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Abstract 
 We analyze the simplification of the general kinetic equations in contribution I of this series 
and their use when the restrictions corresponding to some particular values of the multiplicities of the 
eigenvalues of the system matrix and/or some properties of this matrix are considered. The particular 
cases we have studied are the most frequent in the literature about specific linear compartmental 
systems, namely: (a) all the eigenvalues of the matrix K (see below) are simple; (b) because K is 
singular there is a null-eigenvalue of any multiplicity, being simple the remaining non-null 
eigenvalues; (c) as in (b), but K having some special properties frequent in linear compartmental 
systems that will be analyzed when this case is treated. To any of these particular cases fit most of the 
linear multicompartmental systems.   
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 As example, these particular solutions are applied to three enzymatic systems of biological 
interest which can be modeled as linear compartmental systems belonging to the cases (a)-(c): 1) 
autocatalytic activation of a zymogen; 2) non- autocatalytic activation of a zymogen; and 3) reversible, 
competitive inhibition. Obviously, the power and utility of the equations obtained here for each of the 
three cases is revealed when they are applied to complex systems. However, and without loss of 
generality of the procedures, it is easier its illustration when they are applied to simple examples. 
 
 Finally, we handle matrix determinant (MD) which is a generalization of determinant concept, 
where the elements of one of its columns are matrix so that the determinant is also a matrix. We 
generalize the well known Vandermonde´s determinant and some other types of determinants.  

         

 

1. Introduction 
 

 In paper I of this series we have presented a new procedure to solve the homogeneous 

set of linear, ordinary, first order, differential equations with constant coefficients, 

corresponding to any linear compartmental system with zero input. The kinetic equations give 

the instantaneous amount of matter in any of the compartments of the system. These 

equations are completely general and easy to apply to any linear compartmental system 

irrespective that it is open or closed, with or without traps, simple or complex. This is due to 

the fact that they were derived with no restrictions regarding the properties of the matrix of 

coefficients of the set of linear differential equations (in the following denoted as K) or the 

multiplicities of the eigenvalues of this matrix.  

 

 Nevertheless, in the literature concerning the kinetic behavior of abstract linear 

compartmental systems there are many cases (engineering, chemical, biochemical, enzymatic, 

physical, pharmacological, etc.) that can be modeled as a linear compartmental system [1, 1-

29], and whose matrix K has some special properties [30-32], and/or the multiplicities of its 

eigenvalues have particular values. Thus, is often assumed that the non-null eigenvalues are 

simple [18, 27, 30, 33], and that if a null eigenvalue exists this is of any multiplicity [27, 30, 

33]. Overlapped with the assumptions above, about the multiplicities of the eigenvalues, other 

additional assumptions about matrix K are normally made, e.g. that is singular, non-singular, 

diagonal dominant [1, 8-10, 26], etc. Obviously, when restrictions about the properties of 

matrix K and the multiplicities of its eigenvalues are introduced, the general kinetic equations 

obtained in contribution I of this series remain valid because they have been obtained without 
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restrictions, but they become considerably simplified and easier to use if these frequent 

restrictions are inserted into them.   

   

 In this paper we analyze the simplification of the general kinetic equations in 

contribution I of this series and their use when the restriction corresponding to some particular 

values of the multiplicities of the eigenvalues of matrix K and/or some properties of this 

matrix are taken into account. The particular cases we consider here are the most frequent in 

the literature about specific linear compartmental systems. These cases are: (a) all the 

eigenvalues of K are simple; (b) because K is singular there is a null-eigenvalue of any 

multiplicity,  being simple the remaining non-null eigenvalues; (c) as in (b) but matrix K 

having some special properties frequent in linear compartmental systems [7, 18, 22, 27, 30, 

33] that will be discussed below when this case is treated. Case (c) has widely been treated in 

the literature in a individualized form [9, 26],  and here we find the same results but as 

particular cases of the general equations obtained in (b) and in paper I of this series. 

 

 

2. Notation/definitions 
 

 To facilitate the development and understanding of this paper we use the notation and 

definitions in paper I of this series and the following additional one: 

 

00 : Set whose elements are the subindices of the compartments with zero inputs. For example, 

if in a linear compartmental system the zero inputs are made in compartments X2 and X5, then 

1 22,50 
  

 

dependent expression
k

k
0�

�� : Sum extended to all and each of the elements of the set 0   

D(λ): Characteristic determinant of matrix K., i.e. ( ) det( )D 	 	
 �K I . It is also called as 

characteristic polynomial. This determinant is given by the following expression:  
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n

n
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K K K
K K K

D

K K K

	
	

	

	

�
�




�

,1K

,2K
,

, , ,

,n,K �

                                                                           (1) 

 

 The expansion of this determinant origins its polynomic form, i.e. the characteristic 

polynomial which can be expressed as:  

 

1
0 1( ) ( 1) ( )n n n

nD F F F	 	 	 �
 � � � � )n           (F0=1)      (2) 

 In eq. (2) Fq are expressions containing the different transfer constants Ki,j’s. In the following 

we will refer to D(λ) as a determinant or also as a polynomial.   

                                                                                  

 λj (j=1, 2,..., n): Eigenvalues of matrix K and, therefore, they coincide with the roots of D(λ), 

that can also be expressed as: 

 

1 2( ) ( 1) ( )( ) ( )n
nD 	 	 	 	 	 	 	
 � � � �( )n((        (3) 

 

u: Number of non-null eigenvalues of matrix K. In this contribution we assume that they are 

simple. If no null eigenvalue exists, then u=n. 

 

λ1, λ1, …, λu: Non-null roots of D(λ), i.e. the non-null eigenvalues of matrix K. Hearon [7] 

showed that when K is diagonal dominant, then its non-null eigenvalues are real and negative 

or complex with a negative real part and they are never purely imaginary.  

 

c: Number of null eigenvalues of K.  Because the number of eigenvalues of K is n, we have: 

 

n=u + c      (4) 
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If D(λ) has u non-null roots, all of them simple, and a null-root of multiplicity c, it can be 

written, according to eq. (3): 

 

1 2( ) ( 1) ( )( ) ( )n c
uD 	 	 	 	 	 	 	 	
 � � � �( )u((        (5) 

 

that can also be expressed as:  

 

( ) ( 1) ( )n cD T	 	 	
 �                            (6) 

 

( )T 	  being: 

 

1 2( ) ( )( ) ( )uT 	 	 	 	 	 	 	
 � � �( )u((                          (7) 

 

or also as:  

 

0

( )
u

u q
q

q
T F	 	 �





 �      (F0 = 1)           (8) 

 

In any case, the characteristic equation of K, the roots of which are the eigenvalues of K, is:  

 

( ) 0D 	 
            (9) 

According to the polynomial theory, the eigenvalues h	 (h = 1,2,...,u), which are the 

roots of the polynomial ( )T 	 , have the following properties [33, 34]:  

1 2 1

1 2 1 3 1 2

1 2

···
···

··· ( 1)

u

u n

u
u u

F
F

F

	 	 	
	 	 	 	 	 	

	 	 	

�

� � � 
 � ,
�� � � 
 �
-
�
�
 � .

                         (10) 

 

We denote as  Pq (q=1,2,...,u) the sum of all of the different q-arys products involving 

the eigenvalues h	 (h=1,2,...,u). For completeness, we set P0=F0=1. The following relationship 

between Pq and Fq will be useful below: 
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( 1)q
q qP F
 �       (q=0,1,2,...,u)                                                                                 (11) 

 

Dk,i(λ) (k,i=1, 2, ..., n): Determinant of n-1 order resulting after removing in eq.(1) the k-th 

row and the i-th column. Expansion of Dk,i(λ) leads to a polynomial of degree, at maximum, 

n-1 (what will be happens if  k = i), i.e.: 

 
1 2

, , 0 , 1 , 1( ) ( ) ( ) ( )n n
k i k i k i k i nD a a a	 	 	� �

�
 � � , 1( ),, ),,,((      [ , 0( ) 0  if  k ia k i
 � ]                 (12) 

Dk,i(λh) (k,i = 1, 2, ..., n): Dk,i(λ) when λ replaced by any of the eigenvalues  λh (h=1,2,…n) 

(which has already been defined by eq.(12))  

 

( )hadj 	�K I : Adjoint matrix (in non-hermitic sense) of the matrix h	�K I ,  i.e. 

 

1
1,1 2,1 ,1

2
1,2 2,2 ,2

1 2
1, 2, ,

( ) ( ) ( 1) ( )
( ) ( ) ( 1) ( )

( )

( 1) ( ) ( 1) ( ) ( )

n
h h n h

n
h h n

h

n n
n h n h n n h

D D D
D D D

adj

D D D

	 	 	
	 	 	

	

	 	 	

�

�

� �

$ %� �
& '� �& '� 
 & '
& '

� �& '( )

n( 1)( 1)( 1) �(
n( 1)( 1) �( 1)( 1)( 1)( ',, ,

'
''

'
''

((,,n, (, ((

K I                  (13) 

 

whose element on the k-th row and i-th column is ,( 1) ( )k i
k i hD 	��  (k,i=1,2,…,n).  

 
cK : c-th power of matrix K : 

 
hpK : ph-th (ph=0,1,2,…,c-1) power of matrix K , which we denote as: 

( ) ( ) ( )
1,1 2,1 ,1
( ) ( ) ( )
1,2 2,2 ,2

( ) ( ) ( )
1, 2, ,

h h h

h h h

h

h h h

p p p
n

p p p
np

p p p
n n n n

3 3 3
3 3 3

3 3 3

$ %
& '
& '
 & '
& '
& '( )

%( )
1

h((3 ,1 %1
( )(( )
,2

h(3 )(
,

', ,

'
''

'
''

,K                                   (14) 

 

hp
iK : row matrix 1 x n whose elements are those on the i-th row in matrix hpK , i.e.: 

( ) ( ) ( )
1, 2, ,

h h h hp p p p
i i i n i3 3 3$ %
 ( )%

( )((
),i, %)h(

i3 (K                    (15)  
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3. Particular cases of the general kinetics equation in paper i of 

this series. 
 

 Eq. (26) and associated eq. (25) in paper I of this series become considerably 

simplified in the three particular cases which arise by considering the nature of matrix K and 

the multiplicities of its eigenvalues. This will be illustrated by studying the cases (a)-(c) 

described in the Introduction section.   

 

3.1. Particular case (a): All of the eigenvalues of matrix K are simple.  
  

 In this case we have: 

1 2 1
 (  = 1,2,..., )

0 for each -value

n

h

h

h h

q n
r r r
s h h n
p h
s p h


 ,
�
 
 �� � 
 
 ��
 -
�

�

� 
 �.

         (16) 

 

and eqs. (26) and (25) of paper I of this series are simplified to: 

,0
1

n

h
h

hte	





 �X A              (17) 

 

with 
0

,0
h

h #
XA = #            (18) 

 

and where #  is the following n–order Vandermonde’s determinant: 

 

 !
1 2
2 2 2

1 2
, 1

1 1 1
1 2

1 1 1

n n

n a b
a b
a b

n n n
n

	 	 	
	 	 	 	 	

	 	 	



+

� � �

# 
 
 ��

1

n	

n	n
22	 2

, 1a b,
a b

�

1n
n	 n

             (19) 
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Therefore, the MD h##  (h=1,2,…,n) is: 

 

1 2
2 2 2 2

1 2

1 1 1 1
1 2

-th column

1 1 1

n

h n

n n n n
n

h

	 	 	
	 	 	

	 	 	� � � �




-th columnh

1

n	
2
n	 2
nn

1 1n11
n	n n1111

I
K
K

K

#
          (20) 

 

 

Note that for a certain h-value (h=1,2,…,n), the same one corresponding to h## , determinant # , given 

by eq. (19), can be written as: 

 

 !  !  !1

, 1 1

,

1
n n

h
a b p h

a b p
a b p h
a b h

	 	 	 	�


 

+ �

�

� ,� ,� �� �� �# 
 � � �� -� -
� �� �� .� �� .

� �         (h=1,2,…,n)           (21) 

 

  In turn, if we take into account that the MD in eq. (20) is formally a Vandermonde’s 

determinant, it can be expressed as:  

 !  !  !
, 1 1

1
n n

n h
h a b p

a b p
a b p h
b h

	 	 	�


 

+ �
�

� ,� ,� �� �� �
 � � �� -� -
� �� �� .� �� .

� � K I##    (h=1,2,…,n)       (22) 

 

If, finally, eqs. (21) and (22) are inserted in eq. (18), it is found: 

 !  !

 !

1

1
0

,0

1

1
n

n
p

p
p h

h n

p h
p
p h

	

	 	

�



�



�

� �



�

�

�

K I

X*     (h=1,2,...,n)       (23) 

 It can be proved (see Appendix A) that: 
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 ! 1

1

( 1) adj(
n

n
p h

p
p h

	 	�



�

� 
 � �� K I K I)                                                 (24) 

where adj( h	�K I) is given by eq.  (13). If eq. (24) is inserted into eq. (23), we have:   

 

 !

 !
0

,0

1

adj h
h n

p h
p
p h

	

	 	


�

�



��

K I
X*   (h=1,2,...,n)       (25) 

If we now carry out the multiplication   ! 0adj h	�K I ·X  indicated in eq. (25) we have: 

 

 

 

 

 

 

 (h=1,2,..., n)              (26) 

 

 

 

 

 

 

From eqs. (26) and (17) we have for the instantaneous amount of matter, xi, in any compartment, Xi , 

of the system: 

 

 
 !

0
,

1

1

1

( 1) ( )
n

k i
k i h kn

k
i n

h
p h

p
p h

ht
D x

x e	
	

	 	

�









�

� �
� ��� �


 � �
� ��
� �
� �

�
�

�
    (i=1,2,…,n)     (27) 

 

 !

 !

 !

1 0

,1
1

1

2 0

,2
1

,0 1

0

,
1

1

( 1) ( )

( 1) ( )

( 1) ( )

n
k

k h k
k

n

p h
p
p h

n
k

k h k
k

n

p h
h p

p h

n
k n

k n h k
k

n

p h
p
p h

D x

D x

D x

	

	 	

	

	 	

	

	 	

�






�

�






�

�






�

�

�

�

�



�

�

$ %
& '
& '
& '
& '
& '
& '
& '
& '
& '
& '
& '
& '
& '
& '
& '
& '
& '
& '
& '
& '
& '
& '
& '( )

�

�

�

�

�

�

*
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 If n = 1, i.e. when exists one only compartment, X1, with zero input and with a excretion 

constant ti tge environment equal to K1,o, then in eq. (27) both   !
1

n

p h
p
p h

	 	


�

��  and 1, ( )i hD 	  should be 

replaced by the unity and eq. (27) is reduced to: 

 

10
1 1

txx e	
              (28) 

 

with 1 1,oK	 
 � .  An example where this happens is in the radioactive decay processes.  Eq. (28) 

could also been derived proceeding as previously for any value of n but having into account that u = 1.  

 

3.2. Particular case (b): K is singular with a null-eigenvalue of any 

multiplicity c (c=1,2,…, n-1), being simple all  the non-null eigenvalues  

 
 If the null eigenvalue has multiplicity c and the remaining eigenvalues are simple, then 

there are u (u =n-c) non-null eigenvalues that we arbitrarily denote as 1	 , 2	 ,…, u	 and one 

null eigenvalue of multiplicity c denoted as 1u	 � . In this case we have (see notation in paper I 

of this series):  

1 2

1

1
1,2,..., 1

1

0 if 
0,1,..., 1 if 1 

 if  
 if 1

u

u

h

h

h

h h

h h h

n u c
q u
h u
r r r
r c
s h
p h u
p c h u
s p h h u
s p h p h u

�


 � ,
�
 � �


 � �
�
 
 �� � 
 
 �
�
 �
-
 �
�
 �
�


 � 
 � �
�� 
 �
�

� 
 � 
 � �.

          (29) 

and eqs. (25) and (26) in paper I of this series are simplified to: 

 

 
0

,0
h

h 

#
XA #                     (h=1,2,…,u)           (30) 
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0
1

1, !
h

h

u p
u p

hp
� �

� 

#

X
A

#
           (ph=0,1,…c-1)          (31) 

 

1

,0 1,
1 0

h

h

h

u c
p

h u p
h p

ht
te	 �

�

 


� �

 � � �

� �
� �X A A          (32) 

  

 When there are u non-null simple eigenvalues, 1	 , 2	 ,…, u	  and one eigenvalue, 1u	 � , 

of multiplicity c, determinant # is given by: 

 

 !

 !

1 2 1
2 2 2 2

1 2 1 1

2 2 2 2 3 4
1 2 1 1 1

1 1 1 1 2 3
1 2 1 1 1

1 2
1 2 1 1 1

2

2

1

2

2

1 1 1 1 0 0 0
1 0 0

2 1 0

2 0

1 1

u u

u u u

c c c c c c
u u u u

c c c c c c
u u u u

c c c c c c
u u u u

c

c

c

c

c

c
c

	 	 	 	
	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

�

� �

� � � � � �
� � �

� � � � � �
� � �

� �
� � �

�

�

� �� � �
� �

# 
 � �� � �
� �

� �
� �
� �

1 1 0 0 0

1 1 0 0u u	 	
2 2

1 1 1 01u u u	 	 	2 22
1 2111

 !2 2 3 4 !1 1 1 04
1

2 2 32 2 3 !u u u u !	 	  1  2! 1!2 2 32 22 2  ! 3!c2 2222  3!1 11  ! 1! 1! 1!1  1  � �2c �

� �2� �� �22

 !1 1 2 3 !1 1 1 13
1

1 1 21  !u u u u !	 	  1  1! 1!1 1 21 11 1  ! 2!c1 1111  2!1 11  ! 1! 1! 1!1  1  � �1c �

� �2� �� �22

2
1

c
u

c
	 c1c c c 1

u u u	 	 	1 11
c c cc c 1c 1

1 11 1111
� �c

� �2� �� �22

 !

1

1 1 1 1 2 1
1 2 1 1 1 1

1

2

1

1

1

1

u

n n n n n n n c
u u u u u

n n

c

c

n 	

	

	 	 	 	 	 	

�

� � � � � � �
� � � �

� �

�

� �
� ��� �

� �� �� � � � �� � � �
1

n c
u
n	 nnn11

u
1
1

n 1	 n 1
111 !1 1 2 !1 1 21 1  !u u u !	 	  	!1  1!1 n! 2!n nn  1 1 211  !1n 2!1 1111  1 11  ! 1! 1!1  1  � �1n �� �1n �

� �2
� �� �

� �1c �� �� �11

      (33) 

 

(only for the purpose of expressing the above determinant in a general form it has been 

assumed that  c > 2; obviously c can take also the values 1 or 2 and then this determinant 

becomes simpler). 

 

Having into account that in this case 1 0u	 � 
 , eq (33) becomes: 
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1 2
2 2 2

1 2

2 2 2
1 2

1 1 1
1 2

1 2

1 1 1
1 2

1 1 1 1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 0
0 0 0 1

0 0 0 0

0 0 0 0

u

u

c c c
u

c c c
u

c c c
u

n n n
u

	 	 	
	 	 	

	 	 	
	 	 	

	 	 	

	 	 	

� � �

� � �

� � �

# 


� � � � � � � � � � � � � � � � � � � � � �

1 1 0 0 0
0 1 0 0u	

2 0 0 1 0u	 2

2 0 0 0 0c
u	 c

1 0 0 0 1c
u	 c

0

1 0 0 0 0n
u	 n

   (34) 

 

which has been divided, using the two indicated dashed lines, in four minors which, according 

to determinants theory, allows us to express the determinant as:  

 

1 2
·

1 1 1
1 2

1 0 0 0
0 1 0 0
0 0 1 0

( 1)

0 0 0 0
0 0 0 1

c c c
u

u c

n n n
u

	 	 	

	 	 	� � �

# 
 �

0
0c

u	 c

00 0

0
1

      (35) 

 

 The second determinant on the right hand side in above equation has null all of its 

entries except those ones on the main diagonal  and, therefore, it is equal to the unity, 

resulting:  

 

1 2
·

1 1 1
1 2

( 1)

c c c
u

u c

n n n
u

	 	 	

	 	 	� � �

# 
 �

c
u	 c

        (36)

   

In turn, determinant in eq. (36), having into account that u = n-c, adopts the form:  

 

1 2

11 1 1 1 1 1
1 2 1 2

1 1 1c c c
u u

c
i

in n n u u u
u u

	 	 	
	

	 	 	 	 	 	
� � � � � �

� ,

 � -

� .
�

1 1 1c
u	 c

� ,u� ,

 -

c
i	 c
ii
,,c	 c

�
��

� .
i --i��

� ,u

       (37) 
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Note that determinant in the right hand side in eq. (37) is an u-order Vandermonde’s 

determinant and, therefore:  

 

 !
,1 1 1

1 2

1 1 1
u

a b
a bu u u
a bu

	 	
	 	 	� � �

+


 ��
1

 
u

a
b

	a 	
�          (38) 

 

and from eqs. (36) and (38), we have: 

  

 !·

1 ,

( 1)
u u

u c c
i a b

i a b
a b

	 	 	



+

� ,
� ,� �# 
 � �� -� -
� .� �� .
� �          (39) 

Note also that determinant # , given by eq. (39), can also be written as: 

 

 !  !  !1·

1 , 1 1

,

( 1) 1
u u u

hu c c c
h i a b p h

i a b p
i h a b p h

a b h

	 	 	 	 	 	�


 
 

� + �

�

� ,� , � ,� �� �� �� �# 
 � � � �� -� -� -
� �� �� �� . � .� �� .

� � �        (40) 

 

On the other hand, matrix 
h hs p�## (sh+ph = h if  h u� and equal to  h+ph if h=u+1; 

ph=1,2,…,c-1) is the MD that results after replacing in determinant # , given by eq. (34), 

column (sh+ph)-th by column of matrices I, K, K2,…Kn. In order to determine matrix 
h hs p�## we 

distinguish two cases: (1) h hs p u� � and (2) h hs p u� + . 

 

 (1) h hs p u� � , i.e. h u�  

 

 In this case, sh = h, ph = 0, sh+ph = h and the MD h##  in eq. (30) is given, according to 

its definition, by: 
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(h=1,2,…,u)  (41) 

 

                                                         

 

and proceeding analogously as in case (a) we have:as previously in the derivation of eq.(36) 

we have:  

 !
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K K I

A X                 (h=1,2,…,u)       (42) 

From eq. (24) it is observed that, in this case:  
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 � ��K K I K I         (h=1,2,…,u)        (43) 

 

where adj( )h	�K I  is given by eq. (13). If now eq. (46) is inserted in eq. (45), we have: 

 

 !
0

,0

1

( 1) adj( )c
h

h u
c
h p h

p
p h

	

	 	 	


�

� �



��
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If in eq. (44) eq. (13) is taken into account and we carry out the multiplication 
0adj( )·h	�K I X  indicated in it, it results: 

  

1 2
2 2 2 2

1 2

2 2 2 2
1 2

1 1 1 1
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1 1 1 1 0 0 0
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#

I
K
K

K
K
K

K

-516-



 

 

 

 

 

 

 

 

 

(h=1,2,…,u)              (45) 

 

        

 

 

 

 

 

We will denote as Ai,h the entry on i-th row of matrix Ah,0, i.e.: 
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(2) h hs p u� +  

 

 In Appendix B we show that: 
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which can also be written, having eq. (44) in mind, as: 
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�A A K X          (ph=0,1,…c-1)       (48) 

 

 From eq. (48) we have that matrix 1, hu p�A , in terms of its entries is, having in mind eqs. 

(45), (13) and (14): 
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 We will denote as ,0,A
hi p the entry on i-th row of matrix 1, hu p�A , i.e.: 
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 From eqs. (32), (45) and (48), one obtains: 
1

, ,0,
1 0

A A
h

h
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i i h i p
h p

h ht px e t	 �


 



 �� �            (51) 

where Ai,h and ,0,A
hi p  are given by eqs. (45) and (49). If all of the minors , ( )k iD 	  of 

determinant ( )D 	  would have a null root, the lower multiplicity of this null root in the 

different minors being m (m=1,2,…,c), then all of the minors can be expressed as: 
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, ,( ) ( )m
k i k iD d	 	 	
             (52) 

and, in this case, it can be shown (see Appendix C) that eq. (32) becomes: 
 

' 1
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being 

 c’ = c-m            (53) 

and the expressions for ,0hA  and 1, hu p�A being those ones given by eqs. (44) and (48). On the 

other hand, according to eq. (12), if all of the minors , ( )k i hD 	  have a null root of multiplicity 

m, this means that:   

 

, , 1 , 1( ) ( ) ( ) 0k i n m k i n m k i na a a� � � �
 
 
 
,, )( ,,,,,( )( ))((         (55) 

 

and therefore, from eqs. (55) and (12) one gets: 
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Thus, eqs. (45) and (49) are simplified to: 
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and 
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and eq. (51) is reduced to: 
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where  Ai,h   y ,0,A
hi p  are given, having eqs. (57) and (58) into account, by: 
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  If in this particular case (b) happens that u=1, then all those derived equations 

implicitly assuming that u > 1,  remain valid, but in those one in which appears   !
1

u

p h
p
p h

	 	


�

��  

this expression must be replaced by the unity, i.e. by 1,  and obviously u must be also  

replaced by 1. After this action, it results the same equations which would be obtained 

initially assuming that u = 1 and then reasoning analogously as for derivation of the equations 

corresponding to this particular case.  

 

3.3. Particular case (c). As in (b) but matrix K having some special 

properties frequent in linear compartmental systems. 

 
 This case, the most frequent concerning with closed linear compartmental systems, is 

characterized by the following features: 

 

(1) The matrix K is singular, being c (c=1,2,…,n-1) the multiplicity of the null eigenvalue. 

This situation can be considered as a particular case of case (b) but with the following 

additional characteristics. 

 

(2) The elements of matrix K outside of the principal diagonal are non-negative 

 

(3) The elements of matrix K on the principal diagonal are non-positive 

 

(4) Each element on the principal diagonal of matrix K is, in absolute value, equal to the sum 

of the remaining elements on the same column to which belongs this element. 

 

 This case has been extensively analyzed by Galvez and Varon (1981), Varon et al. 

(1995) and Garcia-Meseguer et al. (2001) in an individualized way. Here we show that the 

kinetic equations resulting for this case are a particular result of the kinetic expressions 

obtained in (b) introducing into them  the features (2)-(4).  

  Under these conditions the non-null eigenvalues 1	 , 2	 , …, u	 are real and 

negative or complex with a negative real part [7, 18, 22, 27, 30, 33]. Coefficients Fq (q=0, 1, 
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..., u) in eq. (8) can be obtained by expanding the characteristic polynomial D(λ) (see eq.(1)). 

[Nevertheless, this procedure may become very tedious and prone to human errors, even 

when applied to compartmental systems not excessively complex. Varon et al. [27] and 

Garcia-Meseguer et al. [33] have suggested an alternative simple and systematic method to 

obtain these coefficients. This method circumvents the above mentioned limitations. 

Moreover Garcia-Meseguer et al. [33] implemented a software, named COEFICOM 

(available in http://oretano.iele-ab.uclm.es/%7Efgarcia/COEFICOM/), which easily furnishes 

these coefficients and the values of  u and  c].  

 

 Also, the minors Dk,i(	) always have a null root of multiplicity c-1 or c  [30, 35] and, 

therefore: 

 

m = c-1,    c’ = 1,   ph = 0         (62) 

 

Moreover, in this case it has been proved [33] that: 

 

,
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, ) ( )( ( 1)q k i q
n i k

k i fa � � �
 �          (63) 

 

where the coefficients (fk,i)q (q = 1, 2, ..., u) can be obtained by expanding Dk,i(λ) and using eq. 

(63), or more easily as described in [33].  

 If we insert eqs. (62) and (63) into eqs. (59)-(61) and we take into account that Ai,0,0 is 

denoted by Ai,0, we have: 
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and  
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 In Appendix D we show that Ai,0 can also be expressed as: 
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 Finally, eqs. (67) and (65) can be expressed, having in mind that 0 0kx 
  if  0
kx 04 , as:  
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         (i=1,2,…,n; h=1,2,…,u )                                (68) 

 

As mentioned above, eqs. (64), (68) and (69) coincide with the expression previously 

derived in a individualized way described in references [27,30,33].  

 

4. Results and discussion 
 

 In this contribution we have derived, starting from the general solutions given in paper 

I of this series, particular solutions which are much simpler and that can be applied to  

enzyme, chemical, biochemical, pharmacokinetic, physical, engineering and other frequent 

systems which can be modeled as some of the linear compartmental systems above described.  

Of course, other particular cases are possible, and the way to obtain the corresponding 

expressions is similar to that used here for cases (a)- (c). 
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 Cases (a)-(c) are frequently found. Thus, the situation where all the eigenvalues are 

simple, none of them being null, appears in open linear compartmental systems without traps 

[1, 9, 36, 37]. The corresponding matrix K is non-singular and, therefore, there are no null 

eigenvalues. Moreover, in this case, the possibility that the some eigenvalues are multiple is 

little. There are also some enzyme systems involving zymogen autocatalytic activation which 

belong to this case [37-39]. Case (b), with one null eigenvalue of any multiplicity, and the 

other ones being simple and without any additional restriction concerning system matrix K, is 

frequent in enzyme systems  involving zymogen  non-autocatalytic activation [40, 41] (these 

processes are of great physiological interest because they occur in digestion, metabolism, 

immunity, blood coagulation, fibrinolysis, cell apoptosis, tumor growth and metastasis [42] , 

as well as in applications in biotechnology and possibly treatment of AIDS [43, 44]). Finally, 

case (c) corresponds to most of closed linear compartmental systems, all of them possessing, 

at least, one null eigenvalue the multiplicity of which  coincides with the number of final 

classes in the corresponding directed graph [27]. To this particular case fit most of the enzyme 

reactions once modeled as linear compartmental systems. Actually, case (c) is a particular 

case of (b) when in matrix K certain conditions are hold. Nevertheless, due to the important 

and the large number of physical, chemical and biomedical systems which fit to this case, it 

has been treated independently.  

 Also, and because case (a) is applicable when all the eigenvalues are simple, this 

include those situations in which a simple null eigenvalue exists. As expected, the result for 

this situation coincides with that obtained in (b) setting c=1.  

 

4.1. The two ways to obtain the results in this contribution 

 

 It must be emphasized that in this contribution cases (a)-(c)  have been analyzed as 

particular cases of the general model analyzed in paper I of this series to show the validity,  

power and completeness of the results there obtained. Nevertheless, these particular cases, 

frequent in practice and relatively simple due to their restrictive constraints, could also be 

analyzed in an independent way, by applying any of the methods for analytical integration of 

linear sets of differential equations. In fact, these procedures were already used early in the 

literature [30, 33, 45, 46] for case (c). As an example, we discuss two procedures to obtain the 

results corresponding to case (a).  
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Procedure 1: In paper I of this series the general equations were obtained from the Laplace 

transformation and the general form of the solution which relates matrix X with time [eqs. 

(16) and (4) in paper I] by derivating X with respect to t n-1 times. This gives a set of n linear 

algebraic equations (after setting t =0 in them) where the unknowns are the column matrices 

, hh pA  defined by eq. (25) in I. Next, and if it is assumed that the n eigenvalues of matrix K are 

simple, eqs. (25) and (26) for the matrices ,0hA  are found. 

 

Procedure 2: Another way to obtain these matrices is shown in Appendix A where ,0hA  are 

obtained from the Laplace transformation for X , L(X) [eq. (A4)], setting in it, successively, 

h=1,2,…,n.  Hence, the matrices are not obtained from the X expression as a function of time, 

but from a previous step, where the inverse transformation of L(X) has not yet been taken. 

Finally, once the expressions of the matrices have been obtained, the inverse transformation is 

taken.   

These two procedures to obtain the matrices hA (h=1,2,…,n) provide the same results.  

 

4.2. Some Mathematical relationships that arise from this contribution 

 

 The existence of two procedures that provide the kinetic equations of the  particular 

cases (a)-(c) indicated in this contribution, i.e. either from the general equations derived in 

paper I or by using an individualized way, allows us to obtain mathematical relationships 

which, as far as we know, were not established previously.   

 Thus, relationship (24) has been found, as indicated in Appendix A, by comparison of 

eqs. (23) in the main text for matrices ,0hA (h=1,2,…,n) in case (a), and eq. (A7) in Appendix 

A. In turn, from relationship (24) derivation of relationship (46) is immediate.  

 Other useful relationships can be also derived by comparison of results obtained from 

different ways. Thus, in Appendix C it is shown that when all the minors , ( )k iD 	  have a null 

root and their lower multiplicities are m, then: 

1,u c m� �A  = 1, 1u c m� � �A =…= 1, 1u c� �A = 0                    (70) 

Therefore, according to eq. (47) which gives the expression of these matrices, it must be 

fulfilled:  
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K I K   (if ph =c-m, c-m+1,...,c-1)       (71) 

           (if all  the minors 
,
( )

k i h
D 	 have a null root being m the lower multiplicity of them) 

 

 The possibility of obtaining the expression of a same magnitude by using different 

ways offers great mathematical richness as illustrated in this contribution by deriving 

relationships (24), (46), (70) and (71). As far as we know, these relationships were not given 

previously in the literature.  

 

4.3. Examples 

  

 Next, we consider three examples of enzyme systems, examples 1, 2 and 3, which can 

be modeled as linear compartmental systems fitting to particular cases (a), (b) and (c),   

respectively. Obviously, the full power and utility of the equations obtained here for each of 

the three cases is revealed when they are applied to more complex systems. However, and 

without loss of generality of the procedures, it easier its illustration when they are applied to 

simple examples.  

 

Example 1. Autocatalytic activation of a zymogen  

 

  We will obtain the kinetic equation corresponding to the active enzyme E for the 

following reaction mechanism of autocatalytic activation of a zymogen, as occurs in the 

autocatalytic activation of  trypsinogen to trypsin [41, 47], of pepsinogen to pepsin [48-52] 

and in the activation of  prekalicrein to kalicrein [53, 54]: 

                                               
1 2

1

2
k k

k
E Z EZ E W

�

� � �
k

1 2k k1 2

EZEZ       

               Scheme 1 

In this scheme E is activating enzyme, Z is the zymogen and W is a peptide released from Z. 

If the initial concentration of  Z, [Z]0, is much higher than the initial concentration of E, [E]0, 

and we consider a reaction time so that the instantaneous concentration of  Z, [Z], remains 
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approximately equal to [Z]0, i.e. 0[ ] [ ]Z Z 0[ ][ , then the interconversions between the enzyme 

forms are of first  ( 2 2kEZ E W55� � y 
1kE Z EZ

�
� 655 ) or pseudofirst order 

( 1 0[ ]k ZE EZ555� ),  and the system can be modeled as a linear compartmental system whose 

directed graph is displayed in Fig. 1. 

  

 

 

 

 

 

 

 

 
Figure 1. Directed graph showing the linear compartmental system in Scheme 1. X1 and X2 

correspond to E and EZ, respectively. K1,2 = k1[Z]0, K’2,1=k-1, K”2,1=k2. 

 

 In this case n=2, and x1 and x2 represent the instantaneous concentrations of the 

enzyme species E and EZ and 0
1x  and  0

2x  their initial concentrations, respectively. We will 

assume that the only species present at the onset of the reaction are E and Z and therefore 
0
2 0.x 
 The matrix K is:   

1,1 2,1

1,2 2,2

K K
K K

$ %

 & '

( )
K             (72) 

being: 

1,1 1,2

1,2 1 0

2,2 2,1
' ''

2,1 2,1 2,1
'
2,1 1
''
2,1 2

[ ]

2

K K
K k Z
K K
K K K
K k
K k

�


 � ,
�
 �
�
 � �
-
 � �
�

�


 �.

            (73) 

and ( )D 	 is: 

X1 X2

1,2K

'
2,1K

''
2,1K

''
2,1K

''
2,1K
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1,2 2,1

1,2 2,2

( )
K K

D
K K

	
	

	
�



�

                                  (74) 

 

 The eigenvalues of K are the roots of ( )D 	 , i.e.: 

 

 !  !2
1 0 1 2 1 0 1 2 1 2 0

1

[ ] [ ] 4 [ ]
2

k Z k k k Z k k k k Z
	 � �� � � � � � �


     (75) 

 

and  

 

 !  !2
1 0 1 2 1 0 1 2 1 2 0

2

[ ] [ ] 4 [ ]
2

k Z k k k Z k k k k Z
	 � �� � � � � � �


     (76) 

Note that 1	  is positive whereas 2	 is negative. Because of these two eigenvalues are simple, 

the results obtained for particular case (a) are applicable to this system. From eq. (27) and 

having into account that i=1, k=1 y u=2 one obtains: 

 

 !  !

0 0
1,1 1 1 1,1 2 1

1
2 1 1 2

1 2
( ) ( )t tD x D xx e e	 		 	

	 	 	 	

 �

� �
        (77) 

 

From eq. (75) we find: 

 

1,1 2,2( )D K	 	
 �           (78) 

 

and, therefore: 

 

1,1 1 2,2 1( )D K	 	
 �           (79) 

1,1 2 2,2 2( )D K	 	
 �           (80) 

 

Finally, if in eq. (76), eqs. (78) and (79) and the expression of K2,2 are taken into account, we 

have: 
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1 2
0
1

1 1 2 1 1 2 2
1 2

1 2( () )t tk k k k
xx e e	 		 	

	 	 � �
 � � � � �
�

      (81) 

 

Example 2. Non-autocatalytic activation of a zymogen 

 

In this example we will obtain the kinetic equation corresponding to the instantaneous 

concentration of the activated enzyme in a non-autocatalytic zymogen activation such as the  

activation of plasminogen to plasmin [43, 55-58] which takes place according to the following 

scheme of reaction: 

                                                   
1 2

1

k k

a
k

E Z EZ E E W
�

� � � �
k

1 2k k1 2

EZEZ    

Scheme 2 

 

In this scheme E and Z are the activating enzyme and the zymogen, respectively, Ea is the 

activated enzyme and W is a peptide released from Z.   

 If [Z]0 >> [E]0, and we consider a reaction time during which 0[ ] [ ]Z Z 0[ ][ , then the 

interconversions between the enzyme forms are of first ( 2k
aEZ E E W55� � � , 

1kE Z EZ
�

� 655 ) or pseudofirst order ( 1 0[ ]k ZE EZ555� ). Under these conditions, the system 

under study can be modeled as a linear compartmental system whose directed graph is shown 

in Fig. 2.:   

 

 

 

 

 

 

 

 
Figure 2. Directed graph showing the linear compartmental system in Scheme 2. X1, X2 and X3 

correspond to E, EZ and Ea, respectively.  K1,2 = k1[Z]0, K’2,1=k-1, K”2,1= K2,3 = k2. 

 In this case n=3 and x1, x2 and x3 represent the instantaneous concentrations of the 

enzyme species E, EZ and Ea.  The initial concentrations of these species are 0
1x , 0

2x  and 0
3x , 

X1 X2 X3

''
2,1 2,3K K7 2,3K

''
2,1K

'
2,1K

1,2K
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respectively.  By assuming that the only species present at the onset of the reaction are E and 

Z,  i. e., 0 0
2 3 0x x
 
 , the matrix K is:   

 

1,1 2,1

1,2 2,2

2,3

0
0

0 0

K K
K K

K

$ %
& '
 & '
& '( )

K           (82) 

 

where  

 

1,1 1,2

1,2 1 0

2,2 2,1
' ''

2,1 2,1 2,1
'
2,1 1
''
2,1 2

2,3 2

[ ]
K K
K k Z
K K
K K K
K k
K k
K k

�


 � ,
�
 �
�
 �
�
 � -
�

�


 �
�
 .

           (83) 

 

and ( )D 	 is: 

1,1 2,1

1,2 2,2

2,3

0
( ) 0

0

K K
D K K

K

	
	 	

	

�$ %
& '
 �& '
& '�( )

        (84) 

 The matrix K has two different eigenvalues, one of them non-null, 1	 , given by: 

1 1,1 2,2K K	 
 �           (85) 

and another null, 2	 , of multiplicity 2. In this example: 

2

2

1
2
2
0 and 1

u
c
s
p


 ,
�
 �
-
 �
�
 .

           (86) 

 

Because the non-null eigenvalue is simple and the null eigenvalue is of multiplicity c, 

one can apply to this situation, in principle, the results of the particular cases (b) or (c).  But 
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since 2,2 2,1K K" +K2,3 the requisite (4) above mentioned for case (c) is not fulfilled. In other 

words, the results obtained for case (b) must be used in this example.    

 We want to determine x3 and taking into account that the only enzyme species present 

at the onset of the reaction is E, i.e. X1,  it follows  according to eq. (51): 

   

3 3,1 3,0 3,0,1
1A A Atx te	
 ��            (87) 

 

where A3,1, 3,0A  and 3,0,1A  are given by eqs. (46) and (50)  (note that A3,0,0 is denoted by A3,0) 

with  i =3, u=1 y c=2, i.e.: 

 

1,3 1
2

1

0
1

3,1
( )A D x	
	


           (88) 

 

1,3 1 (0) 0
3,0 1,3 12

1

( )
A

D
x

	
3

	
� �


 �� �
� �

+          (89) 

 

1,3 1 (1) 0
3,0,1 1,3 1

1

( )
A

D
x

	
3

	
� �


 �� �
� �

+          (90) 

 

From eq. (95) we find: 

 

1,2 2,2
1,3 1 1,2 2,3

2,3

( )
0
K K

D K K
K

	
	

�$ %

 
& '

( )
         (91) 

 

Also, according to matrices I and K and the meaning of  (0)
1,33 and (1)

1,33 , we have: 

(0) (1)
1,3 1,3 03 3
 
            (92) 

 

and, therefore, eq. (98) adopts the form: 
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 !
0

1,2 2,3 1
3

1 1

11 1tK K x
x e t	

	 	
� ,


 � �� -
� .

        (93) 

 

 If in this equation are taken into account the expressions for K1,2 and K2,3 given by eqs. (82), 

and that 3 [ ]ax E
 , 0
1 0[ ]x E
 , one finds:  

 !)1 2 0 0

1 0 1 2 1 0 1 2

1 0 1 2( [ ][ ] [ ] 1[ ] 1
[ ] [ ]a

k Z k k tk k Z EE
k Z k k k Z k k

e t
� �

�� � �� ,

 � �� -� � � �� .

   (94) 

 

Example 3. Reversible, competitive inhibition 

 

In this example we will obtain the kinetic equation corresponding to the enzyme-

substrate complex, ES, belonging to an enzyme system with reversible, competitive inhibition  

[41, 49, 50, 59-62] according to the following scheme of reaction mechanism: 

        

     

      

  

 

Scheme 3 

 

In this scheme E, S, ES, P, I and EI are the free enzyme, the substrate, the enzyme-substrate 

complex, the product of the reaction, the inhibitor and the enzyme-inhibitor complex, 

respectively 

 If [S]0 and [I]0 >>  [E]0, and the reaction time is such that 0[ ] [ ]S S 0[ ][  and  0[ ] [ ]I I 0[ ][ , 

then the interconversions between the enzyme forms are of first 

( 2kES E P55� � , 2kES E P55� � ,
1kE S ES

�
� 655 and 3kEI E I�55� � ) or pseudofirst 

order ( 1 0[ ]k SE ES555�  y 1 0[ ]k IE EI555�  ).  

 

Under these conditions, the enzyme system can be modeled as a linear compartmental system 

described by the directed graph displayed in Fig. 3.  

3 3

1 2

1

  

I

k k

k

k k

E S ES E P

EI
�

�

� � �
�

89

1 2k k1 2

k
ESES 
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Figure 3. Directed graph describing the linear compartmental system shown in Scheme 3. X1, X2 

and X3 correspond to E, ES and EI, respectively. K1,2 = k1[S]0, K2,1=k-1+k2, K1,3= k,3[I]0  

y K3,2 = k-3. 

 

 In this example n = 3 and x1, x2 and x3 represent the instantaneous concentrations of the 

enzyme species E,  ES and EI, respectively and 0
1x , 0

2x  and 0
3x  their initial concentrations. We 

will assume that the only species present at the onset of the reaction are E, S and I so that  
0 0
2 3 0x x
 
 . Matrix K corresponding to Fig. 3 is:   

1,1 2,1 3,1

1,2 2,2

1,3 3,3

0
0

K K K
K K
K K

$ %
& '
 & '
& '( )

K          (95) 

being: 

1,1 1,2 1,3

1,2 1 0

1,3 3 0

2,2 2,1

2,1 1 2

3,3 3,1

3,1 3

( )
[ ]
[ ]

K K K
K k S
K k I
K K
K k k
K K
K k

�

�


 � � ,
�
 �
�

�


 � -
�
 � �


 � �
�
 .

          (96) 

  

X1 X2

X3

1,2K

2,1K

1,3K3,1K
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and ( )D 	 is: 

 

1,1 2,1 3,1

1,2 2,2

1,3 3,3

( ) 0
0

K K K
D K K

K K

	
	 	

	

�

 �

�
       (97) 

 

 Hence, the eigenvalues of matrix K are: 

 

2
1 1 2

1

4
2

F F F
	

� � �

          (98) 

 

2
1 1 2

2

4
2

F F F
	

� � �

          (99) 

and 

 

3 0	 
             (100) 

 

where: 

 

1 1 2 3 1 0 3 0[ ] [ ]F k k k k S k I� �
 � � � �         (101) 

 

and  

 

2 3 1 2 1 3 0 3 1 2 0( ) [ ] ( )[ ]F k k k k k S k k k I� � � �
 � � � �       (102) 

 

Thus, in this example there are two simple eigenvalues (u=2) and one null eigenvalue of 

multiplicity c=1. Therefore, in principle, the results for cases (b) or (c) could be applied. But 

in this example the four requirements that allow us to apply the much simpler equations for 

case (c) are hold. For this reason we will use these expressions. Briefly, in this example:  

2
1

u
c

 ,

-
 .
             (103) 
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 We are interested in obtaining the time course of  x2. According to eq. (64) and having 

into account that 0 0
2 3 0x x
 
 ,  i =2, u=2 and c=1, one obtains: 

   

2 2,0 2,1 2,2
1 2A A At tx e e	 	
 ��                        (104) 

 

where A2,0  is given by eq. (67) and 2,1A  and 2,2A  by eq. (68) with i =2, u=2  and h = 1 and 2 

respectively, i.e.:  

 
0

1,2 2 1
2,0

2

( )f x
A

F

                                (105) 

                                                                                        

 !
 !

0 2
1 1,2 0 1 1,2 1 1 1,2 2

2,1
1 2 1

( ) ( ) ( )x f f f
A

	 	
	 	 	

� � �



�
       (106) 

 

and 

 

 !
 !

0 2
1 1,2 0 2 1,2 1 2 1,2 2

2,2
2 1 2

( ) ( ) ( )x f f f
A

	 	
	 	 	

� � �



�
        (107) 

 

 Coefficients (f1,2)q (q=0,1,2) involved in above equations are obtained by expanding 

the minor 1,2( )D 	  given by 

 

1,2
1,2

1,3 3,3

0
( )

K
D

K K
	

	



�
         (108) 

 

and from eq. (75): 

 

(f1,2)0 = 0             (109) 

 

(f1,2)1 = K1,2             (110) 
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(f1,2)2 = K1,2K3,1            (111) 

 

Inserting eqs. (109)-(111) into eqs. (105) and (107), and taking into account the expressions 

for K1,2, K3,1 and F2 and that 0
1 0[ ]x E
 , it results: 

 

1 3 0
2,0

3 1 2 1 3 0 3 1 2 0

[ ]
( ) [ ] ( )[ ]

k k EA
k k k k k S k k k I

�

� � � �



� � � �

                     (112)        

                                                                                        

 !
 !

1 1 3 0 0
2,1

1 2 1

[ ] [ ]k k S E
A

	
	 	 	

�� �



�
          (113) 

 

 !
 !

1 2 3 0 0
2,1

2 1 2

[ ] [ ]k k S E
A

	
	 	 	

�� �



�
          (114)  
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Appendix A 

 
Derivation of relationship (24) in the main text 

 

 If in eq. (15) of paper I, X(1)=KX, we take Laplace transformation, we have: 

 
0 ( )· ( )L	� 
 �X K I X           (A1) 

with 

1

2

( )
( )

( )

( )n

L x
L x

L

L x

$ %
& '
& '

& '
& '
( )

'
'
''

'
''

X           (A2) 

 

and where L(xi) is the Laplace transformated of the function xi giving the instantaneous 

amount of matter in compartment Xi.  

 

From eq. (A1) and having into account that det( ) ( )D	 	� 
K I we have: 

 
0( )·( )

( )
adjL

D
	
	

�

 �

K I XX          (A3) 

 

  If we assume that the n eigenvalues of matrix K are simple, then the right side of eq. (A3) 

can be expressed as the following sum: 

 

 
0

,0

1

( )·
( )

n
h

h h

adj
D

	
	 	 	


�
� 


��
AK I X

        (A4) 

 

If we carry out the sum in the right side of eq. (A4) and we have into account the expression 

of ( )D 	  given by eq. (3), we have: 
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 !

 !

 !

,0
1 10

1

1 1

( )·( 1)

n n

h p
h p

p hn
n n

p p
p p

adj
	 	

	

	 	 	 	


 

��


 


� �
� ��� �� �� � �� 


� �

� �

� �

A
K I X

      (A5) 

 

and hence: 

 

 !1 0
,0

1 1

( 1) ( )·
n n

n
h p

h p
p h

adj 	 	 	�


 

�

� �
� �� � 
 �� �� �
� �

� �K I X A       (A6) 

 

Eq. (A6) is accomplished for any 	 -value and, therefore, also for each of the n different h	 -

values (h=1,2,…,n). If in eq. (A6) we replace 	  for any of the possible 'sh	 , all the summands 

in the bracket on the right side of eq. (A6) vanish except  !,0
1

n

h h p
p
p h

	 	


�

��A = 

 !1
,0

1

( 1)
n

n
h p h

p
p h

	 	�



�

� ��A . Thus, we have: 

 

 !

0

,0

1

( )·
h n

p h
p
p h

adj 	

	 	


�

�



��
K I XA          (A7) 

 

By comparing eqs. (A7) and (23) we have immediately relationship (24). 
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Appendix B 

 
Derivation of eq. (47) in the main text 

 

 In this case, h=u+1, sh=h=u+1, ph=0,1,2,…,c-1, sh + ph=u+1+ph and, therefore,  matrix 

1 hu p� �##  (ph=0,1,2,…,c-1) is: 

 

( 1 ) th column

1 2
2 2 2 2

1 2

2 2 2 2
1 1 2

1 1 1 1
1 2

1 2

1 1 1 1
1 2

1 1 1 1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 0
0 0 0 1
0 0 0 0

0 0 0 0

h

h h h

u p

u

u

c c c c
s p u p u

c c c c
u

c c c c
u

n n n n
u

	 	 	
	 	 	

	 	 	
	 	 	
	 	 	

	 	 	

� � �

� � � �
� � �

� � � �

� � � �


 


1 ) th column
h

p111 )1 )11

1 1 0 0 00
0 1 0 0u	

2 20 0 1 02
u	 2

2 20 0 0 02c 22 0 0 0u	 c 2

1 10 0 0 11c 11 0 0 0u	 c 1

0c

1 10 0 0 01n 11 0 0 0u	 n 1

# #

I
K
K

K
K
K

K

             

 

                                                                                                       (ph=0,1,2,…,c-1)          (B1)                       

             

 If the determinant above is expanded by the entries on the first column, from the 

(u+1)-th one, and then again by the entries on the first column from the (u+1)-th one different 

of the column of matrices, and so forth, the result is: 

 

 !

1 2

1 2
·( 1) 1 1 1 1

1 1 2

1 1 1 1
1 2

1

h h h h

h

p p p p
u

c c c c
u

u c c c c c
u p u

n n n n
u

	 	 	
	 	 	
	 	 	

	 	 	

� � � � �
� �

� � � �


 �

hph
u	 p

c
u	 c

c
u

1	 c 11

1n 1
u	 n 1

##

K
K
K

K

      (ph=0,1,2,…,c-1)           (B2) 

                                                                       

From eq. (B2) one obtains that matrix 1 hu p� �## is given by: 
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 !
1 2

( 1) 1 1 1 1
1 1 2

1

1 1 1 1
1 2

1 1 1

1

h h h h

h h h h h h

h

h h h h

c p c p c p c p
uu

u c p p c p c p c p c p
u p i u

i

n p n p n p n p
u

	 	 	
	 	 	 	

	 	 	

� � � �

� � � � � � � � �
� �




� � � � � � � �

� �

 � � �

� �
�

1
hh

u	 c pcc phc

u	uu
11111111

11
u

111	 111111

#

I
K

K K

K

  (ph=0,1,…,c-1) (B3) 

  

 If the MD in eq. (B2) is expanded by the entries on the first row it yields: 

 

   
                            

    

    

    

 

 

 

 

 

 

(c=1,2,…,n-1;ph=0,1,…c-1)     (B4) 

 

 

If now eq. (B4) is inserted into eq. (B3), it is obtained: 

 

 

                                                       

 

 

(ph=0,1,…c-1)  (B5) 

 

                                                                                                          

. 1
1

1 1, 1

,

.

1 , 1

1
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u u
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1
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Hence, if eq.  (B5) is inserted into eq. (31), we have: 

 

 !

0

1
0

1,
1

1

( 1) ( )
1

!

h

h

h

u
pu c

h p
pu
p h p

u p u
chh
h p h

p
p h

p
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�





�

� �
� �� �� �� �
� �
 �

�

�
�

�

K K I X

K X*     (ph=0,1,…c-1)   (B6) 

 

and then if eq. (43) is inserted into eq. (B6) eq. (47) in the main text is obtained. 
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Appendix C 

 
Derivation of eqs. (53) and (70) in the main text 

 

 Eq. (32) is obtained as a particular case of eq. (26) in paper I when there are u non-

null, simple eigenvalues of K and one null eigenvalue of K of multiplicity c.  But, if each  

minor , ( )k iD 	 has one null root and the less multiplicity of them is m, then eq. (32) becomes 

simplified. Effectively, reasoning in the same way as in Appendix A we have:  

 
0( )·( )

( )
adjL

D
	
	

�

 �

K I XX                      (C1) 

 

where ( )D 	 is given by eq. (5). If we take m	  factor commun in the minors , ( )k iD 	  we 

obtain: 
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eq. (C1) can be written as: 
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Eq.  (C3) can be expressed as the following sum: 
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By combining eqs. (C3) and (C4) one has: 
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and taking the Laplace inverse transformation in both sides of eq. (C5), eq. (52) in the main 

text is found. Finally, by comparing eqs. (53) and (32) eq. (70) results. 
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Appendix D 

 
Derivation of eq. (67) in the main text. 

 

 Eq. (66) can be written as:  
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In eq.(D1) the sum:  
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adopts the form:  
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       (u=1,2,3, …; r is an integer number)               (D3) 

 

where  r=1-u+q (q=0,1,2,…,u). In the following we will write rq instead of r to indicate that r 

depends on q, i.e.: 

 

rq=1-u+q           (D4) 

  

 There is a mathematical algorithm [39, 63, 64], which is summarized in Appendix A 

of ref. [65] (Ap66 in the following), which provides easily the sum indicated in (D2). We 

make here a little adaptation of the expressions in Ap66 consisting in replacing in them n by 
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u,  r by rq and v by q. Moreover, this algorithm allows us to express the sum in (D2) as a 

function of the coefficients F1, F2,…, Fu involved in polynomial ( )T 	 . The results of the 

sums depend on the relative values of u and rq and of whether rq is positive, negative or null.  

 

 If in eq. (D1) we replace the expression for the sum (D2) by that given in eq. (A1) in 

Ap66, one obtains:  
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 In turn, the expressions of the sums Q(u,rq) are given by eqs. (A2)-(A8) in Ap66 

mentioned by replacing in them n by u and r por rq and they depend on u and rq. In Table D1 

we show the values or expressions of Q(u,rq) corresponding to each of the different possible 

q-values (0,1,2,…,u).  

 

Table D1 
Values of  q (q=0,1,…u) in rq [obtained from eq. (D4)], and values or expressions of the corresponding 

quantities Q(u,rq) (obtained as describe in Ap66). On the second row of the table, in light grey shaded, the values 

of rq, -rq and Q(u,rq) corresponding to q = 0. On the row that follow are indicated in dark grey shaded these same 

values for those values of q for which rq is negative and  –rq <u-1. On the penultimate row, in white shaded, the 

above values for the q-value for which rq = 0. The rq, -rq and the expression of Q(u,rq) for the highest possible 

value q, i.e. u, are indicated on the last row. Note that, except for q =0 and q=u, it is fulfilled  Q(u,rq)=0. 

 

q rq - rq Q(u,rq) 

0 1-u u-1 (-1)u-1 

1 2-u u-2  0 

    

u-2 -1  1  0 

u-1 0 0 0 

u 1 -1 ( 1) /u
uF�  

 

 

If the results in Table D1 are taken into account in eq. (D5), eq. (67) in the main text results.  
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