is the class of all the trees of order n.
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Now, our strategy of proving the main result is as follows. Firstly, using the quasi-

order defined by Gutman and Polansky in [5], we can obtain (in Theorem 5.1) a total

ordering of all the �n−3
2
� trees in Sn. Secondly, we can show (in Theorem 5.2) that the

maximal tree (under the quasi-order) in the class (C3) is Pn(4, 4, ∗), and the maximal tree

in the class (C4) is Pn(2, 2, 2, ∗). Next, by directly comparing the energies of the largest

energy trees in the classes (C3) and (C4) with some smaller energy graphs in Sn, and

comparing the energies of the tree Tn(2, 2|2, 2) in the class (C5) with the smallest energy

tree Pn(2, 1, n−4) in Sn, we obtain that the first �n−9
2
� largest energy trees in Sn together

with Pn are the first �n−7
2
� largest energy trees in the class of all trees of order n.

Theorem 5.1. [5] Let Sn = {Pn(2, a, b) | a + b = n − 3, 1 ≤ a ≤ b}. Let k = �n−3
2
�,

t = �k
2
� and l = �k−1

2
�. Then we have the following total order for the trees in Sn:

Pn(2, 2, ∗) � Pn(2, 4, ∗) � · · · � Pn(2, 2t, ∗) � Pn(2, 2l + 1, ∗) � · · ·
� Pn(2, 3, ∗) � Pn(2, 1, ∗) . (5.1)

Proof. The result follows directly from Lemma 4.1 by using the edge grafting operation.

Theorem 5.2. Let n ≥ 11. Then we have

(1). If T ∈(C3) and T �= Pn(4, 4, n− 9), then T ≺ Pn(4, 4, n− 9) .

(2). If T ∈(C4) and T �= Pn(2, 2, 2, n− 7), then T ≺ Pn(2, 2, 2, n− 7) .

Proof. (1) Since T ∈(C3), T must be of the form Pn(a, b, c) with 2 /∈ {a, b, c}. Without loss

of generality, we may assume that a ≤ b ≤ c. Then b+ c ≥ 7 since n ≥ 11. So by Lemma

4.1 we have T = Pn(a, b, c) � Pn(a, 4, b + c − 4) and Pn(a, 4, b + c − 4) � Pn(4, 4, n − 9)

since b + c − 4 �= 2. Also T �= Pn(4, 4, n − 9) implies that at least one of the above two

relations is strict. Thus we have T = Pn(a, b, c) ≺ Pn(4, 4, n− 9).

(2) Since Δ(T ) ≥ 4 for T ∈(C4), by using Lemma 4.1 we can derive that T �
Pn(a, b, c, d) for some tree Pn(a, b, c, d). By further using the edge grafting operations at

most 3 times on Pn(a, b, c, d), we will finally obtain Pn(a, b, c, d) � Pn(2, 2, 2, n− 7). Also

T �= Pn(2, 2, 2, n − 7) implies that at least one of the above relations is strict. Thus we

have T ≺ Pn(2, 2, 2, n− 7).

By using the method of directly comparing energies given in §3, the following Theorem
5.3 and Theorem 5.4 will exclude out Pn(2, 2, 2, ∗) (the maximal energy tree in the class

(C4)) and Tn(2, 2|2, 2) (in the class (C5)) from the list of the first �n−7
2
� largest energy

trees by the smallest energy tree Pn(2, 1, n− 4) in Sn.
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e · · ·e′ P5

Fig. 9: P9(2, 2, 2, 2) and P9(2, 1, 5)

Theorem 5.3. Let n ≥ 10. Then we have E(Pn(2, 2, 2, n− 7)) < E(Pn(2, 1, n− 4))

Proof. Consider the cut edges e of G = P9(2, 2, 2, 2) and e′ of H = P9(2, 1, 5) as shown in

Fig.9.

Let G(k), H(k) be graphs obtained by subdividing the cut edges e of G and e′ of H

respectively k times. Then we have Pn(2, 2, 2, n − 7) = G(n − 9) and Pn(2, 1, n − 4) =

H(n− 9). Denote gk = φ̃(G(k), x) and hk = φ̃(H(k), x).

By direct calculations, we have

h0 =φ̃(P9(2, 1, 5), x) = x9 + 8x7 + 20x5 + 17x3 + 4x,

g0 =φ̃(P9(2, 2, 2, 2), x) = x9 + 8 x7 + 18 x5 + 16 x3 + 5 x,

h1 =φ̃(P10(2, 1, 6), x) = x10 + 9 x8 + 27 x6 + 31 x4 + 12 x2 + 1,

g1 =φ̃(P10(2, 2, 2, 3), x) = x10 + 9 x8 + 25 x6 + 28 x4 + 12 x2 + 1.

So we have h1g0 − h0g1 = (2x4 + 8 x2 + 1)(x2 + 1)3 > 0 for all x > 0.

Also we can compute that E(H(0)) = E(G(0)) = 6 + 2
√
5. So using Theorem 3.1, we

have

E(Pn(2, 1, n− 4))−E(Pn(2, 2, 2, n− 7)) = E(H(n− 9))−E(G(n− 9)) > E(H(0))−
E(G(0)) = 0.

Notice that Pn(2, 2, 2, n − 7) and Pn(2, 1, n − 4) are quasi-order incomparable when

n ≥ 11. So Theorem 5.3 can not be proven by only using the quasi-order method.

· · ·e · · ·e′ P18

Fig. 10: T22(2, 2|2, 2) and P22(2, 1, 18)

Theorem 5.4. Let n ≥ 22. Then we have E(Tn(2, 2|2, 2)) < E(Pn(2, 1, n− 4)).

Proof. Consider the cut edges e of G = T22(2, 2|2, 2) and e′ of H = P22(2, 1, 18) as shown

in Fig.10.
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Let G(k), H(k) be graphs obtained by subdividing the cut edges e of G and e′ of

H respectively k times. Then we have Tn(2, 2|2, 2) = G(n − 22) and Pn(2, 1, n − 4) =

H(n− 22). Denote gk = φ̃(G(k), x) and hk = φ̃(H(k), x).

By direct calculations, we have

h0 =x22 + 21 x20 + 189 x18 + 953 x16 + 2955 x14 + 5824 x12 + 7293 x10 + 5643 x8+

2541 x6 + 595 x4 + 57 x2 + 1,

g0 =x22 + 21 x20 + 188 x18 + 939 x16 + 2879 x14 + 5625 x12 + 7046 x10 + 5546 x8+

2598 x6 + 644 x4 + 64 x2 + 1,

h1 =x23 + 22 x21 + 209 x19 + 1123 x17 + 3756 x15 + 8113 x13 + 11375 x11 + 10153 x9+

5511 x7 + 1672 x5 + 241 x3 + 11 x,

g1 =x23 + 22 x21 + 208 x19 + 1108 x17 + 3667 x15 + 7850 x13 + 10982 x11 + 9912 x9+

5546 x7 + 1768 x5 + 268 x3 + 12 x.

So we have
h1g0 − h0g1 = x(x8 + 7 x6 + 11 x4 − 4 x2 − 1)(x2 + 1)3

D = {x|h1g0 − h0g1 < 0, x > 0} .
= (0, 0.663073).

By using a computer we can also find

E(H(0))
.
= 27.182092, E(G(0))

.
= 27.175139, and

E(H(0))− E(G(0)) +
2

π

∫
D

ln
h1g0
h0g1

dx
.
= 0.000425 > 0 .

So by using Theorem 3.3, we have E(Pn(2, 1, n− 4))− E(Tn(2, 2|2, 2)) = E(H(n− 22))−
E(G(n− 22) > 0.

· · ·e
P22

· · ····
e′ P21

P7

Fig. 11: P31(4, 4, 22) and P31(2, 7, 21)

The following Theorem 5.5 will exclude out the maximal energy tree in the class (C3)

by the fourth smallest energy tree in Sn.

Theorem 5.5. Let n ≥ 31. Then we have E(Pn(4, 4, n− 9)) < E(Pn(2, 7, n− 10)).
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Proof. Consider the cut edges e of G = P31(4, 4, 22) and e′ of H = P31(2, 7, 21) as shown

in Fig.11.

Let G(k), H(k) be graphs obtained by subdividing the cut edges e of G and e′ of H

respectively k times. Then we have Pn(4, 4, n − 9) = G(n − 31) and Pn(2, 7, n − 10) =

H(n− 31). Denote gk = φ̃(G(k), x) and hk = φ̃(H(k), x).

By direct calculations, we have

h0 =φ̃(P31(2, 7, 21), x) = x31 + 30 x29 + 405 x27 + 3252 x25 + 17296 x23 + 64220 x21+

170943 x19 + 329768 x17 + 460696 x15 + 460851 x13 + 322620 x11 + 152131 x9+

45426 x7 + 7738 x5 + 619 x3 + 15 x,

g0 =φ̃(P31(4, 4, 22), x) = x31 + 30 x29 + 405 x27 + 3252 x25 + 17295 x23 + 64200 x21+

170772 x19 + 328952 x17 + 458317 x15 + 456496 x13 + 317681 x11 + 148864 x9+

44349 x7 + 7644 x5 + 636 x3 + 16 x,

h1 =φ̃(P32(2, 7, 22), x) = x32 + 31 x30 + 434 x28 + 3629 x26 + 20198 x24 + 78938 x22+

222724 x20 + 459365 x18 + 693530 x16 + 760145 x14 + 593801 x12 + 320464 x10+

113705 x8 + 24470 x6 + 2774 x4 + 125 x2 + 1,

g1 =φ̃(P32(4, 4, 23), x) = x32 + 31 x30 + 434 x28 + 3629 x26 + 20197 x24 + 78917 x22+

222534 x20 + 458396 x18 + 690471 x16 + 753971 x14 + 585871 x12 + 314249 x10+

111032 x8 + 24007 x6 + 2792 x4 + 132 x2 + 1.

So we have

h1g0 − h0g1 = x (x4 + 3 x2 + 1) (x12 + 12 x10 + 53 x8 + 107 x6 + 99 x4 + 34 x2 + 1) > 0

for all x > 0.

By using a computer we can also find

E(H(0))
.
= 38.616923, E(G(0))

.
= 38.616742

So using Theorem 3.1, we have E(Pn(2, 7, n− 10))−E(Pn(4, 4, n− 9)) = E(H(n− 31))−
E(G(n− 31)) ≥ E(H(0))− E(G(0))

.
= 0.000181 > 0.

Theorem 5.6. Let n ≥ 31. Let S ′
n = Sn\{Pn(2, 5, n− 8), Pn(2, 3, n− 6), Pn(2, 1, n− 4)}

be the first �n−9
2
� trees in the quasi-order list (5.1) of Sn. Then Pn and the �n−9

2
� trees in

S ′
n are the first �n−7

2
� largest energy trees in the class of all trees of order n.

Proof. It is obvious by the quasi-order list (5.1) that the smallest energy tree in the set

{Pn} ∪ S ′
n is Pn(2, 7, n − 10). Now take any tree T /∈ {Pn} ∪ S ′

n of order n, we consider

the following four cases:

-738-



Case 1: T ∈(C2). Then T ∈ Sn\S ′
n. By the quasi-order list (5.1) we have T ≺ Pn(2, 7, n−

10).

Case 2: T ∈(C3). Then by Theorem 5.2 and Theorem 5.5 we have

E(T ) ≤ E(Pn(4, 4, n− 9)) < E(Pn(2, 7, n− 10)).

Case 3: T ∈(C4). Then by Theorem 5.2, 5.3 and the list (5.1) we have

E(T ) ≤ E(Pn(2, 2, 2, n− 7)) < E(Pn(2, 1, n− 4)) < E(Pn(2, 7, n− 10)).

Case 4: T ∈(C5).
Subcase 4.1: N3(T ) = 2 and Δ(T ) = 3. Then T is of the form Tn(a, b|c, d). So by

Theorem 4.2, 4.3, 5.4 and the list (5.1) we have

E(T ) < E(Pn(2, 1, n− 4)) < E(Pn(2, 7, n− 10)).

Subcase 4.2: N3(T ) = 2 and Δ(T ) ≥ 4. Then a tree T ′ with N3(T
′) = 2 and Δ(T ′) = 3

can be obtained from T by using total edge grafting several times. So T ≺ T ′, and thus

by Subcase 4.1 we have E(T ) < E(T ′) < E(Pn(2, 7, n− 10)).

Subcase 4.3: N3(T ) ≥ 3. Using Theorem 4.1 several times we can obtain a tree T ′

with N3(T
′) = 2 and T ≺ T ′. So by Subcases 4.1 and 4.2 we have E(T ) < E(T ′) <

E(Pn(2, 7, n− 10)).
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