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Abstract

Algebraic hyperstructures theory has a multiplicity of applications to other dis-
ciplines. In this paper, we present examples of ternary hyperstructures associated
with dismutation reactions.

1 A brief history of applications of algebraic hyper-

structures

The hyperstructures were introduced by Marty [17] when he first defined a hypergroup

as a set equipped with an associative and reproductive hyperoperation. The motivating

example was the quotient of a group by any, not necessary normal, subgroup. Alge-

braic hyperstructures represent a natural extention of classical algebraic structures. In

a classical algebraic structure, the composition of two elements is an element, while in

an algebraic hyperstructure, the composition of two elements is a set. In [1], Corsini

and Leoreanu presented some of the numerous applications of hyperstructures, especially

those that were found and studied in the last fifteen years. There are applications to

the following subjects: geometry; hypergraphs; binary relations; lattices; fuzzy sets and

rough sets; automata; cryptography; median algebras, relation algebras; combinatorics;

codes; artificial intelligence and probabilities. Moreover, algebraic hyperstructures the-

ory has a multiplicity of applications to other disciplines. In [11], Delavar Khalafi and

Davvaz generalized some concepts of convex analysis such as convex functions and linear
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functions on hyperstructures. In [20], Santilli and Vougiouklis outlined a hierarchy of

methods of increasing complexity, known under the names of isotopies, genotopies and

hyperstructures, for the characterization of physical or biological systems of increasing

methodological needs. In particular, they studied the class of hyperstructures with right

and left units which are such to admit as particular cases the isotopies, genotopies called

e-hyperstructures. These elements can be found in hyperstructures theory, especially

in Hv-structure theory introduced in 1990 by Vougiouklis [23, 24]. In [21], Vougiouk-

lis reviewed applicable hyperstructures in Lie Santilli theory especially when multival-

ued problems appeared, either in finite or in infinite case. Also, we refer the readers

to [2, 7, 10, 13, 18, 19]. In [8], Davvaz, Santilli and Vougiouklis studied multi-valued hy-

perstructures following the apparent existence in nature of a realization of two-valued

hyperstructures with hyperunits characterized by matter-antimatter systems and their

extensions where matter is represented with conventional mathematics and antimatter is

represented with isodual mathematics. Mendel, the father of genetics took the first steps

in defining “contrasting characters, genotypes in F1 and F2 . . . and setting different laws”.

The genotypes of F2 is dependent on the type of its parents genotype and it follows certain

roles. In [14], Ghadiri, Davvaz and Nekouian analyzed the second generation genotypes

of monohybrid and a dihybrid with a mathematical structure. They used the concept of

Hv-semigroup structure in the F2-genotypes with cross operation and proved that this

is an Hv-semigroup. They determined the kinds of number of the Hv-subsemigroups of

F2-genotypes. Another motivation for the study of hyperstructures comes from physical

phenomenon as the nuclear fission. This motivation and the results were presented by S.

Hošková, J. Chvalina and P. Račková (see [15], [16]). In [4], Davvaz, Dehghan Nezhad

and Benvidi presented examples of ternary hyperstructures associated with chain reac-

tions. Also, in [5], they provided examples of hyperstructures and weak hyperstructures

associated with dismutation reactions.

2 Hyperstructures and weak hyperstructures

Let H be a non-empty set and let ℘∗(H) be the set of all non-empty subsets of H. A

hyperoperation on H is a map ◦ : H × H −→ ℘∗(H) and the couple (H, ◦) is called a

hypergroupoid. If A and B are non-empty subsets in H, then we denote

A ◦ B =
⋃

a∈A, b∈B
a ◦ b, x ◦ A = {x} ◦ A and A ◦ x = A ◦ {x}.
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A hypergroupoid (H, ◦) is called a semihypergroup if for all x, y, z ofH, we have (x◦y)◦z =

x ◦ (y ◦ z), which means that ⋃
u∈x◦y

u ◦ z =
⋃

v∈y◦z
x ◦ v.

We say that a semihypergroup (H, ◦) is a hypergroup if for all x ∈ H, we have x ◦ H =

H ◦ x = H.

The concept of Hv-structures first introduced by Vougiouklis at Fourth Algebraic Hy-

perstructures and Applications Congress [23]. The concept of Hv-structures constitutes

a generalization of the well-known algebraic hyperstructures (hypergroup, hyperring, hy-

permodule and so on). Actually some axioms concerning the above hyperstructures such

as the associative law, the distributive law and so on are replaced by their corresponding

weak axioms.

The hyperstructure (H, ◦) is called an Hv-group if

(1) x ◦ (y ◦ z) ∩ (x ◦ y) ◦ z �= ∅ for all x, y, z ∈ H,

(2) a ◦H = H ◦ a = H for all a ∈ H.

A motivation to obtain the above structures is the following. Let (G, ·) be a group

and ρ an equivalence relation on G. In G/ρ consider the hyperoperation � such that

x � y = {z| z ∈ x · y}, where x denotes the class of the element x. Then (G,�) is an

Hv-group which is not always a hypergroup.

Let H be a non-empty set. Then, a map f : H×H×H −→ ℘∗(H) is called a ternary

hyperoperation on H and the pair (H, f) is called a ternary hypergroupoid. If A,B,C are

non-empty subsets of H, then we define

f(A,B,C) =
⋃

a∈A,b∈B,c∈C
f(a, b, c).

The ternary hypergroupoid (H, f) is called a ternary semihypergroup if for every a1, . . . a5 ∈
H, we have

f(f(a1, a2, a3), a4, a5) = f(a1, f(a2, a3, a4), a5) = f(a1, a2, f(a3, a4, a5)).

Since we can identify the set {x} with the element x, any ternary semigroup is a ternary

semihypergroup. The hyperoperation f is called weak associative and we write WASS, if

f(f(a1, a2, a3), a4, a5 ∩ f(a1, f(a2, a3, a4), a5) ∩ f(a1, a2, f(a3, a4, a5)) �= ∅. The hyper-

operation f is called weak commutative and we write COW, if⋂
σ∈S3

f(aσ(1), aσ(2), aσ(3)) �= ∅, for all a1, a2, a3 ∈ H.
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Also, if for any a1, a2, a3 ∈ H and σ ∈ S3, f(aσ(1), aσ(2), aσ(3)) = f(a1, a2, a3), then f is

called commutative. A ternary hypergroupoid (H, f) is called ternary Hv-semigroup if f

is WASS. (H, f) is called a ternary Hv-quasigroup if the reproduction axiom is valid, i.e.,

f(H, x, y) = f(x,H, y) = f(x, y,H) = H, for all x, y ∈ H. The pair (H, f) is called a

ternary Hv-group if it is a ternary Hv-semigroup and a ternary quasigroup. If (H, f) is a

ternary quasigroup and f is associative, then (H, f) is called a ternary hypergroup.

3 Ternary chemical hyperstructures

A chemical reaction in which two or more atoms of the same element originally having

the same oxidation state react with other chemical(s) or themselves to give different

oxidation numbers. In other words, disproportionation is a reaction in which a species is

simultaneously reduced and oxidized to form two different oxidation numbers. The first

disproportionation reaction to be studied in detail was:

2Sn2+ −→ Sn+ Sn4+.

This was examined using tartarates by Johan Gadolin in 1788 [12].

The reverse of disproportionation is called comproportionation. Comproportionation

is a chemical reaction where two reactants, each containing the same element but with a

different oxidation number, will form a product with an oxidation number intermediate

of the two reactants. For example, an element tin in the oxidation states 0 and +4 can

comproportionate to the state +2. The standard reduction potentials of all half reactions

are: E◦
Sn4+/Sn2+ = 0.154 V,E◦

Sn2+/Sn = −0.136 V,E◦
Sn4+/Sn = 0.009 V . Therefore, the

comproportionation reaction is spontaneous.

Sn+ Sn4+ −→ 2Sn2+

All possible combinations for the set S = {Sn, Sn2+, Sn4+} to do without energy can

be displayed as follows. The major products are written in the following table:

⊕ Sn Sn2+ Sn4+

Sn Sn Sn, Sn2+ Sn2+

Sn2+ Sn, Sn2+ Sn2+ Sn2+, Sn4+

Sn4+ Sn2+ Sn2+, Sn4+ Sn4+

Consider S = {Sn, S
2+
n , S4+

n } and the following ternary hyperoperation f obtained
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from ⊕, i.e.,
f(Sn,−,−) Sn Sn2+ Sn4+

Sn Sn Sn, Sn2+ Sn, Sn2+

Sn2+ Sn, Sn2+ Sn, Sn2+ Sn, Sn2+

Sn4+ Sn, Sn2+ Sn, Sn2+ Sn2+

f(Sn2+,−,−) Sn Sn2+ Sn4+

Sn Sn, Sn2+ Sn, Sn2+ Sn2+

Sn2+ Sn, Sn2+ Sn2+ Sn2+, Sn4+

Sn4+ Sn2+ Sn2+, Sn4+ Sn2+, Sn4+

f(Sn4+,−,−) Sn Sn2+ Sn4+

Sn Sn2+ Sn2+, Sn4+ Sn2+, Sn4+

Sn2+ Sn2+, Sn4+ Sn2+, Sn4+ Sn2+, Sn4+

Sn4+ Sn2+, Sn4+ Sn2+, Sn4+ Sn4+

Then, (S, f) is a ternary Hv-semigroup and ({Sn, S
2+
n }, f) is a ternary hypergroup.

As a simple example of how to calculate the weak associativity, we illustrate two of

the cases:

f (f(Sn, S
2+
n , S4+

n ), Sn, S
4+
n ) = f ({Sn, S

2+
n }, Sn, S

4+
n )

= f(Sn, Sn, S
4+
n ) ∪ f(S2+

n , Sn, S
4+
n )

= {Sn, S
2+
n } ∪ {S2+

n } = {Sn, S
2+
n };

f (Sn, (S
2+
n , S4+

n , Sn), S
4+
n ) = f (Sn, {S2+

n }, S4+
n ) = {Sn, S

2+
n };

f (Sn, S
2+
n , f(S4+

n , Sn, S
4+
n )) = f (Sn, S

2+
n , {S2+

n , S4+
n })

= f(Sn, S
2+
n , S2+

n ) ∪ f(Sn, S
2+
n , S4+

n )
= {Sn, S

2+
n } ∪ {Sn, S

2+
n } = {Sn, S

2+
n }.

Note that in the above case we have strong associativity, i.e.,

f (f(Sn, S
2+
n , S4+

n ), Sn, S
4+
n ) = f (Sn, (S

2+
n , S4+

n , Sn), S
4+
n )

= f (Sn, S
2+
n , f(S4+

n , Sn, S
4+
n )) .

But, in general we have weak associativity. Consider the following case:

f
(
f(S2+

n , Sn, S
4+
n ), S2+

n , S2+
n

)
= f

({S2+
n }, S2+

n , S2+
n

)
= {S2+

n };
f
(
S2+
n , f(Sn, S

4+
n , S2+

n ), S2+
n

)
= f

(
S2+
n , {Sn, S

2+
n }, S2+

n

)
= f(S2+

n , Sn, S
2+
n ) ∪ f(S2+

n , S2+
n , S2+

n )

= {Sn, S
2+
n } ∪ {S2+

n }
= {Sn, S

2+
n };

f
(
S2+
n , Sn, f(S

4+
n , S2+

n , S2+
n )

)
= f

(
S2+
n , Sn, {S2+

n , S+4
n })
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= f(S2+
n , Sn, S

2+
n ) ∪ f(S2+

n , Sn, S
4+
n )

= {Sn, S
2+
n } ∪ {S2+

n }
= {Sn, S

2+
n }.

Therefore,

f (f(S2+
n , Sn, S

4+
n ), S2+

n , S2+
n ) ∩ f (S2+

n , f(Sn, S
4+
n , S2+

n ), S2+
n )

∩f (S2+
n , Sn, f(S

4+
n , S2+

n , S2+
n )) = {S2+

n } �= ∅.
Vanadium is a chemical element with the symbol V and atomic number 23. The

element is found only in chemically combined form in nature. Andrés Manuel del Rı́o

discovered vanadium in 1801 by analyzing a new lead-bearing mineral.

Vanadium forms a number of different ions including V, V 2+, V 3+, V O2+ and V O2
+.

The oxidation states of these species are 0,+2,+3,+4 and +5, respectively. The standard

reduction potentials of all corresponding half reactions are:

V O
+

2
V O2+

V 3+ V 2+
V

0.361

0.668 −0.838

−0.236

0.041

1.00 0.337 −0.225 −1.13

All combinational probability for the set S = {V, V 2+, V 3+, V O2+, V O2
+} to do without

energy in acidic media can be displayed as following table. When the reactants are added

in appropriate stoichiometric ratios. For example vanadium (V ) reacts with V O2+ as

follows:

V + 2V O2+ + 4H+ −→ 2V 3+ + V 2+ +H2O,

⊕ V V 2+ V 3+ V O2+ V O2
+

V V V, V 2+ V 2+ V 2+, V 3+ V 3+

V 2+ V, V 2+ V 2+ V 2+, V 3+ V 3+ V 3+, V O2+

V 3+ V 2+ V 2+, V 3+ V 3+ V 3+, V O2+ V O2+

V O2+ V 2+, V 3+ V 3+ V 3+, V O2+ V O2+ V O2+, V O2
+

V O2
+ V 3+ V 3+, V O2+ V O2+ V O2+, V O2

+ V O2
+

Consider S = {V, V 2+, V 3+, V O2+, V O2
+} and the following ternary hyperoperation f
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obtained from ⊕, i.e.,

f(V,−,−) V V 2+ V 3+ V O2+ V O2
+

V V V, V 2+ V, V 2+ V, V 2+ V 2+

V 2+ V, V 2+ V, V 2+ V 2+, V V 2+ V 2+, V 3+

V 3+ V, V 2+ V, V 2+ V 2+ V 2+, V 3+ V 3+

V O2+ V, V 2+ V 2+ V 2+, V 3+ V 3+ V 2+, V 3+

V O2
+ V 2+ V 2+, V 3+ V 3+ V 2+, V 3+ V 3+

f(V 2+,−,−) V V 2+ V 3+ V O2+ V O2
+

V V, V 2+ V, V 2+ V 2+ V 2+, V 3+ V 2+, V 3+

V 2+ V, V 2+ V 2+ V 2+, V 3+ V 2+, V 3+ V 2+, V 3+

V 3+ V 2+ V 2+, V 3+ V 2+, V 3+ V 2+, V 3+ V 3+

V O2+ V 2+, V 3+ V 2+, V 3+ V 2+, V 3+ V 3+ V O2+, V 3+

V O2
+ V 2+, V 3+ V 2+, V 3+ V 3+ V O2+, V 3+ V 3+, V O2

+

f(V 3+,−,−) V V 2+ V 3+ V O2+ V O2
+

V V 2+ V 2+, V 3+ V 2+, V 3+ V 2+, V 3+ V 3+

V 2+ V 2+, V 3+ V 2+, V 3+ V 2+, V 3+ V 3+ V 3+, V O2+

V 3+ V 2+, V 3+ V 2+, V 3+ V 3+ V 3+, V O2+ V O2+

V O2+ V 2+, V 3+ V 3+ V 3+, V O2+ V O2+ V O2+, V 3+

V O2
+ V 3+ V 3+, V O2+ V O2+ V O2+, V 3+ V O2

+

f(V O2+,−,−) V V 2+ V 3+ V O2+ V O2
+

V V 2+, V 3+ V 2+, V 3+ V 3+ V O2+, V 3+ V O2+, V 3+

V 2+ V 2+, V 3+ V 3+ V O2+, V 3+ V O2+, V 3+ V 3+, V O2+

V 3+ V 2+, V 3+ V O2+, V 3+ V O2+, V 3+ V 3+, V O2+ V O2+

V O2+ V O2+, V 3+ V O2+, V 3+ V 3+, V O2+ V O2+ V O2+, V O2
+

V O2
+ V O2+, V 3+ V 3+, V O2+ V O2+ V O2+, V O2

+ V O2
+

f(V O2
+,−,−) V V 2+ V 3+ V O2+ V O2

+

V V 3+ V 3+, V O2+ V 3, V O2+ V O2+, V 3+ V O2+

V 2+ V 3, V O2+ V 3, V O2+ V O2+, V 3+ V O2+ V 3+, V O2+

V 3+ V 3+, V O2+ V 3+, V O3+ V O2+ V O2
+, V O2+ V O2+, V O2

+

V O2+ V 3+, V O2+ V O2+ V O2
+, V O2+ V O2+, V O2

+ V O2+, V O2
+

V O2
+ V O2+ V 3+, V O2+ V O2+, V O2

+ V O2+, V O2
+ V O2

+

Then (S, f) is a ternary hypergroupoid. The hyperstructures ({V, V 2+}, f), ({V 2+, V 3+}, f),
({V 3+, V O2+}, f) and ({V O2+, V O+

2 }, f) are ternary hypergroups.

4 Conclusion

In ordinary algebras (group, ring, module etc.), the composition of two elements is an

element. But in real life, there are many phenomena where the composition of two
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elements is a set of elements. Algebraic hyperstructure theory is one of the useful tools

to interpret them. In this paper, we observed that dismutation reactions are excellent

examples of ternarry algebraic hyperstructures.
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