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Abstract 
 A new, alternative, procedure for determining the kinetic behaviour of any linear 
compartmental systems with inputs zero, open or closed, with or without traps, is proposed. The 
equations for the time course of the amount of matter in the different compartments of the system have 
been derived without any restriction as regards the properties of the matrix of the corresponding set of 
linear differential equations or the multiplicities of its eigenvalues which circumvents some of the 
limitations of previous contributions. The equations obtained are general and can be applied to any 
engineering, chemical, biological, biochemical, pharmacological, physical and other systems that can 
be modelized as a linear compartmental system, irrespective of its complexity and/or structure. 
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 1. Introduction 
 

Linear multicompartmental models are applicable to many fields of the Chemistry, 

Biology, Biochemistry, Physics, Pharmacology and Engineering [1-29]. The kinetic studies of 

these models require to solve a set of differential equations, ordinary, linear, first order and 

with constant coefficients [2,3,8,9,12,30,31]. From the analytical solution and experimental 

data can be proposed kinetic data analyses and experimental designs for evaluation of the 

kinetic parameters involved in the linear compartmental system under study. From an 

operational point of view a linear multicompartmental model could be defined as any 

physical, chemical, engineering, pharmacological, etc. system whose kinetic behaviour, i.e., 

the instantaneous amount of matter in each of the compartments, can be described by a linear 

set of differential equations. In this contribution we will limit ourselves to consider the most 

frequent case in literature, i.e., that the system of differential equations is homogeneous [30, 

32-34]. 

 For simple linear compartmental systems, usually with two, three or four 

compartments, there are many contributions in the literature that provide the explicit 

expressions of the instantaneous amount of matter in the compartments [9,16,35,36]. 

However, to our knowledge, the analytical solutions for a general model of this type of 

system respond to the following two situations: 

(a)  The kinetic equations are not given in a general way since do not contain explicitly the 

transfer or excretion constants, and this requires a considerable additional mathematical 

work when these equations are applied to specific linear compartmental systems. 

Moreover, in their derivation it is generally assumed that all the eigenvalues of the matrix 

of the coefficients, K, are simple. In practice,  open compartmental systems without traps, 

whose matrix K is non-singular, are the most frequently studied because they are easier to 

analyze, apart of their intrinsic importance [7-9,13,18]. As regards closed compartmental 

systems, the matrix K of which always is singular, they have been  also studied [1,12,31], 

but in this case the null eigenvalue of K can have a multiplicity higher than the unity what 

complicates the obtaining of the corresponding analytical solution as it happens in some 

enzyme systems which can be modeled as linear compartmental systems [12,30,31]. 

Obviously, the assumption of no multiplicity of the eigenvalues of the matrix K greatly 

facilitates the derivation of the equations. But besides its theoretical interest, the existence 
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of multiple eigenvalues, although not very frequent, occurs in real systems depending on 

the structure of the compartment system and the relative values of the transfer and 

excretion constants involved. Thus, as above commented, some real closed 

compartmental systems have a null eigenvalue of multiplicity greater than the unity. It is 

also possible to find non null eigenvalues of multiplicity greater than the unity in certain 

compartmental systems and for certain values of the transfer constants (see, for example 

the case 2 of the example given below in this contribution). Segre [7] rejects the 

possibility of the existence of multiple eigenvalues in real systems, which obviously, is 

not always satisfied. 

(b) The equations are in an explicit general way showing the dependence of the instant 

amount of matter in the compartments on time, as well as their relationship with the 

fractional transfer or excretion (if any) coefficients and the initial quantities of matter in 

each compartment. These expressions, however, are limited to compartmental systems 

where the matrix K has two simplifying features: (1) each element of its main diagonal is 

non positive and equal, in absolute value, to the sum of the remaining elements of the 

same column,  that are non negative [2,30]; and (2) it is arbitrarily assumed that its non-

null eigenvalues are simple, and its null eigenvalue (that always exits, in these cases) 

being of any multiplicity [12,30,31]. However, there are systems, such as enzyme systems 

of zymogen activation, which under certain experimental conditions can be modelized as 

a linear systems of compartments, in which the condition (1) is not satisfied  [37-40]. 

Moreover, the multiplicity of one or more of the non-null eigenvalues, although unlikely 

in practice, can occur, and its consideration has the interest of increasing the generality of 

the results. 

 

To overcome the limitations outlined above, the purpose of this contribution is to 

propose a new procedure for determining the explicit kinetic equations amount of matter-time 

in the linear compartmental systems without any restriction with regard to the properties of 

the matrix of the set of differential equations and the multiplicities of its eigenvalues. 

Obviously, these equations contain, as particular cases, the compartmental linear systems in 

which one or both of the above conditions (1) and (2) are fulfilled, and those cases in which 

all eigenvalues or only the non-null one are simple, regardless of the other properties of the 
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system matrix. From these results, the equations for the various situations indicated are 

obtained in a companion contribution. 

 

 2. Notation/Definitions 
  

n: Number of the compartments of the system 

Xi (i=1,2,…,n): i-th compartment of the compartmental system 

t: time 

ix (i=1,2,…,n): Instantaneous amount of matter in the compartment Xi 

0
ix (i=1,2,…,n): Value of xi at t=0 

( )m
ix  (i=1,2,…,n; m=0,1,2,….): m-th time derivative of xi  ( (0)

i ix x
 ) 

X : n x 1 column vector the i-th element of which is xi 
0X : n x 1 column vector the i-th component of which is 0

ix  

( )mX : n x 1 column vector the i-th component of which is ( )m
ix  

K : a n-th order square, constant matrix 

i, jK (i,j=1,2,…,n; i j� ): Transfer constant from compartment Xi to the compartment Xj. It is 

always a non-negative quantity. It coincides also with the element of matrix K  on the j-th 

column and on the i-th row 

i,oK : Excretion constant (if any excretion) from compartment Xi to the environment. These 

excretion constants only can exist in open compartmental systems 

Ki,i (i=1,2,...,n): Minus the sum of all the transfer and excretion constants (if any) 
corresponding to matter leaving the compartment Xi to other compartments or to the 
environment.  Ki,i is always a non-positive quantity.  It coincides also with the element on the 
i-th row and on the i-th column in matrix K, i.e., the elements on the principal diagonal of K.  
In many of the linear compartmental systems, but not in all of them, it is fulfilled the 
following relationship between Ki,i and the transfer constants Ki,j and the excretion constant (if 
any) Ki,o:  
 

, ,
1

n

i,i i j i o
j
j i

K K K


�

� �
� �
 � �� �� �
� �
�   (i=1,2,...,n)                      (1) 
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Obviously, for a closed compartmental system eq. (1) becomes: 

,
1

n

i,i i j
j
j i

K K


�


 ��     (i=1,2,...,n)                                  (2) 

 
The analysis carried out in the present contribution is independent of whether eqs. (1) 

and (2) fulfill or not. The enzyme systems involving zymogen activation under certain 
conditions are examples of linear compartmental systems in which eq. (1) is not accomplished 
[38-52]. 
 

I : n-th order unit matrix 
mK : m-th power of K (m = 0,1,2,…; 0 
K I ) 

0,iB : 1 x n row matrix whose elements are all zero except the i-th one which is the unity 

,j iB : matrix define as: 

, 1,j i j i�
B B K  (j=1,2,…; i =1,2,…,n)                                                                                 (3) 

q: Number of different eigenvalues of matrix K  ( q n� ) 

h	 (h=1,2,…,q): an eigenvalue of matrix K  

hr  (h=1,2,…,q): multiplicity of h	  ( hr =1,2,…, n) 

hp : index that depend on h and take values from 0,1,2,…,rh-1 

1 2 1 1h hs r r r �
 � � ��� � �    (h=1,2,…,q; 1s =1)                                                                          (4) 

 

 Of course the notation h for the subindex in the notations above could be replaced by 

any other figure, such as j or other ones. 

 

, hh pA  (h=1,2,…,q; ph=1,2,…, 1hr � ): n x 1 column vector the elements of which are constant 

( )h tG (h=1,2,…,q): Matrix given by the sum: 

 

1

,
0

( )
h

h

h

h

r
p

h h p
p

htt t e	�




� �

 � �

� �
�G A        (h=1,2,…,q)            (5) 

 
( )( ) m

h tG : m-th time derivative of ( )h tG  [m=0,1,…; (0)( ) ( )h ht t
G G ] 

( )( ) (0)m
h tG : the matrix ( )( ) m

h tG  at  t = 0 
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� : n-th order determinant whose element on the i-th row and ( h hs p� )-th column 

(h=1,2,…,q; ph = 0,1,…, 1hr � ) is:  

 

 !
1

Element on the -th row and ( ) column

in the remaining cases

0 if 1
 = 1 if 1  0                                             6

( 1)( 2) ( 1)  
h h

h

h

h

h
i p
h

i s p

i p
i and p

i i i p 	 � �

�

� � "
�


 
�
� � � � �� hp((((

                        

             

Note that a more compact and convenient way to give eq. (6) is:  

 

 ! 11Element on the -th row and ( ) column = !h h
h

hh
i pi

p hi s p p 	 � ���                  (7) 

 

in which must be taken into account that  !1 0
h

i
p
� 
  if i-1 < ph.  As an example, if 1	 , 2	 and 3	  

are the eigenvalues of a 6-th order square matrix K , its multiplicities being 1r =3, 2r =1 y 3r =2, 

respectively, then: 

 

1 2 3

2 2 2
1 1 2 3 3

3 2 3 3 2
1 1 1 2 3 3

4 3 2 4 4 3
1 1 1 2 3 3

5 4 3 5 5 4
1 1 1 2 3 3

1 0 0 1 1 0

1 0 1

2 2 2

3 6 3

4 12 4

5 20 5

=

	 	 	

	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

�                    (8)

   

 

where the values of the combinatory numbers have been used. 

# : n-th order determinant whose element of the i-th row and ( h hs p� )-th column 

(h=1,2,…,q; ph = 0,1,…, 1hr � ) is: 

-482-



 

 ! 11Element on the -th row and ( ) column = h h
h

h

i pi
p hi s p 	 � ���                  (9) 

in which must be taken into account that  !1 0
h

i
p
� 
  if i-1 < ph.  As an example, if 1	 , 2	 and 3	  

are the eigenvalues of a 6-th order square matrix K , its multiplicities being 1r =3, 2r =1 y 3r =2, 

respectively, then: 

 

 !  !  !

 !  !  !  !  !

 !  !  !  !  !  !

 !  !  !  !  !  !

 !  !  !  !  !  !

 !  !  !  !  !  !

0 0 0
0 0 0

1 1 1 1 1
0 1 1 0 2 0 3 1

2 2 2 2 2 2 2 2 2
0 1 1 1 2 0 2 0 3 1 3

3 3 3 2 3 3 3 3 3 3 2
0 1 1 1 2 1 0 2 0 3 1 3

4 4 4 3 4 2 4 4 4 4 4 3
0 1 1 1 2 1 0 2 0 3 1 3

5 5 5 4 5 3 5 5 5 5 5 4
0 1 1 1 2 1 0 2 0 3 1 3

0 0 0

0

=

	 	 	

	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

#      (10) 

 

or, in this another way where the meaning of the combinatory numbers has been taken into 

account: 

1 2 3

2 2 2
1 1 2 3 3

3 2 3 3 2
1 1 1 2 3 3

4 3 2 4 4 3
1 1 1 2 3 3

5 4 3 5 5 4
1 1 1 2 3 3

1 0 0 1 1 0

1 0 1

2 1 2

3 3 3

4 6 4

5 10 5

=

	 	 	

	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

#        (11) 

 

-483-



h hs p��� : n-th order square matrix arising if in determinant � the  !hs p� -th column is 

replaced by the column of matrices: 

 

 2

1n�

I
K
K

K

                          (12)

  

Hence, for example, if in determinant � the third column (s1=1,  ph=2; sh+ph=3) is replaced by 

column (12), we have:  

 

1 2 3

2 2 2 2
1 1 2 3 3

3
3 2 3 3 3 2

1 1 2 3 3

4 3 4 4 4 3
1 1 2 3 3

5 4 5 5 5 4
1 1 2 3 3

1 0 1 1 0

1 1

2 2

3 3

4 4

5 5

=

	 	 	

	 	 	 	 	

	 	 	 	 	

	 	 	 	 	

	 	 	 	 	

�

I

K

K

K

K

K

                  (13) 

    

The matrices
h hs p���  are obtained by replacing in the corresponding determinant �  the 

column  !h hs p� -th by the column of matrices (12). Thus, the result of this action is a matrix 

given in the same form as that used for the determinants, but the expansion of this “apparent 

determinant” is really a n-th order square matrix (see example in Results and Discussion 

section). In the following, we will refer to these kinds of matrices as “matrix-determinant”, 

abbreviated MD.  
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h hs p�## : n-th order square matrix arising when in  in determinant  #  the )( h hs p� -th column is 

replaced by the column of matrices (12). For example, if in determinant #  the third column 

(s1=1;  ph=2; sh+ph=3) ) is replace by column (12), we have:  

 

1 2 3
2 2 2 2

1 1 2 3 3
3 3 2 3 3 3 2

1 1 2 3 3
4 3 4 4 4 3

1 1 2 3 3
5 4 5 5 5 4

1 1 2 3 3

1 0 1 1 0
1 1

2
3 3
4 4
5 5

=

	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	

I
K
K
K
K
K

#          (14) 

 

Note that matrices 
h hs p�## are MD matrices. 

 

3. Theory 

 The kinetic behaviour of a linear compartmental system with inputs zero can be 

described by the following homogeneous system of differential, ordinary, linear, first order 

and constant coefficients:  

 
(1) 
X KX              (15) 

 

 Integrating this system with the initial condition t = 0, 0
X X , the Laplace 

transformation method allows us to write: 

 

1

( )
q

h
h

t




 �X G              (16) 

 

where ( )h tG is given by eq. (4). 

 

 From eq. (15) and taking eq. (16) into account, it results: 
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( ) ( )

1

( )
q

m m
h

h
t





 �X  G         (m = 0,1,…; h = 1,2,…,q)        (17) 

 

The elements of the matrix K are constant, and we find by recurrence: 

 
( )m m
X K X              (18) 

 

and by combining eqs. (17) and (18): 

 

( )

1

( )
q

m m
h

h
t





 �K X  G    (m = 0,1,2,…)          (19) 

 

 On the other hand, elementary algebra gives: 

 

 ( )
, ,

0

( ) (0)
m

m m w
h m w h h w

w
t c 	 �





 �G A   (m=0,1,2,...)       (20) 

 

where: 

 

 !
,

!     if   -1
    

0            if   > -1      
h

m w

h

m
ww w r

c
w r

� ��
 �
��

          (21) 

 

If   -1hm r�  the number of terms on the right side of eq. (13) is m+1, and if 

 > -1hm r this number is  hr . 

 

 If in eq. (19) m takes the values 0,1..,n-1 and for each m value we set t=0, it is 

obtained, taking eq. (20) into account, a system of algebraic linear equations, the unknowns of 

which are the columns matrices , hh pA  (h =1,2,…, q; ph =1,2,…, 1hr � ). Using the Cramer's 

rule, the solution of this system is:  
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0

,
h h

h

s p
h p

�

�

X
A

�
    (h=1,2,…,q; ph=0,1,2,…, 1hr � )       (22) 

 

 If each of the sj+pj  (j=1,2,...,q; pj = 0,1,2,...,rj-1) columns in determinant #  is 

multiplied by the corresponding pj! , determinant # becomes determinant � , i.e.: 

 

1

1 0
!

j

j

jrq

j p
p

�


 


$ %� �
& '� �
& '� �� �& '� �( )

#� 
 � �            (23) 

  

 Hence, if each of the sj+pj  (j=1,2,...,q; pj = 0,1,2,...,rj-1) columns in this matrix 
h hs p�## is 

multiplied by the corresponding pj!, and the column )( h hs p� -th divided by ph!, matrix 

h hs p�##  becomes matrix 
h hs p��� , i.e.: 

 

1

1 0

1 !!
j

j

j

h h h h

rq

s p s p
j ph

pp

�

� �

 


$ %� �
& '� �
& '� �� �& '� �( )


 � �� #  (sh+ph =1,2,…,n)      (24) 

 

 Eqs. (23) and (24) allows us to write eq. (22) as: 

 
0

, !
h h

h

s p
h p

hp
�


#
X

A
#

     (h = 1,2,…,q; ph = 0,1,2,…, 1hr � )        (25) 

 

Eq. (25) allows us to calculate the matrices , hh p** .  

 By combining eqs. (16) and (5) it is obtained the following expression for the matrix X 

as a function of t, the matrices , hh pA given by eq. (25), the eigenvalues and the corresponding 

initial conditions given by the matrix 0X : 

 
1

,
1 0

h
h

h

h

rq
p

h p
h p

ht
t e	�


 


� �

 � �

� �
� �X A            (26) 
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 To assess the validity of the method it is necessary to prove that determinants type #  

are non-zero. In Appendix we prove that these determinants can be expressed as: 

 

 !
,

a b
q

r r
a b

a b
a b

	 	
+

# 
 ��         ( 1 if 1)q# 
 
                                  (27) 

 

and because a b� , and therefore a b	 	� , it follows 0# � . For example, the determinant of eq. 

(11), from eq. (27), and having into account that r1=3, r2=1, r3=2, is equal 

to  !  !  !3 6 2
2 1 3 1 3 2	 	 	 	 	 	� � � . 

 Eq. (26) provides the time variation of the amount of matter in each of the 

compartments of a linear compartmental system with inputs zero irrespective of the properties 

of the matrix K and the multiplicities of its eigenvalues. For example, in the case of a linear 

compartmental system whose determinant #  is by given  eq. (11), the application of eq. (26) 

leads to the following eq. (28):  

 

 !  !2
1,0 1,1 1,2 3 2,0 3,0 3,1

31 2 tt tt A t te e e		 	
 � � � � �X A A A A A A           (28) 

 

where the expressions of the amplitudes , hh pA  (h=1,2,3; p1=0,1,2; p2=0; p3=0,1) are obtained using eq. 

(25) with 1## , 2## ,…, 6##  being the resulting matrices when the first, second, sixth column in the 

determinant #  are replaced, respectively, by the column of matrices (12). For example, 1,2A  

(in this case s1=h=1 y ph=2) is given by: 

 
0

3
1,2 2


#
XA #

            (29) 

 

 

with the DM matrix 3##  and the determinant # given by eq. (14) and (11), respectively. 
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4. Results and Discussion 
 

We used the method of Laplace transform to obtain eq. (15), and from it, we have 

developed our own method to derive the general solution [eq. (26)].  

 

Because the differential equations solved here belong to an ordinary first order, 

homogeneous, linear, with constant coefficients, system, our procedure can be also applied to 

solve analytically all sets of differential equations as the above described, independently of 

whether they are associated or not with a linear compartmental system.  

 

 In those cases where the complete solution of the set of differential equations (8) is 

not required, but only the t-dependence of ix (the i-th element of matrix X; i=1,2,…,), the 

work can be simplified substituting in eq. (22) the square matrices I, K, K2,…, Kn-1 by the row 

matrices B0,i, B1,i, B2,i,…, Bn-1,i, respectively, and so we directly obtain the row element i-th of 

the column matrices , hh pA  

 

We want also to show that the method proposed here allows expressing te K  in an 

alternative form. Indeed, since a particular solution of eq. (8) can also be expressed [53] as: 

 

  0te
 KX X                                                                                                                            (30) 

 

The comparison between eqs. (26) and (30) allows us to write, taking into account eq. (19): 

 
1

1 0

1 1
!

h
h

h h
h

rq
p

s p
h p h

htt t
p

ee 	
�

�

 


� �

 � �

# � �
� �K #             (31) 

 
Eq. (31) provides an alternative and explicit development of te K as a function of time and 

of the eigenvalues of the matrix K. This general expression includes, as particular cases, other 

similar expressions which are only valid when all the eigenvalues are different (q=n,  ph=0, 

rh=1, sh = h and #  the n-order Vandermonde’s determinant whose 2nd row is 1	  2	 ··· n	 ) 

[8,54]. According to Anderson [8] it is preferable to compute exp(tK) by using eigenvalues 
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and functions of a matrix [54] rather than expand exp(tK) as an infinite series. On the other 

hand, a comparison of our results with the classical way of computing the matrix exponential 

by taking the inverse Laplace transform of the resolvent (sI - K)-1  shows: 1) for the case that 

all eigenvalues of K are simple, the calculation of the resolvent array (sI - K)-1 requires the 

same number of iterations that the method proposed by us; 2) If there is an eigenvalue with 

multiplicity greater than 1, the calculation of the resolvent matrix needs the same number of 

iterations but our method use less, because they are simultaneously managed; 3) In addition, 

resolvent matrix method also requires implementation of the inverse Laplace transform to 

move into the time domain, whereas our method directly gives the result in the variable t [55-

59]. 

 

4.1. Examples  
In this section we will apply the above results to the linear compartmental system 

shown in Scheme 1. This system is open and consists of four compartments, X1, X2, X3 and 

X4, with transfer constants Ki,j  (i=1,2,3,4; j =1,2,3; i j� ) between compartments Xi and Xj 

(i=1,2,3,4; j=1,2,3; i j� ) and excretion from compartment X4 with a excretion constant equal 

to K4,o. There is a zero input, 0
1x , in compartment X1 and the time course of the amount of 

matter in the different compartments is derived. This example corresponds to a simple linear 

compartmental system to no excessively increase the length of the paper. Nevertheless, the 

example allows illustrating the application of the method without loss of generality. 

Obviously, the method shows its full power when it is applied to more complex linear 

compartmental systems.  

 

 

 

Scheme 1 

 

X1

2,1K

1,2K
X2 2,3K X4 4,oK3,4KX3
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In this example n = 4 and the matrices 0X  y K are given by: 

 
0
1

0 0
0
0

x$ %
& '
& '
& '
& '
( )

X =              (32) 

 

and 

 

1,1 2,1

1,2 2,2

2,3 3,3

3,4 4,4

0 0
0 0

0 0
0 0

K K
K K

K K
K K

$ %
& '
& '
& '
& '
( )

K =                                                                                      (33) 

 

where 

 

K1,1=-K1,2              (34) 

 

K2,2=-(K2,1+K2,3)            (35) 

 

K3,3=-K3,4             (36) 

 

K4,4=-K4,o             (37) 

 

The eigenvalues of this matrix are: 

 

2
1,2 2,1 2,3 1,2 2,1 2,3 1,2 2,3

1

( ) ( ) 4
2

K K K K K K K K
	

� � � � � � �
=       (38) 

 

2
1,2 2,1 2,3 1,2 2,1 2,3 1,2 2,3

2

( ) ( ) 4
2

K K K K K K K K
	

� � � � � � �
=       (39) 
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3 3,4-K	 =              (40) 

 

4 4,- oK	 =              (41) 

 

Because 2
1,2 2,1 2,3 1,2 2,3( ) 4 0K K K K K� � � + , the eigenvalues 1	  and  2	  are simple, 

different, real and negatives and between them the two following relationships are fulfilled: 

 

1 2 1,2 2,1 2,3-( )K K K	 	 � �+ =            (42) 

   

1 2 1,2 2,3K K	 	 =             (43) 

 

 It is convenient to distinguish two different cases labeled as cases 1 and 2.  In case 1 

3,4 4,0K K� , while in case 2 K3,4 = K4,0.  

 

Case 1: 3,4 4,0K K�  

 

 In this case the four eigenvalues 1	 , 2	 , 3	  and 4	 are simple, i.e.:  

 

r1 = r2 = r3 = r4 = 1            (44) 

 

 so that from the definition of determinant #  we have: 

 

1 2 3 4
2 2 2 2

1 2 3 4
3 3 3 3

1 2 3 4

1 1 1 1
	 	 	 	
	 	 	 	
	 	 	 	

# 
            (45) 

 

Note that, in this case, determinant # is a Vandermonde’s determinant. This happens only if 

all the eigenvalues are simple. Applying eq. (27), or that one for any Vandermonde’s 

determinant, one obtains: 
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2 1 3 1 4 1 3 2 4 2 4 3( )( )( )( )( )( )	 	 	 	 	 	 	 	 	 	 	 	# 
 � � � � � �        (46) 

 

 

Moreover, according to general eq. (26), the solution of the set of differential equations is:  

 

1 2 1 1

1

2
1,0 2,0 3,0 4,0

3

4

t t t t

x
x

e e e e
x
x

	 	 	 	

$ %
& '
& ' � � �
& '
& '
( )

= A A A A          (47) 

 

where matrices Ah,0 (h=1,2,3,4) are obtained by applying general eq. (25) to this particular 

case: 

 

2 3 4 0
2 2 2 2

2 3 4
3 3 3 3

2 3 4
1,0

1 1 1
	 	 	
	 	 	
	 	 	



#

I
K

X
K
K

A           (48) 

 

 

1 3 4 0
2 2 2 2

1 3 4
3 3 3 3

1 3 4
2,0

1 1 1
	 	 	
	 	 	
	 	 	



#

I
K

X
K
K

A           (49) 

 

 

1 2 4 0
2 2 2 2

1 2 4
3 3 3 3

1 2 4
3,0

1 1 1
	 	 	
	 	 	
	 	 	



#

I
K

X
K
K

A           (50) 
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1 2 3 0
2 2 2 2

1 2 3
3 3 3 3

1 2 3
4,0

1 1 1
	 	 	
	 	 	
	 	 	



#

I
K

X
K
K

A           (51) 

 

In eqs. (48)-(52 ), 1	 , 2	 , 3	  and 4	  are given by eqs. (34)-(37), the matrices K and X0  by 

eqs. (33) and (32) and # by eq. (38). 

 The matrices MD in the numerator of eqs. (48)-(51) can be obtained applying to them 

the formalism for expansion of determinants, e.g. the MD in eq. (51) can be expressed, 

considering that it is formally a Vandermonde’s determinant as: 

 

1 2 3
2 1 3 1 3 2 1 2 32 2 2 2

1 2 3
3 3 3 3

1 2 3

1 1 1

( )( )( )( )( )( )
	 	 	

	 	 	 	 	 	 	 	 	
	 	 	
	 	 	

� � � � � �

I
K

= K I K I K I
K
K

     (52) 

 

The MD above could also been obtained expanding by the elements of the last 

column, i.e.: 

 

  

1 2 3 2 2 2 2 3

1 2 3 1 2 3 1 2 3 1 2 3 1 2 32 2 2 2

1 2 3 2 2 2 3 3 3 3 3 3 2 2 2

1 2 3 1 2 3 1 2 3 1 2 33 3 3 3

1 2 3

1 1 1
1 1 1 1 1 1 1 1 1 1 1 1

	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	

� � �

I

K
= - I K K K

K

K

 (53) 

 

Right side of eqs. (52)  and  (53)  lead  to the same  n-th  square matrix  that multiplied  by  

the n x 1  column vector X0 and then dividing the resulting n x 1 column vector by #  defined 

by eq. (46), provides the  n x 1 column vector A4,0 . Other possible ways to expand the MD in 

eqn. (52) are possible leading all of them to the same n x n square matrix.   

  

 The relationships (42) and (43) between 1	 and 2	 are useful to progress in the right 

side of eq. (51). 
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Case 2: 3,4 4,0K K
  

 

 Let be K3,4=K4,0=k. In this case the eigenvalues 1	 and 2	  are simple but 3	  = 4	 , i.e. 

the matrix K has three eigenvalues, 1	 and 2	 given by eqs. (34) and (35) with K3,4=K4,0=k, 

and another eigenvalue, 3	 , of multiplicity 2, given by: 

3 k	 
 �              (54) 

Therefore, in this case we have: 

r1= r2=  1             (55) 

r3= 2              (56) 

1 2 3
2 2 2

1 2 3 3
3 3 3 2

1 2 3 3

1 1 1 0
1

2
3

	 	 	
	 	 	 	
	 	 	 	

# 
            (57) 

 

Note that from eq. (26) #  adopts the form:   
2 2

2 1 3 1 3 2( )( ) ( )	 	 	 	 	 	# 
 � � �           (58) 

Moreover, according to general eq. (26), the solution of the set of differential equations is:  

 

31 2

1

2
1,0 2,0 3,0 3,1

3

4

( )tt t

x
x

e e e
x
x

		 	

$ %
& '
& ' � � �
& '
& '
( )

= A A A A          (59) 

 

where matrices Ah,0 (h=1,2,3) and A3,1  are obtained by applying general eq. (25) to this 

particular case: 

 

2 3 3 0
2 2 2 2

2 3 3
3 3 3 3

2 3 3
1,0

1 1 0

2
3

	 	 	
	 	 	
	 	 	



#

I
K

X
K
K

A           (60) 
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1 3 0
2 2 2

1 3 3
3 3 3 3

1 3 4
2,0

1 1 0
1

2
3

	 	
	 	 	
	 	 	



#

I
K

X
K
K

A           (61) 

1 2 0
2 2 2

1 2 3
3 3 3 2

1 2 3
3,0

1 1 0
1

2
3

	 	
	 	 	
	 	 	



#

I
K

X
K
K

A           (62) 

1 2 3 0
2 2 2 2

1 2 3
3 3 3 3

1 2 3
3,1

1 1 1
	 	 	
	 	 	
	 	 	



#

I
K

X
K
K

A            (63) 

In eqs. (60)-(63), 1	 , 2	  and  3	  are given by eqs. (38)-(39), the matrix K by eq. (33) where 

K3,4=K4,0 = k, X0 by eq. (32) and determinant # by eq. (58). The matrices MD in the numerator 

of eqs. (60)-(62) can be obtained by applying to them the formalism for expansion of 

determinants, e.g. the matrix MD in eq. (60) can be expressed,  by expanding it by the 

elements of the first column, as: 

2 3 3 2 2 2 2 3

2 3 2 3 3 3 2 3 3 3 2 3 3 2 32 2 2 2

2 3 3 2 2 2 3 3 2 3 3 2 2 2

2 3 3 2 3 3 2 3 3 2 3 33 3 3 3

2 3 3

1 1 0
1 1 1 1 1 0 1 1 0 1 1 0

2 2 1 1
2

3 3 3 2
3

	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	


 �

I

K
I - K + K K

K

K

 

                   (64) 

Right side of eq. (64) leads to a n-th order square matrix that multiplied by the n x 1 

column vector X0 and then dividing the resulting n x 1 column matrix by determinant #  

given by eq. (58), gives the n x 1 column vector A1,0.  

 One could think that the equations corresponding to case 2 can be obtained merely 

setting in the expressions corresponding to case 1 4 3	 	
 , K3,4 = k  and  K4,0= k. Proceeding 

in this way mathematical indeterminations arise which often are difficult and laborious to 

solve.   
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4.2. Final remarks 
In this contribution we obtain the equations that provide the instantaneous amount of 

matter in the compartments of a linear compartmental system with zero inputs. To our 

knowledge, the procedure proposed in this paper, which is regardless of the properties of the 

matrix K of the system (i.e. if it is invertible or not, diagonal dominant or not, etc.) and the 

multiplicity of its null or not null eigenvalues, has not been  previously described in the 

literature. The general eq. (26) has a wide applicability and can be directly applied to any 

open or closed compartmental linear system, with or without traps, simple or complex. 

However, for certain specific properties of the matrix K and the multiplicities of its 

eigenvalues, the general solution can be simplified, in some cases significantly. Simplification 

of eq. (26) when it is applied to certain linear systems of compartments that are found 

frequently in the analysis of dynamical systems will be the subject of the contribution II of 

this series.  
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Appendix   
 

Derivation of eq. (26) in the main text  

  

 Let  !1 1 2 2, ; , ;...; ,q qr r r	 	 	#  be the determinant #  defined in the notation section 

where there are r1 columns in which is involved 1	 , r2 columns in which is involved 2	 ,…,rq 

columns in which q	 is involved. In order to prove eq. (26) we proceed as follows:  

 

1) From the second row, we subtract from each row of the determinant 

 !1 1 2 2, ; , ;...; ,q qr r r	 	 	#  the preceding row multiplied by 1	 , with which vanish all the 

elements of the first column except the first one, which remains the unit. 

 

2) Next, we expand the resulting determinant using the elements of the first column and their 

corresponding cofactors and so it results a (n-1)-th order determinant, the r1-1 first columns of 

which coincide with the r1-1 first ones of the determinant  !1 1 2 2, ; , ;...; ,q qr r r	 	 	# , without, 

naturally, their last elements. 

 

3) We take out from each (sh-1)-th  (h=2,3,…,q) column of this new determinant the common 

factor 1h	 	�  and so we have: 

 !  !1 1 2 2 1
2

, ; , ;...; ,
q

q q h
h

r r r E	 	 	 	 	



# 
 ��         (A1) 

 

where E is (n-1)-th order determinant resulting in this step. 

 

4) Then we substract from each (sh-1 + ph) –th  (h=2, …, q, but if  rh = 1, then h must take the 

next possible value; ph=1,2, …,  rh-1) column of determinant  E  the preceding one and we 

make out from each new (sh-1 + ph)–th (h=2, …, q; ph=1,2, …,  rh-1) resulting column the 

factor 1h	 	� . Thus, it results: 

 !  ! 1
1 1 2 2 1

2

, 1; , ;...; , h
q

r
q q h

h

E r r r	 	 	 	 �





 # � ��      (A2) 
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and from eqs. (A1) and (A2) it is obtained: 

  !  !  !1 1 2 2 1 1 2 2 1
2

, ; , ,..., , , 1; , ;...; , h
q

r
q q q q h

h

r r r r r r	 	 	 	 	 	 	 	



# 
 # � ��      (A3) 

Obviously, if r1 = 1 then r1-1=0 what means that the column containing 1	 is missing and, 

therefore  !  !1 1 2 2 2 2, 1; , ;...; , , ;...; ,q q q qr r r r r	 	 	 	 	# � 
 # , i.e. eq. (A3) coincides with eq. (A5) 

below and one must go to step 6). The same is valid whenever any of the multiplicities rh 

(h=1,2,...,q) is equal to the unity. 

 

5) If we repeat the steps 1), 2), 3) and 4) with  !1 1 2 2, 1; , ,...; ,q qr r r	 	 	# � , we obtain: 

 !  !  !1 1 2 2 1 1 2 2 1
2

, 1; , ,..., , , 2; , ,..., , h
q

r
q q q q h

h
D r r r D r r r	 	 	 	 	 	 	 	




� 
 � ��     (A4) 

and so until a total of  r1 times, so that we have: 

 !  !  !
1

1 1 2 2 2 2 1
2

, ; , ,..., , , ;...,; , h

rq
r

q q q q h
h

r r r r r	 	 	 	 	 	 	



� ,
# 
 # �� -

� .
�      (A5) 

 

6) Dealing with determinant  !2 2, ;...; ,q qr r	 	#  in an identical way as with the initial 

determinant, and so, one obtains, finally:  

 !  !  !1 1 2 2
,

, ; , ,..., , , a b
q

r r
q q q q a b

a b
a b

r r r r	 	 	 	 	 	
+

# 
 # ��      (A6) 

Determinant  !,q qr	#  is inferior and triangular, being the elements of its main diagonal 

equal to the unity and, therefore: 

 

 !, 1q qr	# 
     (A7) 

 

If  eq. (A7) is taking into account in eq. (A6) the result is  eq. (17) in the main text.  
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