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Abstract

We show that the maximum value of the graph energy within the set of all
graphs with cyclomatic number k (which includes, for instance, trees or unicyclic
graphs as special cases) is at most 4n/π +Ak for a constant Ak that only depends
on k, and we show how to construct graphs of arbitrary cyclomatic number whose
energy is indeed essentially 4n/π. Similar results are also given for the minimum
energy and for the Merrifield-Simmons index and the Hosoya index, two related
graph parameters.

1 Introduction

The energy En(G) of a graph G, defined as the sum of the absolute values of the eigenval-

ues of a graph, is a popular graph invariant in mathematical chemistry, see for instance [5]

for a recent survey. In the recent past, the general problem of determining the maximum

or minimum value of the graph energy within a certain class of graphs has gained con-

siderable interest. Results of this form are known for trees [4, 6, 11, 12, 17], unicyclic

graphs [1, 8–10, 14], bicyclic graphs [7, 15, 19], tricyclic graphs [13], and so on. In this

paper, we will generally consider connected graphs with fixed cyclomatic number k (i.e.,
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if the number of vertices is n, then the number of edges is n + k − 1), generalising the

aforementioned classes (trees, for instance, correspond to the case k = 0).

While it becomes increasingly difficult to determine the exact maxima and minima

of the energy and the associated graphs (for which these extremal values are attained)

as k grows, we will see that one can at least give a qualitative answer to the general

question what the maximum/minimum energy is, given k and the number of vertices n.

It is known that the energy of a graph with m edges is at most 2m [2], so the growth can

at most be linear if the cyclomatic number is fixed. As we will see, the constant 2 can

essentially be replaced by 4/π. The following theorem is the main result of this paper:

Theorem 1 Let k be a fixed nonnegative integer, and denote the set of all connected

graphs with n vertices and cyclomatic number k by Gn,k. There exists a constant Ak

depending only on k such that the inequality

4n

π
+ Ak ≥ En(G)

holds for all G ∈ Gn,k.

Moreover, it is not hard to construct graphs Hn ∈ Gn,k such that

En(Hn) ≥ 4n

π
+ ak

for some constant ak. This is done in Section 4. It follows that

Corollary 2 The maximum energy of a graph in Gn,k is 4n/π +O(1).

Here and in the following, O(1) terms refer to the situation that n → ∞ while k

is fixed. For the minimum, things are somewhat simpler: it is known that the energy

of a graph without isolated vertices is at least 2
√
n− 1, with equality for the star [2].

In particular, the star has minimum energy among connected graphs. Moreover, it is

well known [2] that En(G) ≥ 2
√
m for all graphs G with m vertices, and so En(G) ≥

2
√
n+ k − 1 for all graphs G ∈ Gn,k. For the sake of completeness, we show in Section 4

how to construct graphs of arbitrary cyclomatic number whose energy is close to 2
√
n.

Hence we have:

Theorem 3 The minimum energy of a graph in Gn,k is 2
√
n+O(1).
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This also implies that the limits

Mk = lim sup
n→∞

(
max

G∈Gn,k

En(G)− 4n

π

)

and

mk = lim inf
n→∞

(
min

G∈Gn,k

En(G)− 2
√
n
)

exist for all k. Not many explicit values of these limits are known, especially for the

maximum. It is well known that the maximum energy of a tree is obtained for the path,

and that this energy is

En(Pn) =

⎧⎨
⎩
2 (csc(π/(2n+ 2))− 1) n even,

2 (cot(π/(2n+ 2))− 1) n odd,
(1)

which proves that M0 = 4/π − 2 ≈ −0.72676. It is already considerably more effort to

determine the constant in the case of unicyclic graphs: in [1], the value is found to be

M1 ≈ 0.11811.

The key to our main theorem is, as in most results on the energy, the Coulson integral

formula [4], which we use in the following form:

En(G) =
2

π

∫ ∞

0

dx

x2
log

∣∣∣xnφ(G, i/x)
∣∣∣, (2)

where n is the order of G and φ(G, u) denotes the characteristic polynomial of G. Be-

fore we prove the main theorem, we consider two closely related graph invariants: the

Merrifield-Simmons index and the Hosoya index. For these two invariants, the proof is

much simpler, but they give a flavour of the type of argument that is used to obtain the

main theorem.

2 Merrifield-Simmons index and Hosoya index

Recall that the Merrifield-Simmons index σ(G) of a graph G is defined as the total number

of independent sets, and the Hosoya index z(G) is the total number of matchings of G.

We prove inequalities analogous to those in Theorem 1 for the logarithm of σ(G) and

z(G). The minimum of the Merrifield-Simmons index is known to occur typically for the

same graphs within a fixed class as the maximum of the Hosoya index and the energy,

see [18] for a survey of results along these lines.
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The minimum of z(G) and the maximum of σ(G) are typically attained for “star-like

graphs”. Indeed, it was shown in [16, 20] that among graphs of order n with cyclomatic

number 0 ≤ k ≤ n−2, the graph with maximum Merrifield-Simmons index and minimum

Hosoya index consists of k triangles sharing a common edge, and n−k−2 pendant vertices

attached to one of the ends of this common edge (in two exceptional cases, there is a

second graph with the same property). It is easy to see that this graph has Hosoya index

(k+1)n− 2k and Merrifield-Simmons index 2n−2+2n−k−2+1. From these two formulas,

we can deduce:

Theorem 4 The minimum of log z(G) for a graph G ∈ Gn,k is log n+O(1), the maximum

of log σ(G) is n log 2 +O(1).

Let generally H be any fixed graph and v a vertex of H, and define S(�) as the graph

that results by attaching � pendant vertices to v. Then

σ(S(�)) = 2�σ(H \ v) + σ(H \N [v]),

where N [v] is the closed neighbourhood of v (consisting of all neighbours of v and v

itself). Likewise,

z(S(�)) = �z(H \ v) + z(H).

It follows that the graphs S(�) so constructed are “almost optimal” in the sense that

log σ(S(�)) = |S(�)| log 2 +O(1) (3)

and

log z(S(�)) = log |S(�)|+O(1). (4)

Things are more complicated for the minimum of σ(G) and the maximum of z(G), and a

similarly simple description of the extremal graphs does not seem to be possible. However,

analogous estimates hold.

Let us consider the Merrifield-Simmons index first. We prove by induction on k that

a graph G ∈ Gn,k satisfies

σ(G) ≥ (3/4)kFn+2,

where Fn+2 denotes the (n+2)th Fibonacci number (F0 = 0, F1 = 1, Fn+1 = Fn+Fn−1).

For k = 0, we know that the path Pn has minimal Merrifield-Simmons index, and σ(Pn) =

Fn+2. If now G ∈ Gn,k+1, then we find an edge e = uv in G that is contained in a cycle.
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This edge reduces the number of independent sets by all those which contain both u and

v. However, given any such independent set in G\ e, we can remove either u or v or both

to obtain another independent set, which implies that at most 1/4 of all independent sets

of G \ e contain u and v. It follows that

σ(G) ≥ 3

4
σ(G \ e),

which completes the induction. An immediate consequence is that

log σ(G) ≥ n log

√
5 + 1

2
+O(1) (5)

for G ∈ Gn,k.

For the Hosoya index, consider a graph G ∈ Gn,k, and take a spanning tree T of G.

Let R be the set of the k remaining edges. Then any matching of G consists of a matching

of T and a subset of the remaining k edges. It is well known that the maximum of z(T )

for a tree (or indeed any forest) T of order n is the Fibonacci number Fn+1, and there

are 2k subsets of the remaining edges. Hence

z(G) ≤ 2kFn+1.

One can improve quite easily on this inequality: consider those matchings which induce

a matching of cardinality r on R. When we remove the vertices incident with these r

edges as well as all the other edges in R, we are left with a forest of order n− 2r, which

means that it has at most Fn−2r+1 matchings. This shows that

z(G) ≤
k∑

r=0

(
k

r

)
Fn−2r+1 =

⎧⎨
⎩
5k/2Fn−k+1 k even ,

5(k−1)/2Ln−k+1 k odd .

Here, Ln denotes the Lucas numbers (L0 = 2, L1 = 1, Ln+1 = Ln + Ln−1). It follows

immediately that

log z(G) ≤ n log
1 +

√
5

2
+O(1) . (6)

The inequalities (5) and (6) are sharp up to the O(1)-term. To see this, we construct

graphs for which the values of σ and z are n log 1+
√
5

2
+O(1). Let again H be an arbitrary

graph with a fixed vertex v, and define P (�) to be the graph obtained by identifying one

end of a path of length � with v.

Then we have

σ(P (�)) = σ(P (�− 1)) + σ(P (�− 2)),
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which shows that

σ(P (�)) = β1

(
1 +

√
5

2

)n

+ β1

(
1−√

5

2

)n

for certain constants β1 (necessarily positive) and β2. Taking the logarithm, we immedi-

ately get

log σ(P (�)) = n log
1 +

√
5

2
+O(1).

The same can be done with the Hosoya index: the recursion

z(P (�)) = z(P (�− 1)) + z(P (�− 2))

holds, and we conclude

log z(P (�)) = n log
1 +

√
5

2
+O(1)

as before. Combining the results, we found that

Theorem 5 The maximum of log z(G) for a graph G ∈ Gn,k is n log 1+
√
5

2
+ O(1), and

the minimum of log σ(G) is n log 1+
√
5

2
+O(1).

3 Proof of the main result

As mentioned in the introduction, we use the Coulson integral formula (2). By the

celebrated Sachs theorem [3, Theorem 2.3.3], the characteristic polynomial φ(G, x) of a

graph G of order n can be written as

φ(G, x) =
n∑

k=0

ckx
n−k,

where

ck =
∑
H∈Hk

(−1)p(H)2c(H).

Here, Hk stands for the set of all elementary subgraphs (graphs whose components are

only single edges and cycles) of G with exactly k vertices, p(H) is the number of compo-

nents of H and c(H) is the number of cycles of H. In (2), x is replaced by i/x, so we will

mostly deal with

xnφ(G, i/x) =
n∑

k=0

in−kckx
k.

The triangle inequality yields∣∣∣xnφ(G, i/x)
∣∣∣ ≤ n∑

k=0

∑
H∈Hk

2c(H)xk
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for all x ≥ 0, and equality holds in particular for trees. In the following, we denote the

right hand side by ψ(G, x), i.e., ∣∣∣xnφ(G, i/x)
∣∣∣ ≤ ψ(G, x). (7)

It is obvious that ψ(G∪H, x) = ψ(G, x)ψ(H, x) (just like φ(G∪H, x) = φ(G, x)φ(H, x),

since elementary subgraphs of G ∪H are unions of elementary subgraphs of G and H).

Moreover, ψ(G, x) ≤ ψ(G′, x) for all x ≥ 0 if G is a subgraph of G′. In particular, the

following simple inequality for paths that we will need later holds:

ψ(Pn, x) ≥ ψ(P2, x)ψ(Pn−2, x) = (1 + x2)ψ(Pn−2, x) ≥ x2ψ(Pn−2, x). (8)

Let us now review the following facts about trees:

Lemma 6 1. If T is a tree of order n, then its characteristic polynomial is given by

φ(T, x) =
∑
k≥0

(−1)km(T, k)xn−2k,

where m(T, k) is the number of matchings of T consisting of exactly k edges, and

ψ(T, x) =
∑
k≥0

m(T, k)x2k.

2. Among all trees of order n, the path Pn has the greatest number of matchings of

any cardinality.

Proof: The formula for ψ(T, x) follows (just like the formula for φ(T, x)) from the fact

that the only elementary subgraphs of trees are matchings. All other parts of the lemma

are well known [4, 5]. �

The final ingredient to the proof of our main theorem is the following essential recur-

sion:

Lemma 7 Let e = uv be an edge of the graph G. Then the recursion

φ(G, x) = φ(G \ e, x)− φ(G \ {u, v}, x)− 2
∑

Z∈C(e)
φ(G \ Z, x)

holds, where C(e) denotes the set of all cycles that contain e. Analogously,

ψ(G, x) = ψ(G \ e, x) + x2ψ(G \ {u, v}, x) + 2
∑

Z∈C(e)
x|Z|ψ(G \ Z, x).

-667-



Proof: The proof of the first part is classical, see [3, Theorem 2.3.4]. It is based on a

one-to-one correspondence between elementary subgraphs of G and elementary subgraphs

contributing to the right hand side. The proof of the second part follows along the same

lines. �

Now we are ready to prove the following crucial lemma, from which the main result

will follow immediately:

Lemma 8 There exist positive constants αj, βj for j = 1, 2, . . . such that for any G ∈ Gn,k

and any x ≥ 0, the inequality

ψ(G, x) ≤
k∏

j=1

(1 + αjx
2 + βjx

3)ψ(Pn, x)

holds.

Proof: By induction on k. For k = 0, the statement is trivial by Lemma 6. Otherwise,

let e = uv be an edge of G that is contained in at least one cycle. Clearly, G \ e ∈ Gn,k−1.

Moreover, G′ = G \ {u, v} is a subgraph of a graph in Gn−2,� for some � < k: if it has r

components, then each of them has an edge connecting it to either u or v in G, and at

least one of the components has more than one such edge (any component that contains

the rest of a cycle to which e belongs in G). Hence at least r + 2 edges were removed

along with u and v. If we add r − 1 edges to G′ to connect the components, then we

obtain a connected graph with at least three edges less than G, but only two vertices less.

So the cyclomatic number of this graph must be less than k, as claimed.
Similarly, G \ Z is a subgraph of a graph in Gn−|Z|,h(Z) for any Z ∈ C(e), where

h(Z) < k (and clearly |Z| ≥ 3). Now we can apply the induction hypothesis together
with the recursion in Lemma 7 and the simple inequality (8) to obtain

ψ(G, x) = ψ(G \ e, x) + x2ψ(G \ {u, v}, x) + 2
∑

Z∈C(e)
x|Z|ψ(G \ Z, x)

≤
k−1∏
j=1

(1 + αjx
2 + βjx

3)

⎛
⎝ψ(Pn, x) + x2ψ(Pn−2, x) + 2

∑
Z∈C(e)

x|Z|ψ(Pn−|Z|, x)

⎞
⎠

≤
k−1∏
j=1

(1 + αjx
2 + βjx

3)

⎛
⎝ψ(Pn, x) + x2ψ(Pn−2, x) + 2

∑
Z∈C(e)

x2+ε(Z)ψ(Pn−2−ε(Z), x)

⎞
⎠ ,
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where ε(Z) is 0 if Z has even length and 1 otherwise. The last step follows by repeatedly

applying (8). Moreover, we have ψ(Pn−3, x) ≤ ψ(Pn−2, x) ≤ ψ(Pn, x) and thus

ψ(G, x) ≤
k−1∏
j=1

(1 + αjx
2 + βjx

3)

⎛
⎝1 + x2 + 2

∑
Z∈C(e)

x2+ε(Z)

⎞
⎠ψ(Pn, x).

Let us finally estimate the size of C(e): since we know that G has cyclomatic number k,

C(e) contains less than 2k elements (since the entire cycle space consists of 2k elements,

and the empty set is one of the elements of the cycle space). Therefore, we get

ψ(G, x) ≤
k∏

j=1

(1 + αjx
2 + βjx

3)ψ(Pn, x)

with αk = βk = 2k+1, which completes the induction. �

Proof of Theorem 1: Let G be any graph with n vertices and cyclomatic number k.

The Coulson integral formula (2) together with the inequality (7) yields

En(G) =
2

π

∫ ∞

0

dx

x2
log

∣∣∣xnφ(G, i/x)
∣∣∣ ≤ 2

π

∫ ∞

0

dx

x2
logψ(G, x) .

Now apply the previous lemma to get

En(G) ≤ 2

π

∫ ∞

0

dx

x2
logψ(Pn, x) +

k∑
j=1

2

π

∫ ∞

0

dx

x2
log(1 + αjx

2 + βjx
3) .

As mentioned before, ψ(Pn, x) = |xnφ(Pn, i/x)| since Pn is a tree. Therefore, the first

integral is just En(Pn), which is ≤ 4n/π, as can be seen from (1). The sum of the other

integrals is a constant (note that all the integrals converge) that only depends on k, but

not on n. This proves our theorem. �

Remark 1 The constant Ak obtained from the proof is certainly not best possible and

could be improved by estimating more carefully, but since the main point of the theorem

is the existence of such constants, it seemed sensible to keep things as simple as possible.

An explicit bound can be obtained as follows: by the change of variables x = 2−j/2u, we

get

2

π

∫ ∞

0

dx

x2
log(1 + αjx

2 + βjx
3) =

2

π

∫ ∞

0

dx

x2
log(1 + 2j+1x2 + 2j+1x3)

= 2j/2 · 2
π

∫ ∞

0

du

u2
log(1 + 2u2 + 21−j/2u3)
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≤ 2j/2 · 2
π

∫ ∞

0

du

u2
log(1 + 2u2 +

√
2u3)

< 3.75 · 2j/2

and thus
k∑

j=1

2

π

∫ ∞

0

dx

x2
log(1 + αjx

2 + βjx
3) < 3.75 ·

k∑
j=1

2j/2 < 13 · 2k/2 .

4 Constructing graphs with large and small energy

It is not very hard to construct graphs with cyclomatic number k whose energy is
√
2n+

O(1) and 4n/π + O(1) respectively. Indeed, the simple idea is again to consider graphs

that are “star-like” or “path-like”. Let us first illustrate this for the simpler case of graphs

with small energy and then consider graphs with large energy.

Let H be any fixed graph and v a vertex of H. Define S(�) as in Section 2 as the

graph that results by attaching � pendant vertices to v. Then Lemma 7 yields

φ(S(�), x) = xφ(S(�− 1), x)− x�−1 · φ(H \ v, x)

and by iteration

φ(S(�), x) = x�φ(H, x)− �x�−1φ(H \ v, x) .

Now we obtain, with n = |S(�)| = |H|+ �,

|xnφ(S(�), i/x)| = ∣∣x|H|φ(H, i/x) + �ix|H|+1φ(H \ v, i/x)∣∣
=
∣∣x|H|φ(H, i/x)

∣∣ · ∣∣∣∣1 + �ix · φ(H \ v, i/x)
φ(H, i/x)

∣∣∣∣
=
∣∣x|H|φ(H, i/x)

∣∣ · ∣∣1 + �x2h(x)
∣∣

for a rational function h(x) = (iφ(H \v, i/x))/(xφ(H, i/x)) with the following properties:

• h(x) = 1 + O(x2) as x → 0, which follows from the fact that the polynomials

φ(H, i/x) and φ(H \v, i/x) are of the form (i/x)H+a(i/x)H−2+ · · · and (i/x)H−1+

b(i/x)H−3 + · · · respectively.

• h(x) = O(xr) for some integer r as r → ∞ (which simply holds since h(x) is a

rational function without real poles).
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We use these two facts to estimate the energy of S(�), which is given by

En(S(�)) =
2

π

∫ ∞

0

dx

x2
log

∣∣∣xnφ(S(�), i/x)
∣∣∣

=
2

π

∫ ∞

0

dx

x2
log

∣∣x|H|φ(H, i/x)
∣∣+ 2

π

∫ ∞

0

dx

x2
log(1 + �x2)

+
2

π

∫ ∞

0

dx

x2
log

∣∣∣∣1 + �x2h(x)

1 + �x2

∣∣∣∣
= En(H) + 2

√
�+

2

π

∫ ∞

0

dx

x2
log

∣∣∣∣1 + �x2h(x)

1 + �x2

∣∣∣∣ .

As � → ∞, the integrand in the last term converges to x−2 log |h(x)|. To show that

interchanging the limit and the integral is indeed possible, note first that (1+�x2h(x))/(1+

�x2) is 1 +O(x2) uniformly in � in an interval around 0 by the above properties of h(x).

Hence we can use uniform convergence within such an interval. For the remaining part

of the integral, note first that both real and imaginary part of h(x) are rational functions

in x. If the imaginary part is not identically zero, we immediately get upper and lower

bounds for
∣∣∣1+�x2h(x)

1+�x2

∣∣∣ valid uniformly in �, and these bounds are again rational functions.

We can then use the dominated convergence theorem.

If the imaginary part is identically zero, then h(x) is a strictly positive rational func-

tion, since the zeros of φ(H, i/x) and φ(H \ v, i/x) are purely imaginary, and they must

be symmetric with respect to zero so that the imaginary part cancels. This, however,

implies that numerator and denominator of h(x) can be factored into terms of the form

1 + ax2, proving positivity. Now we can again bound
∣∣∣1+�x2h(x)

1+�x2

∣∣∣ above and below by

rational functions uniformly in � and apply the dominated convergence theorem.

So we finally get

lim
�→∞

(
En(S(�))− 2

√
�
)
= En(H) +

2

π

∫ ∞

0

dx

x2
log h(x)

= En(H) +
2

π

∫ ∞

0

dx

x2
log

∣∣x|H|−1φ(H \ v, i/x)∣∣
− 2

π

∫ ∞

0

dx

x2
log

∣∣x|H|φ(H, i/x)
∣∣

= En(H \ v) .

In particular, if we take H to be a fixed graph with cyclomatic number k, we can imme-

diately deduce the following theorem:
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Theorem 9 For any positive integer k, there exists a constant bk such that there are

infinitely many graphs G with cyclomatic number k and the property that

En(G) ≤ 2
√
|G|+ bk .

Now we aim to apply the same idea to obtain graphs whose energy is close to 4n/π.

Let P (�) be defined as in Section 2. Lemma 7 yields

φ(P (�), x) = xφ(P (�− 1), x)− φ(P (�− 2), x) .

Define λ(G, x) = (x/i)|G| · φ(G, i/x). Then the recursion becomes

λ(P (�), x) = λ(P (�− 1), x) + x2λ(P (�− 2), x) .

The solution to this linear recursion is given by

λ(P (�), x) = β1(x)α1(x)
� + β2(x)α2(x)

� ,

where α1(x) = (1 +
√
1 + 4x2)/2, α2(x) = (1−√

1 + 4x2)/2 and

β1(x) =
λ(P (1), x)− α2(x)λ(P (0), x)

α1(x)− α2(x)
, β2(x) =

α1(x)λ(P (0), x)− λ(P (1), x)

α1(x)− α2(x)
.

Note here also that α1(x) − α2(x) =
√
1 + 4x2 is never 0. Hence the energy of P (�) is

given by

En(P (�)) =
2

π

∫ ∞

0

dx

x2
log

∣∣∣xnφ(P (�), i/x)
∣∣∣

=
2

π

∫ ∞

0

dx

x2
log

∣∣∣λ(P (�), x)
∣∣∣

=
2�

π

∫ ∞

0

dx

x2
logα1(x) dx+

2

π

∫ ∞

0

dx

x2
log

∣∣∣β1(x) + β2(x)(α2(x)/α1(x))
�
∣∣∣ .

The first integral is easily determined to be equal to 2. Moreover, for every fixed x ≥ 0,

the absolute value of α2(x)/α1(x) is less than 1. So as we let � tend to ∞, we obtain

lim
�→∞

(
En(P (�))− 4�

π

)
=

2

π

∫ ∞

0

dx

x2
log |β1(x)| .

The integral converges, since β1(x) only grows polynomially and since λ(P (�), x) = 1 +

O(x2), λ(P (�), x) = 1+O(x2) and α1(x)−α2(x) =
√
1 + 4x2 = 1+O(x2) imply β1(x) =

1 +O(x2).
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To justify that exchanging the integral and the limit is indeed always possible, we

first show that β1(x) cannot have any positive real zeros: suppose that x0 is the smallest

such zero. Choose x1 < x0 large enough so that α1(x1) > |α2(x0)|. Then for sufficiently

large �, it follows that |λ(P (�), x1)| > |λ(P (�), x0)|. However, since λ(P (�), x) = (x/i)|G| ·
φ(G, i/x) has only purely imaginary zeros (the zeros of φ all being real), it can be factored

into factors of the form 1+cix, from which it follows easily that |λ(P (�), x)| is increasing,
contradiction. So |β1(x)| is bounded below by a positive constant on any finite interval

[0,M ], which implies that the integrand converges uniformly on such an interval. On

the remaining interval, on the other hand, we can use dominated convergence, since

β1(x) + β2(x)(α1(x)/α2(x))
� is bounded by a polynomial in x, which means that the

integrand is bounded by a constant multiple of the integrable function x−2 log x.

So we can finally formulate a theorem analogous to Theorem 9:

Theorem 10 For any positive integer k, there exists a constant ak such that there are

infinitely many graphs G with cyclomatic number k and the property that

En(G) ≥ 4n

π
+ ak .

The construction also shows that Corollary 2 remains correct if “maximum” is replaced

by “second-largest”, “third-largest”, etc. (and likewise for Theorem 3).
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