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Abstract To understand the growth and transformation mechanisms of DNA fractal knots, a 
series of Sierpinski knots are constructed, which based on graph and knot theory. The 
growth mechanisms of them are studied and the transformation between DNA Sierpinski 
knots and links is realized by smoothing and restoring growing-points, some topology 
invariants are also presented here. Moreover, bottom-up synthesis methods about 
constructing DNA Sierpinski structures with minimum DNA strands are proposed.  
 

1. Introduction 
DNA is considered as an important and ideal building material in creating 

programmable and predictive supramolecular structure due to its special structure 

with two helical chains of nucleotides held together by the specific hydrogen-bonded 

base pairs [1]. In recent years, a large number of DNA supramolecular structures 

including DNA polyhedral links or catenanes [2,3] (e.g., DNA tetrahedron [4–10], 

DNA cube [11–14], DNA truncated octahedron [14], DNA octahedron [15–17], 

DNA dodecahedron [6,18], DNA icosahedron [19,20],  DNA bipyramid [21], and 

DNA buckyballs [6]) and others [22–28] have been synthesized experimentally [29].  

These structures possess significantly geometrical characters associated with 

polyhedra and thus arouse great interest [1,29]. It is worth noting that the majority of 

these structures are made up of multiple DNA strands predesigned.
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But recently, Li et al. pointed out that a replicable tetrahedral nanostructure can be 
obtained from a single-stranded DNA [10]. And Shih et al. synthesized an 

octahedron by folding a 1.7 kb single-stranded DNA with the help of five short DNA 

strands [15]. Rothemund applied the technique ‘DNA origami’ to assemble a long 

single-stranded DNA into desired shapes [30]. The results suggest that it is available 

to get well-defined nanostructures by folding a single-stranded DNA (ssDNA). 
With the development of these exciting and intriguing results, a lot of work 

based on the knot theory [31,32] has been devoted to characterizing some of these 

amazing structures from the geometrical and topological points of view. In particular, 

Qiu’s group put forward the methods of “N-branches curves and M-double-twisted 

lines covering” and “N-crossing curves and M-double-twisted lines covering” to 

construct polyhedral links [1,29,33–40], especially for a series of elegant DNA 

polyhedral links [38–40]. Meanwhile, mathematical descriptions of these structures 

using topology and graph theory as working tools are making great progress [41–51]. 

More recently, Rothemund et al. suggested that DNA can be assembled into crystals 

with patterns of Sierpinski triangles [52]. On the basis of this important result, we 

successfully designed nice DNA Sierpinski triangles, and the corresponding DNA 

Sierpinski links were also constructed, moreover, the growth mechanisms were 

studied [53]. On the other hand, an interesting issue aroused is how to construct 

DNA Sierpinski triangles using minimum number of DNA strands theoretically. 

Our aim about this paper is to design more perfect DNA Sierpinski triangles 

with minimum DNA strands and to unravel the growth and transformation 

mechanisms of DNA Sierpinski knots. Accompany with this clear goal, we start from 

Euler circuit and construct a series of DNA Sierpinski knots, some formulas are 

aware of fulfilling the growth mechanism of DNA Sierpinski knots. Then, the 

operation that smooth and restore the growing-points is selected to realize the 

transformation between DNA Sierpinski knots and links. Finally, the methods that 

construct DNA Sierpinski triangles with minimum DNA strands are proposed. Our 

results suggest the possibility of designing DNA Sierpinski structures with minimum 

DNA strands, which gives a perfect access for chemists and biologists. 
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2. Construction of DNA Sierpinski knot 

The Sierpinski triangle, the so-called Sierpinski gasket or Sierpinski sieve, is a 

fractal and attractive fixed set. It is described by Sierpinski through three steps [54]: 

(i) begin with an equilateral triangle; 

(ii) shrink the triangle to 1/2 height and 1/2 width, make three copies, and place 

the three shrunken triangles so that each triangle connects the other two 

triangles at a corner; 

(iii) repeat step (ii) with each of the smaller triangles.  

Shown in Figure 1 are a series of Sierpinski triangles labeled as E0, E1, E2, E3 … 

En in order, it is readily found that they conform to the law: one grows into three, 

three grow into nine..., so En can be seen as three En-1 which are connected together, 

and the joint points are defined as growing points, as illustrated in our previous study 

[53]. 

Firstly, a definition about Euler circuit is elaborated here. 

Theorem 1: A finite graph has an Euler circuit when it is connected by odd degree 

without vertices. In this case, the Euler circuit can begin and end at any vertex. 

       

       

Figure 1. Sierpinski triangles En and their corresponding Euler circuits Cn. 

If all vertices of a finite graph are even, it means that the graph has an Euler 
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circuit. It is obvious that a Sierpinski triangle has a homologous Euler circuit Cn 

when all of its vertices are even degrees. Figure 1 displays the Euler circuits of 

Sierpinski triangles with n=1, 2, 3. 

Because Cn is a single walk and the crossings are under and over by turns, the 

Euler circuit Cn can be translated into alternating knot Kn. As a result, K1 is a trefoil 

knot and K2 can be realized by connecting three trefoil knots together by three 

growing points. K3 is produced by connecting three K2. As such, all alternating knots 

Kn can be obtained through the connection of three Kn-1 by growing points, some 

examples are shown in Figure 2.  

 

 

Figure 2. Translate Euler circuits Cn into corresponding knots Kn. 

 

3. The growth mechanism of DNA Sierpinski knot 

As stated above, Kn is derived from the three Kn-1 connected by growing points. For 

given projections of two knots, a new knot is obtained by connecting the four 

terminals of the original two knots together [32]. Two cases would occur during the 

connection, as displayed in Figure 3 (Figure 3a indicates a crossing point appears 

during the connection (connection type I), while Figure 3b shows there is no 

crossing point during the connection (connection type II)). They may lead to 
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different structures.  

      

Figure 3. Two connection types of knots terminals, (a) connection type I with a crossing point; (b) 

connection type II without a crossing point.  

For the case in Figure 3a, a knot can be obtained by connecting two trefoils 

together. When a more trefoil knot is added in the same way, then a new knot K2 is 

obtained (see Figure 4). The new knot will always be derived by doing so. The result 

suggests that the ultimate structure corresponds to a knot Kn which can be connected 

by three Kn-1 together. This method has something in common with DNA 

nanostructure synthesized by a single strand. Therefore, using this method to design 

and produce DNA structures with single-stranded DNA is possible.  

 

Figure 4. Scheme of constructing DNA Sierpinski knot by connection type I. 
 

 
Figure 5. Scheme of constructing DNA Sierpinski link by connection type II. 

-599-



Figure 5 illustrates the case without a crossing as the type II does. Similarly, 

starting from a trefoil, a knot can be derived by connecting two trefoils together. 

However, the most surprising result appears when a more trefoil is added. A DNA 

Sierpinski link is obtained with two components. It is easily to unravel that the link 

is the same as DNA Sierpinski link Lo-1 with odd tangles, associated with the case 

k=1. Continue to construct more complex DNA Sierpinski link by connecting three 

Lo-1 together, and a DNA Sierpinski link Lo-2 with five components is got.  

Repeating this operation, it can be found that the produced structures are the 

same as the DNA Sierpinski links with k=1 tangle, so the growth mechanism of 

DNA Sierpinski knots in the case without a crossing follows Formula (1) (see 

Ref.[53]): 

3 1 ( 0, )
2

n

nA n n�

 WW X WW �Y                          (1) 

When n is zero, we get a prime knot, which also conforms to Formula (1). 

 

Figure 6. The operation of crossing smoothing. Converting a node into 

 (a) a zero configuration or (b) an infinitude configuration. 

Meanwhile, it is interesting that Sierpinski knots and Sierpinski links can be 

interchanged with each other through the crossing-smoothing operation [32], as 

shown in Figure 6. In the context of DNA Sierpinski structures, it is possible to 

realize the crossing-smoothing operation with the help of enzymes such as shear 

enzymes and ligases. 

Smoothing all the growing points of DNA Sierpinski knot, we can get the 

corresponding DNA Sierpinski link. For example, the DNA Sierpinski link Lo-2 is 
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obtained by smoothing DNA Sierpinski knot K3, as shown in Figure 7. Doing this on 

any Sierpinski knot, we discover that the Sierpinski knot with fractal number n is 

transformed into Sierpinski link with fractal number n-1. The result implies that 

double-stranded DNA nanostructures may be interchanged with single-stranded 

DNA nanostructures catalyzed by enzymes.  

 

Figure 7. Interchange between DNA Sierpinski knots and links. 
 

4. The topology invariants of DNA Sierpinski knots and 

links 
Seifert algorithm is used here and some topological invariants are given to 

investigate the structure and properties of DNA Sierpinski nanostructures. The 

symmetry models of DNA strands are also put forward to unravel the construction 

rules. 

(i) Seifert algorithm and some topological invariants 

Seifert algorithm [55] is used to describe the surfaces featured by knots and 

links as boundaries. Due to the direction of DNA strands (from 5' to 3' or from 3' to 

5'), the DNA strands links are oriented, and the Seifert construction can be realized 

by the following two steps, as shown in Figure 8.  

Firstly, every crossing point is converted into the non-crossing one in the form 

of head-to-tail type. The resultant non-crossing circles are called Seifert circles. 

Secondly, in the initial crossing points, all the Seifert circles are connected 

together through distorted webbings, and then the boundary of the Seifert surface 
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composed of links is produced. For example, a trefoil shown in Figure 9 can be 

transformed into two orientable circles through Seifert construction. 

 

Figure 8. The operation of Seifert construction; the arrows indicate the orientation of strands. 

 

Figure 9. Seifert algorithm operates on trefoil. 

Furthermore, with respect to the Seifert circles of DNA Sierpinski structures, 

the corresponding genus is investigated to describe the topological properties. The 

definition of genus of knot is illustrated below: 

Definition: The genus of knot is considered to be the smallest genus in all the 

possible Seifert surfaces [56]. 

Theorem 2: The Seifert surface obtained from an alternating projection is identified 

to have the minimum genus [57]. 

All the Sierpinski knots derived from connection type I are alternating knots. 

Thus the genus of DNA Sierpinski knots can be calculated by Theorem 2, but the 

calculation is very complicate. To simplify the calculation, Theorem 3 is introduced 

hereafter. 

Theorem 3: For a Seifert surface made up of d disks and b webbings, its genus 

is:[57]  
1

2
d bg � �


                                 (2)                  

As shown by the example in Figure 9, the Seifert surface of a trefoil knot 

consists of two disks and three webbings, so the genus of a trefoil knot is 1. For an 

alternating knot, the webbings number b equals to twists number c, thus, the formula 

(2) can be changed into formula (3). 
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2
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                                 (3) 

And Table 1 lists the genus and some invariants of DNA Sierpinski knots. 
Table1. The genus and some invariants of DNA Sierpinski knots constructed by connection type I. 

Fractal number n 0 1 2 3 … n 

d 1 2 5 27 … … 

c 0 3 12 39 … 3Cn-1+3=Cn 

g 0 1 4 13 … (3n-1+1)/2 

An 1 1 1 1 1 1 

Because the DNA Sierpinski links are connected graphs, so the genus of DNA 

Sierpinski links constructed through connection type II can be determined by 

Theorem 4. 
Theorem 4: The genus of a projection surface F constructed from a connected 

diagram D satisfies [58]:  
[1 ( ) ( )] [1 ( )]( )

2
s D c D Dg F Z� � � �


                       (4) 

where s(D), c(D) and ì(D) denote the Seifert circuit number, crossing number and 

component number of connected graph, respectively. The genus and some invariants 

of DNA Sierpinski links are listed in Table 2. 

Table2. The genus and some invariants of DNA Sierpinski links constructed by connection type II. 

Fractal number n 0 1 2 3 … n 

s(D) 1 2 5 14 … 3sn-1(D)-1 

c(D) 0 3 9 27 …    3n (n≥1) 

μ(D) 1 1 2 5 … (3n-1+1)/2 

g(F) 0 1 2 5 … (3n-1+1)/2 

Tables 1 and 2 show that the genus of the Sierpinski structures, which is a 

function of fractal number n, indicating that the genus is an intrinsic character of 

Sierpinski structures. The properties of Sierpinski structures are determined by the 

genus. It is shown that the genus is increasing with the fractal number n (see Tables 1 

and 2), so the character of DNA Sierpinski structures with different fractal number n 

is similar to each other. 
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(ii) The designing rules of DNA strands 

To elaborate the designing rules of DNA strands, DNA strand models obtained from 

the analysis DNA Sierpinski structures using graph theory are represented below. 

First of all, the step length l as defined in the previous study [53] is employed. 

For an alternating links or knots, the step length is the length from one up-crossing 

point (or down-crossing point) to the next up-crossing point (or down-crossing 

point). The full step length is the sum of step length of a DNA strand, the longest 

DNA strand is indicated by lmax. 

With regard to the DNA Sierpinski knots, supposing that the length of each edge 

of DNA Sierpinski knot is 0.5a, so it can be found that the step length of DNA 

strands has the following distribution: 

3 3 3

12 12 12

1,1.5 1.5 1.5 ;
2, ( ) 1.5 ( ) 1.5 ( ) 1.5 ;
3, ( ) 1.5 ( ) 1.5 ( ) 1.5 ;

...

n a a a
n a a a a a a
n a a a a a a


 � �

 � � � � �


 � � � � �
 

It suggests that (a) q is a repeated unit between 1.5a and 1.5a. The value of q 

increases by a regular rule that satisfies formula (5), so the DNA strands model can 

be explained by Figure 10a. Investigating the step length distribution of DNA 

Sierpinski links, the DNA strands model is shown in Figure 10b. 

      13 3 ( 1, ,n nq q n n q�[� 
 WW X WW �Y WW 
                           (5) 

       

Figure 10. The models of DNA strands that formed DNA Sierpinski knots and links.  

(a): strands model of DNA Sierpinski knots; (b): strands model of DNA Sierpinski links. 
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5. Investigation of the synthesis method 
Two bottom-up synthesis methods of DNA Sierpinski triangles based on the 

constructed structures are proposed. 

With regard to any Sierpinski knots, for example, as shown in Figure 11, every 

Sierpinski triangle can be divided into three identical parts, which can be divided 

into smaller and smaller parts until the smallest building block shown in top right of 

figure 12. It is very similar to Seeman’s original strategy of synthesizing DNA 

polyhedra [59].  

Then we can design single stranded DNA on purpose and assemble them into 

the smallest building blocks. Finally, the desired DNA Sierpinski knots can be 

realized through reverse synthesis strategy. If the single stranded DNA or RNA 

structures are synthesized in labs, it not only produces new DNA nanostructures but 

also provides dramatic ideas and opportunities for duplication and transcription of 

DNA nanostructures. As to DNA Sierpinski links, a certain number of various DNA 

strands are prepared and folded into circles and then assembled into desired links 

with the aid of enzymes. 

 

 

Figure 11. Schemes of synthesizing DNA Sierpinski knots and links. 

The first method has advantage for small structures. If the targets are big and 

more complex, then more different DNA strands are needed, it is a huge work to 

complete by the first method. So the other method that synthesized DNA Sierpinski 
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knots and links from the chosen basic building blocks with the help of enzymes such 

as DNA shear enzymes and ligases is needed. The DNA trefoil knots are selected as 

the basic building block and vertexes of them are unlocked. Three unlocked DNA 

trefoil knots are connected together by special ligases at the three growing points. If 

they are connected by connection type I, we get knots, otherwise, the result is a link 

by connection type II. All DNA Sierpinski knots and links can be synthesized 

through this method. 

              
Figure 12. The strategy of synthesize DNA Sierpinski knots and links from basic building block. 

 

6. Conclusion  
Although DNA nanostructures synthesis is growing vigorously, the designing and 

investigation of DNA nanostructures is in its infancy. In these paper, new synthesis 

strategies about DNA Sierpinski knots was presented through mathematic methods. 

The Euler circuits about Sierpinski triangles were explored and then changed 

into Sierpinski knots. Sierpinski knots and links were constructed from the smallest 

Sierpinski knot trefoil knot and the growing mechanisms were also investigated. A 

straightforward proof about the possibility that DNA Sierpinski knots can be 

translated into DNA Sierpinski links with help of enzymes is presented. We also put 

forward two bottom-up synthesis methods based on the growing mechanisms of 

Sierpinski knots and links. 

Our research on DNA Sierpinski structures is elementary, especially on fractal 

structures, but these superficial results may help us to open the door of analysis and 
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simulate fractal super-molecular and viruses with mathematic models. New ideas are 

input in the duplication and transcription of DNA nanostructures, the theory of DNA 

nanostructure is supplemented and became more perfect. 
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