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Abstract

The energy of a graph Γ is the sum of the absolute values of the eigenvalues of the
adjacency matrix of Γ. Seidel switching is an operation on the edge set of Γ. In
some special cases Seidel switching does not change the spectrum, and therefore
the energy. Here we investigate when Seidel switching changes the spectrum, but
not the energy. We present an infinite family of examples with very large (possibly
maximal) energy.

The Seidel energy S(Γ) of Γ is defined to be the sum of the absolute values of
the eigenvalues of the Seidel matrix of Γ. It follows that S(Γ) is invariant under
Seidel switching and taking complements. We obtain upper and lower bounds for
S(Γ), characterize equality for the upper bound, and formulate a conjecture for the
lower bound.

1 Energy

Suppose Γ is a graph on n vertices with adjacency matrix A. Let λ1 ≥ . . . ≥ λn be the

eigenvalues of A. The energy E(Γ) of Γ is defined by E(Γ) =
∑n

i=1 |λi|, and Emax(n) is

defined to be the maximal energy over all graphs on n vertices. See [3] for more about

graph energy. It follows that the energy of an induced subgraph of Γ is at most E(Γ), and
that Emax(n) is monotonically increasing in n. The value of Emax(n), and the structure

of the graphs reaching it, is an important issue in the study of graph energy. Koolen

and Moulton [6] proved that E(Γ) ≤ n(1 +
√
n)/2 with equality if and only if Γ is a

strongly regular graph with parameters (n, (n +
√
n)/2, (n + 2

√
n)/4, (n + 2

√
n)/4) (if

n = 4, Γ = K4, which is strictly speaking not strongly regular). Such strongly regular
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graphs are equivalent to regular graphical Hadamard matrices of negative type, which

are known to exist for many values of n, for example if n is a power of 4, and if n = 36,

n = 100, or n = 196. An obvious necessary condition is that n is an even square, and it

is believed that this condition is also sufficient. See [4] and [5] for more about maximal

energy graphs. For the necessary background on graph spectra, strongly regular graphs

and Seidel switching we refer to [2]. In this note we present examples of pairs of graphs

on n vertices with the same energy, where one is regular and the other one is not. The

construction works when n + 1 is the order of a regular graphical Hadamard matrix.

These graphs have energy very close to the Koolen-Moulton bound, and we conjecture

that it equals Emax(n).

2 Equitable partitions

Consider a symmetric matrix A with rows and columns indexed by a set V . Assume V is

partitioned into m classes V1, . . . , Vm. Thus, with a suitable ordering of V we may write

A =

⎡
⎢⎢⎣

A1,1 · · · A1,m
...

...
Am,1 · · · Am,m

⎤
⎥⎥⎦ ,

where each diagonal block Ai,i is symmetric. Such a matrix partition is called equitable

whenever each block Ai,j has constant row and column sum. Let bi,j denote the row sum

of Ai,j then the m ×m matrix B = (bij) is called the quotient matrix of A with respect

to the given partition. It is well-known (see for example [2]) that the spectrum of B is

a sub(multi)set of the spectrum of A, and that the corresponding eigenvectors lie in the

space W spanned by the characteristic vectors of V1, . . . , Vm. The other eigenvalues of

A have eigenvectors orthogonal to W , and therefore these eigenvalues and eigenvectors

remain unchanged if a multiple of the all-one matrix J a is added to some of the blocks

Ai,j. Note that in general B is not symmetric, but B is similar to a symmetric matrix

B̃ = D−1BD, where D = diag(
√
|V1|, . . . ,

√
|Vm|).

Let V be the vertex set of Γ, and assume V is partitioned into two subsets U1 and

U2. Seidel switching with respect to {U1, U2} is the operation on Γ that leaves V and the

subgraphs induced by U1 and U2 unchanged, but deletes all edges between U1 and U2,

and inserts all edges between U1 and U2 that were not present in Γ. Thus, if

A =

[
A1 A2

A�
2 A3

]
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is the adjacency matrix of Γ, then Seidel switching changes A into

A′ =

[
A1 J − A2

J − A�
2 A3

]
.

It easily follows that Seidel switching defines an equivalence relation on graphs.

Assume the partition {U1, U2} is equitable. Then A and A′ have the same eigenvalues

for the eigenvectors inW (see the proof of the next theorem for an explanation). Therefore

A and A′ have the same spectrum if the quotient matrices B and B′ are equal, which is

the case if every vertex in U1 is adjacent to exactly half of the vertices in U2. If this is

the case, then the two graphs obviously have the same energy. The following theorem

generalizes this idea to make graphs with the same energy, but not necessarily the same

spectrum.

Theorem 2.1 Let Γ be a graph with an equitable partition with quotient matrix B. Let

Γ′ be the graph obtained from Γ by Seidel switching with respect to a union of classes

of the partition, and let B′ be the quotient matrix after switching. If B has no negative

eigenvalues, then E(Γ) ≤ E(Γ′) with equality if and only if B′ has no negative eigenvalues.

Proof. Assume the equitable partition is given by V1, . . . , Vm, and the switching goes

with respect to {U1, U2}, where U1 = V1 ∪ . . . ∪ Vk and U2 = Vk+1 ∪ . . . ∪ Vm. Let W be

the space spanned by the characteristic vectors of V1, . . . , Vm, and let A and A′ be the

adjacency matrices of Γ and Γ′, respectively. Then

A =

[
A1 A2

A�
2 A3

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1,1 · · · A1,k A1,k+1 · · · A1,m
...

...
...

...
Ak,1 · · · Ak,k Ak,k+1 · · · Ak,m

Ak+1,1 · · · Ak+1,k Ak+1,k+1 · · · Ak+1,m
...

...
...

...
Am,1 · · · Am,k Am,k+1 · · · Am,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

A′ =

[
A1 J − A2

J − A�
2 A3

]
.

First consider the eigenvalues of A′ orthogonal toW . These eigenvalues remain unchanged

if one subtracts J from some of the blocks of the partition, so they are eigenvalues of

E =

[
A1 −A2

−A�
2 A3

]
.

Now E = D−1AD, where D = D−1 is a diagonal matrix with diagonal entries ±1. Thus A

and E are similar, and therefore A and A′ have the same eigenvalues for the eigenvectors

in W⊥.
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Let μ1, . . . , μm be the eigenvalues of B and let μ′
1, . . . , μ

′
m be the eigenvalues of B′.

Then μ1, . . . , μm and μ′
1, . . . , μ

′
m are the eigenvalues of A and A′, respectively, with eigen-

vectors in W . Clearly B and B′ have the same diagonal entries, so trace B = trace B′,

and because B has no negative eigenvalues it follows that
m∑
i=1

|μi| =
m∑
i=1

μi =
m∑
i=1

μ′
i ≤

m∑
i=1

|μ′
i|

with equality if and only if μ′
i ≥ 0 for i = 1, . . . ,m. ��

Example 1. Consider a graph Γ on n vertices with adjacency matrix A, and let m be

an odd integer greater than n. Construct an adjacency matrix M of a graph Δ of order

mn as follows. Replace every entry ai,j of A with i > j by a square (0, 1)-matrix Ai,j

(say) of order m with constant row and column sums equal to ai,j +
m−1
2

, replace ai,j

by A�
j,i if i < j, and replace ai,i by J − I for i = 1, . . . , n. Then M has an equitable

partition with quotient matrix B = m−1
2

J + A + m−1
2

I, which is positive semi-definite

(indeed, J is positive semi-definite, and so is A+ m−1
2

I, since the smallest eigenvalue of A

is least −n
2
≥ −m−1

2
). Take any partition {U1, U2} of the vertex set of Γ, and let Γ′ with

adjacency matrix A′ be the graph obtained by Seidel switching with respect to {U1, U2},
and let Δ′ be the graph obtained by switching from Δ with respect to the corresponding

bipartition of the classes. Then Δ′ has quotient matrix B′ = m−1
2

J +A′+ m−1
2

I, which is

again positive semi-definite. Therefore Δ and Δ′ have the same energy by Theorem 2.1.

It easily follows that Δ and Δ′ are cospectral if and only if Γ and Γ′ are, and that Δ and

Δ′ poses the same number of edges if and only if Γ and Γ′ do. This construction provides

a large number of pairs of graphs with different spectrum but equal energy. For many

pairs the two graphs poses the same number of edges, and for many pairs they don’t.

Example 2. A rather interesting example can be obtained from a strongly regular graph

with parameters (4m2, 2m2+m,m2+m,m2+m) (m ≥ 2), that is, a graph with maximal

energy. By definition, the distance partition with respect to any vertex of such a strongly

regular graph is equitable with quotient matrix⎡
⎢⎣
0 2m2 +m 0
1 m2 +m m2 − 1
0 m2 +m m2

⎤
⎥⎦ .

Deleting the vertex gives a graph Γ on n = 4m2 − 1 vertices with an equitable partition

with quotient matrix

B =

[
m2 +m m2 − 1
m2 +m m2

]
.
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This matrix B has no negative eigenvalues (the trace and the determinant are positive),

and the same is true for the quotient matrix

B′ =

[
m2 +m m2 −m

m2 m2

]
.

corresponding to the graph Γ′ obtained from Γ by Seidel switching. It is easy to check,

and well known from the theory of Seidel switching (see for example [2]) that the graph

Γ′ is a strongly regular graph with parameters (4m2−1, 2m2,m2,m2). The eigenvalues of

Γ′ are 2m2 (with multiplicity 1) and ±m (with total multiplicity 4m2 − 2), and therefore

E(Γ) = E(Γ′) = 4m3 + 2m2 − 2m.

The bound of Koolen-Moulton gives

Emax(4m
2 − 1) < 1

2
(4m2 − 1)(1 +

√
4m2 − 1) = 4m3 + 2m2 − 3

2
m− 1

2
+ o(1).

So the energy of Γ and Γ′ is very close to the maximum energy. We conjecture that there

exists no graph on 4m2 − 1 vertices with larger energy. If this conjecture is true, then

we have an infinite family of pairs of maximal energy graphs, where for each pair, one

graph is regular and the other one is not. Notice that Γ and Γ′ are not cospectral. In

fact Γ′ has integral eigenvalues, whilst switching changes two eigenvalues 2m2 and m into

1
2
(2m2 +m ± √

4m4 + 4m3 − 3m2 − 4m). The example also shows pairs of graphs with

the same (integral) energy, where one graph has integral spectrum and the other one not.

3 Seidel matrix

The algebraic properties of Seidel switching become smooth if one considers the Seidel

matrix S of a graph. If A is the adjacency matrix of a grapg Γ, then the Seidel matrix S

of Γ is defined by S = J − 2A − I. Thus S has 0 on the diagonal and ±1 off diagonal,

where −1 indicates adjacency. Note that −S is the Seidel matrix of the complement of

Γ. In terms of the Seidel matrix, Seidel switching with respect to {U1, U2} multiplies the

rows and columns of U1 by −1. If S ′ is the Seidel matrix after switching, then S ′ = DSD,

where D is a diagonal matrix with diagonal entries ±1. Clearly D = D−1, so S and S ′

are similar, and therefore S and S ′ have the same spectrum.

Similar to the normal energy, we define the Seidel energy S(Γ) of Γ to be the sum of

the absolute values of the eigenvalues of the Seidel matrix. Like for the normal energy,
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the Seidel energy is monotonic under taking induced subgraphs. By the above we see

that the Seidel energy is invariant under Seidel switching and taking complements. The

maximal possible Seidel energy for a graph on n vertices is denoted by Smax(n).

A conference matrix is a square matrix S of order n with zero diagonal and ±1 off

diagonal, such that SS� = (n− 1)I. If S is symmetric, S is the Seidel matrix of a graph,

called a conference graph. Conference graphs exist for many values of n, for example when

n ≡ 2 (mod 4) and n− 1 is a prime power. A necessary condition is that n ≡ 2 (mod 4)

and n − 1 is the sum of two squares (see for example [2]). It turns out that conference

graphs have maximal Seidel energy.

Theorem 3.1 Let Γ be a graph with n vertices, then S(Γ) ≤ n
√
n− 1, and equality holds

if and only if Γ is a conference graph.

Proof. Let σ1, . . . , σn be the eigenvalues of the Seidel matrix S of Γ. We have traceS2 =

n(n− 1) =
∑

i σ
2
i . With Cauchy-Schwartz we get

∑
i |σi| ≤ n

√
n− 1 with equality if and

only if |σi| =
√
n− 1 for i = 1, . . . , n. Moreover, if each eigenvalue equals ±√

n− 1, then

S2 = (n− 1)I, which means that S is a symmetric conference matrix. ��

This theorem says Smax(n) ≤ n
√
n− 1. Using the existing results for conference matrices,

it follows that this bound is asymptotically tight.

Corollary 3.2 Smax(n) = n
√
n(1 + o(n)).

Proof. Let p be the largest prime smaller than
√
n. If n is sufficiently large, then (see

[1]) p ≥ √
n − √

n
21/40

. Since p2 ≡ 1 (mod 4), there exists a graph Γ′ of order p2 + 1

with energy S(Γ′) = p(p2 + 1). Construct Γ by adding n − p2 − 1 isolated vertices to

Γ′. Then S(Γ) ≥ p(p2 + 1) > (
√
n− n21/80)(n− 2n61/80) = n

√
n(1 + o(n)), and therefore

Smax(n) = n
√
n(1 + o(n)). ��

Finding asymptotically tight lower bounds for the Seidel energy turns out to be more

complicated. The next theorem gives a lower bound, but it is never tight if n > 2.

Theorem 3.3 If Γ is a graph with n > 2 vertices, then S(Γ) >
√
2n(n− 1).

Proof. Let S be the Seidel matrix of Γ. If σ1, . . . , σn are the eigenvalues of S, then∑
i σi = 0 and

∑
i σ

2
i = n(n − 1). Suppose σ1 ≥ · · · ≥ σn minimizes

∑
i |σi| subject to

these two constraints. We claim that σi = 0 for all but two values of i. Suppose not,
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then without loss of generality we have σ1 ≥ σ2 > 0 > σn. Choose x and y (x ≥ y) such

that x+ y = σ1 + σ2 + σn and x2 + y2 = σ2
1 + σ2

2 + σ2
n. This leads to a quadratic equation

with real roots x and y satisfying x−y =
√
(σ1 + σ2 − σn)2 − 4σ1σ2 < σ1+σ2−σn. Note

that also x + y and −x − y are less than σ1 + σ2 − σn. Redefine σ1 = x, σ2 = 0 and

σn = y. Then σ1, . . . , σn still satisfy the mentioned constraints, but the objective value is

decreased by σ1 + σ2 − σn − |x| − |y| > 0, contradiction. This proves the claim. The only

solution satisfying the claim is σ1 = −σn =
√
n(n− 1)/2 and σi = 0 for i = 2, . . . , n− 1.

Hence S(Γ) ≥
√
2n(n− 1).

Every Seidel matrix S of order n satisfies detS ≡ det(J − I) ≡ n − 1 (mod 2),

so if n is even, rankS = n, and if n is odd, rankS ≥ n − 1. This implies that the

multiplicity of an eigenvalue 0 is at most 1, hence no graph with at least 4 vertices can

have S(Γ) =
√
2n(n− 1). Also if n = 3 the inequality is strict, because S(Γ) = 4 for all

graphs Γ on 3 vertices. ��

If Γ or the complement is switching equivalent to the complete graph Kn, then S(Γ) =
2(n − 1). We know of no graph with n vertices whose Seidel energy is smaller than

2(n − 1), and conjecture that 2(n − 1) is the minimum value of S(Γ) over all graphs

on n vertices. This conjecture has been verified for n ≤ 10 by Robin Swinkels (private

communication).
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