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Abstract

In the first part of this paper, we propose new optimization-based methods for
the computation of preferred (dense, sparse, reversible, detailed and complex bal-
anced) linearly conjugate reaction network structures with mass action dynamics.
The developed methods are extensions of previously published results on dynami-
cally equivalent reaction networks and are based on mixed-integer linear program-
ming. As related theoretical contributions we show that (i) dense linearly conjugate
networks define a unique super-structure for any positive diagonal state transfor-
mation if the set of chemical complexes is given, and (ii) the existence of linearly
conjugate detailed balanced and complex balanced networks do not depend on the
selection of equilibrium points. In the second part of the paper it is shown that
determining dynamically equivalent realizations to a network that is structurally
fixed but parametrically not can also be written and solved as a mixed-integer lin-
ear programming problem. Several examples illustrate the presented computation
methods.

1 Introduction

The mathematical study of chemical reaction networks is a rapidly growing field that

has been applied recently to research problems in industrial chemistry, systems biology,
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gene regulation, and general nonlinear systems theory, among others [10, 23, 33]. There

has also been significant theoretical work in the literature on such topics as persistence

[1–3,26,32], multistability [8,9,31], monotonicity [5,6], the global attractor conjecture for

complex balanced systems [1, 2, 7, 12], lumping [15, 28, 39, 40], and conjugacy of reaction

networks [11,25].

One line of research which has been attracting increased attention has been that of

determining when two reaction networks exhibit the same qualitative dynamics despite

disparate network structure. In [11] and [34], the authors complete the question of what

network structures can give rise to the same set of governing differential equations and

therefore exhibit identical dynamics. This work was extended in [25] to networks which

do not necessarily have the same set of differential equations but rather have trajectories

related by a non-trivial linear transformation. Similar ground has also been touched in

the papers [28] and [15] which deal with properties of linear lumpings, linear mappings

which potentially reduce the dimension of the species set.

In this paper we look at the problem of algorithmically determining when a network

is linearly conjugate to another network satisfying specified conditions. This problem

was first addressed in [35] where the author presents a mixed-integer linear programming

(MILP) algorithm capable of determining sparse and dense realizations, i.e. networks with

the fewest and greatest number of reactions capable of generating the given dynamics.

The algorithm was extended to complex and detailed balanced networks in [36], reversible

networks in [37], weakly reversible networks in [38], and linear conjugate networks in [27],

where a computationally more efficient procedure for determining weak reversibility was

also presented.

We will continue in this paper the development and application of this MILP frame-

work to linearly conjugate networks. In particular, we will give conditions which can be

used to find sparse and dense linearly conjugate networks which are detailed and complex

balanced, fully reversible, and which contain the greatest and fewest number of complexes.

We will also expand the original MILP algorithm for finding sparse and dense realizations

to find alternative realizations to a given reaction network when the network structure

is fixed but the parameter values are not. Since this algorithm works without having to

have the rate constants specified beforehand, this will allow us to answer questions about

the reaction mechanism itself.
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2 Background

In this section we present the terminology and notation relevant to chemical reaction

networks and the main results from the literature upon which we will be building.

2.1 Chemical Reaction Networks

We will consider the chemical species or reactants of a network to be given by the set

S = {X1, X2, . . . , Xn}. The combined elements on the left-hand and right-hand side of

a reaction are given by linear combinations of these species. These combined terms are

called complexes and will be denoted by the set C = {C1, C2, . . . , Cm} where

Ci =
n∑

j=1

αijXj, i = 1, . . . ,m

and the αij are nonnegative integers called the stoichiometric coefficients. We define the

reaction set to be R = {(Ci, Cj) | Ci reacts to form Cj} where the property (Ci, Cj) ∈ R
will more commonly be denoted Ci → Cj. To each (Ci, Cj) ∈ R we will associate a

positive rate constant k(i, j) > 0 and to each (Ci, Cj) �∈ R we will set k(i, j) = 0. The

triplet N = (S, C,R) will be called the chemical reaction network.

The above formulation naturally gives rise to a directed graph G(V,E) where the set

of vertices is given by V = C, the set of directed edges is given by E = R, and the rate

constants k(i, j) correspond to the weights of the edges from Ci to Cj. In the literature

this has been termed the reaction graph of the network [24]. Since complexes may be

involved in more than one reaction, as a product or a reactant, there is further graph

theory we may consider. A linkage class is a maximally connected set of complexes, that

is to say, two complexes are in the same linkage class if and only if there is a sequence

of reactions in the reaction graph (of either direction) which connects them. A reaction

network is called reversible if Ci → Cj for any Ci, Cj ∈ C implies Cj → Ci. A reaction

network is called weakly reversible if Ci → Cj for any Ci, Cj ∈ C implies there is ! some

sequence of complexes such that Ci = Cμ(1) → Cμ(2) → · · · → Cμ(l−1) → Cμ(l) = Cj.

A directed graph is called strongly connected if there exists a directed path from each

vertex to every other vertex. A strongly connected component of a directed graph is a

maximal set of vertices for which paths exists from each vertex in the set to every other

vertex in the set. For a weakly reversible network, the linkage classes clearly correspond

to the strongly connected components of the reaction graph.
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Assuming mass-action kinetics, the dynamics of the specie concentrations over time is

governed by the set of differential equations

dx

dt
= Y · Ak ·Ψ(x) (1)

where x = [x1 x2 · · · xn]
T is the vector of reactant concentrations. The stoichiometric

matrix Y contains entries [Y ]ij = αji and the Kirchhoff or kinetics matrix Ak is given by

[Ak]ij =

{ −∑m
l=1,l �=i k(i, l), if i = j

k(j, i) if i �= j.
(2)

When we speak of the structure of a kinetics matrix, we will be referring to the distribution

of positive and zero entries, which determines the network structure of the corresponding

reaction graph. Finally, the mass-action vector Ψ(x) is given by

Ψj(x) =
n∏

i=1

x
[Y ]ij
i , j = 1, . . . ,m. (3)

2.2 Linearly Conjugate Networks

Under the assumption of mass-action kinetics, it is possible for the trajectories of two

reaction networks N and N ′ to be related by a linear transformation and therefore share

many of the same qualitative features (e.g. number and stability of equilibria, persis-

tence/extinction of species, dimensions of invariant spaces, etc.). This phenomenon was

termed linear conjugacy in [25].

For completeness, we include the formal definition of linear conjugacy as presented

in [25]. We will let Φ(x0, t) denote the flow of (1) associated with N and Ψ(x0, t) denote

the flow of (1) associated with N ′.

Definition 2.1. We will say two chemical reaction networks N and N ′ are linearly

conjugate if there exists a linear function h : R
n
>0 �→ R

n
>0 such that h(Φ(x0, t)) =

Ψ(h(x0), t) for all x0 ∈ R
n
>0.

It is known that linear transformations h : Rn
>0 �→ R

n
>0 can consist of at most positive

scaling and reindexing of coordinates (Lemma 3.1, [25]). Linear conjugacy has been

subsequently studied from a computational point of view in [27].

Linear conjugacy is a generalization of the concept of dynamical equivalence whereby

two reaction networks with different topological network structure can generate the same

exact set of differential equations (1). Two dynamically equivalent networks N and N ′
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are said to be alternate realizations of the kinetics (1), although it is sometimes preferable

to say that N is an alternative realization of N ′ or vice-versa. Since the case of two

networks being realizations of the same kinetics is encompassed as a special case of linear

conjugacy taking the transformation to be the identity, we will focus on linearly conjugate

networks.

In general practice, we are given a network N and asked to determine its dynam-

ical behaviour. This is often a challenging problem; however, we may notice that the

network N behaves like one from a well-studied class of networks and therefore suspect

a relationship which preserves key qualitative aspects of the dynamics. The theory of

linear conjugacy can provide a powerful tool in analyzing such networks. If the network

can be shown to be linearly conjugate to a network N ′ from the class of networks with

understood dynamics, the dynamics of N ′ are transferred to N .

This raises the question of how to find a linearly conjugate network N ′ when only the

original network N is given. This was studied in [27] where the authors built upon the

linear programming algorithm introduced in [35]. We can impose that a network N ′ be

linearly conjugate to our given network N with the set of linear constraints

(LC)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Y · Ab = T−1 ·M
m∑
i=1

[Ab]ij = 0, j = 1, . . . ,m

[Ab]ij ≥ 0, i, j = 1, . . . ,m, i �= j
[Ab]ii ≤ 0, i = 1, . . . ,m
ε ≤ cj ≤ 1/ε, j = 1, . . . , n

(4)

where 0 < ε � 1, and the matrices M ∈ R
n×m and T ∈ R

n×n are given by:

M = Y · Ak, and (5)

T = diag {c} . (6)

The kinetics matrix for the network N ′ can by constructed from Ab ∈ R
m×m and

c ∈ R
n
>0 by the relation

A′
k = Ab · diag {Ψ(c)} . (7)

Finding a network satisfying (4) and then solving (7) is sufficient to determine a network

N ′ which is linearly conjugate to N via the transformation h(x) = T−1x.
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2.3 Sparse and Dense Linearly Conjugate Networks

In order to place the problem within a linear programming framework, we need to choose

an objective function to optimize. An appropriate choice of such a function is not obvious

and may vary depending on the intended application.

One particularly intuitive choice, which was introduced in [35] and has been widely

used since, is to search for networks N ′ with the fewest and greatest number of reactions

(sparse and dense networks, respectively). A sparse (respectively, dense) linearly conju-

gate network is given by a matrix A′
k satisfying (4) with the most (respectively, least)

off-diagonal entries which are zeroes. Since the structure of A′
k and Ab are the same,

a correspondence between the non-zero off-diagonal entries in A′
k and a positive integer

value can be made by considering the binary variables δij ∈ {0, 1} which will keep track

of whether a reaction is ‘on’ or ‘off’, i.e. we have

δij = 1 ⇐⇒ [Ab]ij > ε, i, j = 1, . . . ,m, i �= j

where 0 < ε � 1 is sufficiently small and can be chosen the same as in (4), and where

the symbol ‘⇐⇒’ denotes the logical relation ‘if and only if’. These proposition logic

constraints for the structure of a network can then be formulated as the following linear

mixed-integer constraints (see, for example, [30]):

(S)

⎧⎨
⎩

0 ≤ [Ab]ij − εδij, i, j = 1, . . . ,m, i �= j
0 ≤ −[Ab]ij + uijδij, i, j = 1, . . . ,m, i �= j
δij ∈ {0, 1} , i, j = 1, . . . ,m, i �= j,

(8)

where uij > 0 for i, j = 1, . . . ,m, i �= j, are appropriate upper bounds for the reaction

rate coefficients. The number of reactions present in the network corresponding to Ak is

then given by the sum of the δij’s so that the problem of determining a sparse network

corresponds to satisfying the objective function

(Sparse)

{
minimize

m∑
i,j=1,i �=j

δij (9)

over the constraint sets (4) and (8). Finding a dense network corresponds to maximizing

the same function, which can also be stated as a minimization problem as

(Dense)

{
minimize

m∑
i,j=1,i �=j

−δij. (10)

It is known that, for trivial linear conjugacies, the structure of the dense realization

contains the structure of all other trivial linear conjugacies as a subset (Theorem 3.1, [37]).

We now prove the comparable result for non-trivial linear conjugacies.
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Theorem 2.1. Let N be a chemical reaction network. Suppose that the reaction network

N ′ is linearly conjugate to N and dense. Suppose that N ′′ is also linearly conjugate to

N . Then the directed unweighted graph of N ′′ is a subset of the directed unweighted graph

of N ′.

Proof. Assume N ′ and N ′′ are linearly conjugate to N , N ′ is dense in the space of

networks which are linearly conjugate to N , and N ′′ contains a reaction not contained in

N ′.

Since both N ′ and N ′′ are linearly conjugate to N , we have by (4) that

Y · Ak = T ′ · Y · A′
b

and

Y · Ak = T ′′ · Y · A′′
b

where T ′ = diag {c′}, c′ ∈ R
n
>0 and A′

b correspond to N ′, c′′ ∈ R
n
>0 and T ′′ = diag {c′′}

and A′′
b correspond to N ′′.

Now consider T ′ · Y · A′′
b . We have

T ′ · Y · A′′
b = T ′ · (T ′′)−1 · T ′′ · Y · A′′

b = Q · Y · Ak

where Q = T ′ · (T ′′)−1. Consequently, we have

T ′ · Y · A′′
b + T ′ · Y · A′

b = (Q+ I) · Y · Ak. (11)

On the other hand, we have

T ′ · Y · A′′
b + T ′ · Y · A′

b = T ′ · Y · (A′′
b + A′

b) = T ′ · Y · A′′′
b (12)

where A′′′
b = A′

b + A′′
b . Combining (11) and (12) gives

Y · Ak = (Q+ I)−1 · T ′ · Y · A′′′
b = T ′′′ · Y · A′′′

b

where T ′′′ = (T ′ · (T ′′)−1 + I)−1 · T ′.

Since T ′, T ′′ and I are diagonal matrices with positive entries on the diagonal, so is T ′′′.

This means that the network N ′′′ corresponding to A′′′
b = A′

b +A′′
b is linearly conjugate to

N . We can readily see, however, that N ′′′ contains all of the reactions in both N ′ and N ′′.

If N ′′ contains a reaction not contained in N ′ then N ′′′ clearly has more reactions than

N ′ which contradicts the assumption that N ′ is dense in the space of networks which are

linearly conjugate to N . The result follows.
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The following result follows immediately.

Corollary 2.1. Let N be a chemical reaction network. Then the structure of the un-

weighted directly graph of the dense reaction network N ′ which is linearly conjugate to N
is unique.

Proof. This follows directly from Theorem 2.1.

3 Computational Extensions of Linearly Conjugate

Networks

In this section we will extend the optimization framework introduced in Section 2.3 to

include complex balanced, reversible and detailed balanced networks, and to search for

networks with the greatest and fewest number of complexes.

3.1 Weakly Reversible Networks

Weakly reversible networks are a particular important class of reaction networks because

strong properties are known about their dynamics and equilibrium concentrations. Under

a supplemental condition on the rate constants, weakly reversible networks are known

to have complex balanced equilibrium concentrations and therefore exhibit all of the

dynamical properties normally reserved for these networks [17, 22] (see Section 3.3 for

further discussion of complex balanced networks).

Consequently, they are a primary candidate for the type of network we would like to

find. The problem of determining if and when a chemical reaction network N is linearly

conjugate to a weakly reversible network N ′ was first considered in [38] and further refined

in [27]. For convenience, we briefly recall the constraints published in [27] that guarantee

the weak reversibility of the linearly conjugate network N ′:

(WR)

⎧⎪⎨
⎪⎩

m∑
i=1,i �=j

[Ãk]ij =
m∑

i=1,i �=j

[Ãk]ji, j = 1, . . . ,m

[Ãk]ij ≥ 0, i, j = 1, . . . ,m, i �= j

(13)

where Ãk is an auxiliary Kirchhoff matrix with the same structure as A′
k with appropriately

scaled columns such that its kernel contains the m-dimensional vector of all ones. In order

to guarantee that the matrix Ãk has the same structure as A′
k and Ab we also require that

(WR-S)

{
0 ≤ [Ãk]ij − εδij, i, j = 1, . . . ,m, i �= j

0 ≤ −[Ãk]ij + uijδij, i, j = 1, . . . ,m, i �= j.
(14)
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3.2 Reversible Networks

In [36], an algorithm was presented which was capable of determining reversible reaction

networks which are trivially linearly conjugate to a given reaction network. In this section,

we present a simplified methodology and apply it to non-trivial linear conjugacies.

We recall that a network is reversible if Ci → Cj for any Ci, Cj ∈ C implies Cj → Ci.
For the network N ′, this is equivalent to the condition

[A′
k]ij > ε ⇐⇒ [A′

k]ji > ε

for some sufficient small 0 < ε � 1. This is in turn equivalent to

δij = 1 ⇐⇒ δji = 1

where δij ∈ {0, 1}, i, j = 1, . . . ,m, i �= j, as in Section 2.3. It follows that we can restrict

our search space to reversible networks with the constraint set

(Rev)

{
δij − δji = 0,
i, j = 1, . . . ,m, i < j.

(15)

A sparse or dense reversible network which is linearly conjugate to N can be found by

optimizing (9) or (10), respectively, over the constraint sets (4), (8) and (15).

3.3 Complex Balanced Systems

A particularly important class of chemical reaction networks are the complex balanced

networks introduced in [24].

Definition 3.1. An equilibrium concentration x∗ ∈ R
n
>0 of the chemical reaction network

N is a complex balanced equilibrium concentration if

Ak ·Ψ(x∗) = 0. (16)

The network N is called complex balanced if every equilibrium concentration x∗ ∈ R
n
>0

is a complex balanced equilibrium concentration.

Many strong properties are known about complex balanced networks. In particular,

it is known that complex balanced networks permit exactly one positive equilibrium con-

centration in each invariant space of the network and that this equilibrium concentration

is locally asymptotically stable (Lemma 4C and Theorem 6A, [24]). Complex balanced
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systems are also known to be weakly reversible so that they are a subset of the weakly

reversible networks considered in Section 3.1 (Theorem 2B, [22]).

The following result shows complex balancing is a system property depending on the

structure and parameters of the network and not on the chosen equilibrium concentration.

Theorem 3.1 (Theorem 6A, [24]). If a chemical reaction network N is complex bal-

anced at an equilibrium concentration x∗ ∈ R
n
>0 then it is complex balanced at all of its

equilibrium concentrations.

It should be noted that the complex balancing of a network is still dependent on the choice

of rate constants. It is possible for a reaction network to be complex balanced for some

choices of rate constants and not for others.

In [36], an algorithm was presented which was capable of determining sparse and dense

complex balanced networks which are trivially linearly conjugate to a given network N .

This method required determining an equilibrium value x∗ ∈ R
n
>0 of the network N and

then imposing the condition

A′
k ·Ψ(x∗) = 0

on N ′ in accordance with (16). In this section, we extend these results to include non-

trivial linearly conjugate networks.

Suppose that N and N ′ are linearly conjugate via the transformation y = T−1x. In

order to guarantee the network N ′ is complex balanced, according to (16) we require that

A′
k ·Ψ(y∗) = 0. (17)

Since the equilibrium concentrations of N and N ′ are related by the transformation

y∗ = T−1x∗, we have that the left-hand side of (17) can be rewritten

A′
k ·Ψ(y∗) = A′

k ·Ψ(T−1x∗) = A′
k · diag {Ψ(c)}−1 ·Ψ(x∗) = Ab ·Ψ(x∗)

where we have made use of the form of the kinetics matrix of N ′ according to (7). The

condition for complex balancing of the linearly conjugate network N ′ is therefore

(CB)

⎧⎨
⎩

Ab ·Ψ(x∗) = 0
M ·Ψ(x∗) = 0
x∗ ∈ R

n
>0

(18)

where M is as in (5). A sparse or dense complex balanced network which is linearly

conjugate to N can be found by optimizing (9) or (10), respectively, over the constraint

sets (4), (8) and (18).
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It should be noted that the optimization algorithm is less computationally exhausting

than the corresponding algorithm for weak reversibility (13). This is because the matrix

Ãk required in the general weakly reversible case is not required in the complex balancing

condition; rather, it is sufficient to use the matrix Ab. Consequently, there are fewer

decision variables in the complex balancing algorithm. The pre-step that a x∗ ∈ R
n
>0 be

found satisfying Y ·Ak ·Ψ(x∗) = 0 may off-set this advantage, however, depending on the

difficulty in solving Y · Ak ·Ψ(x∗) = 0.

It is unclear how the outcome of the algorithm depends on the choice of equilibrium

concentration x∗ ∈ R
n
>0, which in general is not unique. The following result clarifies this

dependence.

Theorem 3.2. Suppose N is linearly conjugate to N ′ with transformation matrix T =

diag {c} where c ∈ R
n
>0 and suppose N ′ is complex balanced at y∗ = T−1x∗ where x∗ ∈ R

n
>0

and Y · Ak · Ψ(x∗) = 0. Then N ′ is complex balanced at ȳ∗ = T−1x̄∗ for all x̄∗ ∈ R
n
>0

satisfying Y · Ak ·Ψ(x̄∗) = 0.

Proof. Suppose trajectories of N ′ are related to trajectories of N by the relationship

y = T−1x where T = diag {c} and c ∈ R
n
>0.

Suppose that N ′ is complex balanced at y∗ = T−1x∗ where x∗ ∈ R
n
>0 is an equilibrium

concentration of N . It follows from Theorem 3.1 that

Y · A′
k ·Ψ(y) = 0 =⇒ A′

k ·Ψ(y) = 0. (19)

Now consider an arbitrary equilibrium concentration x̄∗ ∈ R
n
>0 of N . Since N and N ′

are linearly conjugate, it follows that Y · Ak = T · Y · A′
k · diag {Ψ(c)}−1. It follows that

we have

0 = Y · Ak ·Ψ(x̄∗) = T · Y · A′
k · diag {Ψ(c)}−1 ·Ψ(T ȳ∗)

= T · Y · A′
k ·Ψ(ȳ∗).

It follows by the structure of T that Y ·A′
k ·Ψ(ȳ∗) = 0. From (19) we have that A′

k ·Ψ(ȳ∗) =

0. In other words, N ′ is complex balanced at ȳ∗ and we are done.

This result shows that when imposing the complex balancing constraint (18) on N ′,

it does not matter which equilibrium concentration of N we choose. The feasible set of

solutions (i.e. admissible networks) is the same.
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3.4 Detailed Balanced Systems

In [36], the authors present an algorithm for determining detailed balanced networks which

are trivially linearly conjugate to a given network. In this section we extend this algorithm

to non-trivial linear conjugacies.

Definition 3.2. An equilibrium concentration x∗ ∈ R
n
>0 of the chemical reaction network

N is a detailed balanced equilibrium concentration if

[Ak]ijΨj(x
∗) = [Ak]jiΨi(x

∗), ∀ i, j = 1, . . . ,m, i �= j. (20)

The network N is called detailed balanced if every equilibrium concentration x∗ ∈ R
n
>0

is a detailed balanced equilibrium concentration.

In other words, an equilibrium concentration x∗ ∈ R
n
>0 is detailed balanced if the flow

across each reaction is balanced by the flow across an opposite reaction at x∗.

Suppose that N and N ′ are linearly conjugate via the transformation y = T−1x. In

order to guarantee the network N ′ is detailed balanced, according to (20) we require that

diag {Ψ(y∗)} · (A′
k)

T = A′
k · diag {Ψ(y∗)} . (21)

Since the equilibrium concentrations of N and N ′ are related by the transformation

y∗ = T−1x∗, we have that

A′
k · diag {Ψ(y∗)} = A′

k · diag {Ψ(c)}−1 · diag {Ψ(x∗)}
= Ab · diag {Ψ(x∗)}

where we have made use of the form of the kinetics matrix of N ′ according to (7). The

condition for detailed balancing of the linearly conjugate network N ′ is therefore

(DB)

⎧⎨
⎩

diag {Ψ(x∗)} · AT
b = Ab · diag {Ψ(x∗)}

M ·Ψ(x∗) = 0
x∗ ∈ R

n
>0

(22)

where M is as in (5). A sparse or dense detailed balanced network which is linearly

conjugate to N can be found by optimizing (9) or (10), respectively, over the constraint

sets (4), (8) and (22). Since the analogous result to Theorem 3.2 holds as a consequence of

detailed balanced systems being a subset of complex balanced networks, we do not prove

it here.
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3.5 Minimal and Maximal Number of Complexes

We can also adapt to non-trivial linear conjugacies the algorithm introduced in [36] for

determining a network with the fewest or greatest number of complexes from a fixed

complex set which is trivially linearly conjugate to a given network N .

In order to count the number of complexes in the network, we introduce the binary

variables δi ∈ {0, 1}, i, j = 1, . . . ,m, and consider the logical equations

δi = 1 ⇐⇒
m∑

j1=1

j1 �=i

[Ak]ij1 +
m∑

j2=1

j2 �=i

[Ak]j2i > 0 (23)

for i = 1, . . . ,m. In other words, δi takes on the value of one if and only if there is a

reaction to or from the complex Ci in the network; otherwise, it takes the value zero. For

computational purposes, we reconsider (23) as

δi = 1 ⇐⇒
m∑

j1=1

j1 �=i

[Ak]ij1 +
m∑

j2=1

j2 �=i

[Ak]j2i ≥ ε (24)

where 0 < ε � 1. The linear constraints required to substantiate (24) are

(Comp)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤
m∑

j1=1

j1 �=i

[Ak]ij1 +
m∑

j2=1

j2 �=i

[Ak]j2i − δiε

0 ≤ −
m∑

j1=1

j1 �=i

[Ak]ij1 −
m∑

j2=1

j2 �=i

[Ak]j2i

+

⎛
⎜⎜⎝

m∑
j1=1

j1 �=i

uij1 +
m∑

j2=1

j2 �=i

uj2i

⎞
⎟⎟⎠ δi

δi ∈ {0, 1} , i = 1, . . . ,m.

(25)

We can now determine a network with the fewest or greatest number of complexes by

optimizing the functions

(Min)

{
minimize

m∑
i=1

δi (26)

or

(Max)

{
minimize −

m∑
i=1

δi (27)

respectively over the constraint sets (4) and (25). Further constraints can be imposed to

restrict ourselves to specific classes of systems (e.g. complex balanced systems, reversible

networks, etc.) although care has to be taken to ensure the structural constraints are still

satisfied.
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3.6 Examples

In this section, we present a few examples which illustrate the methodologies outlined so

far.

Example 1: Consider the kinetic scheme

ẋ1 = x1x
2
2 − 2x2

1 + x1x
2
3

ẋ2 = −x2
1x

2
2 + x1x

2
3

ẋ3 = x2
1 − 3x1x

2
3

(28)

introduced in [27]. In that paper, it was shown that the kinetics could be generated by a

reaction network involving the complex set

C1 = X1 + 2X2, C2 = 2X1 + 2X2, C3 = 2X1 +X2,

C4 = 2X1, C5 = X1, C6 = 2X1 +X3, C7 = X1 + 2X3

C8 = 2X1 + 2X3, C9 = X1 +X2 + 2X3, C10 = X1 +X3

and that (28) has dynamics which is linearly conjugate to those generated by the sparse

weakly reversible network given in Figure 1(a) (conjugacy constants c1 = 20, c2 = 2, c3 =

5) and the dense weakly reversible network given in Figure 1(b) (conjugacy constants

c1 = 20/3, c2 = 20/33, c3 = 5/3).

X1+2X2 2X1+2X2

2X1X1+2X3

4

400

25

40

125

X1+2X2 2X1+2X2

2X1X1+2X3
2X1+X2

0.367

13.9
0.926 13.1

1.35
0.816

13.3 1.35

0.926

0.926

(a) (b)

X1+2X2 2X1+2X2

2X1X1+2X3
2X1+X2

0.367

13.9
0.926 12.5

1.35
2.01

13.3 1.35

0.926

0.926

(c)

Figure 1: Weakly reversible networks which are linearly conjugate to a network with the
kinetics (28). The network in (a) is sparse while the networks in (b) and (c) are dense.
The networks (a) and (c) are also complex balanced. (The parameter values in (b) and
(c) have been rounded to three significant figures.)

The network in Figure 1(a) is complex balanced as a consequence of it being a zero

deficiency weakly reversible network. It can be easily checked, however, that the network
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in Figure 1(b) is not complex balanced. We might wonder, therefore, what running the

algorithm for a dense complex balanced network which is linearly conjugate to a network

generating the kinetics (28) would produce.

Numerically, we can determine that an equilibrium concentration of (28) is

(x∗
1, x

∗
2, x

∗
3) = (0.2, 0.577350269, 0.258198889). Running GLPK for a sparse network (9)

over the constraints (4), (8) and (18) gives the network given in Figure 1(c) (conjugacy

constants c1 = 20/3, c2 = 20/33, c3 = 5/3). We notice that this network has the same

structure as the weakly reversible network in Figure 1(b) and, furthermore, only differs in

two rate constant values. It can be checked, however, that (c) is complex balanced while

(b) is not.

Example 2: Consider the kinetic scheme

ẋ1 = −2x1x2 + 2x3 + 2x6 ẋ4 = x3 − x4x5 + x6

ẋ2 = −x1x2 + 2x3 ẋ5 = −2x4x5 + 4x6

ẋ3 = 2x1x2 − 4x3 ẋ6 = x4x5 − 2x6.
(29)

Using the indexing scheme introduced in [20] and more recently applied in the papers [36]

and [27] we can construct a chemical reaction network capable of generating the dynamics

(29) under the assumption of mass-action kinetics (1) which involves the complexes

C1 = X1 +X2, C2 = X2, C3 = X3, C4 = X1 +X3,

C5 = X6, C6 = X1 +X6, C7 = X1, C8 = X2 +X3,

C9 = X1 +X2 +X3, C10 = ∅, C11 = X3 +X4

C12 = X4 +X5, C13 = X5, C14 = X6, C15 = X4 +X6,

C16 = X4, C17 = X5 +X6, C18 = X4 +X5 +X6.

It seems less than desirable, however, to consider a network of 18 complexes given the

simplistic dynamics (29). We might wonder if there is a network with fewer complexes.

Optimizing (26) over the constraint sets (4) and (25) gives the network

N ′ :
X2 +X3

1←− X1 +X2

1

�
2

X3
2−→ X4

X5
2←− X4 +X5

2

�
2

X6
2−→ X1 +X6

and the conjugacy constants c1 = 1, c2 = 2, c3 = 2, c4 = 1, c5 = 4, c6 = 2.

In terms of understanding the qualitative dynamics of 29), this network is not particu-

larly insightful. We might notice, however, that the net effect of all the reaction pathways

leading out from X3 is to create an X2 and an X4 at the expense of depleting X3. The
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complex X2+X4, however, has not been considered in the procedure. Similarly, the reac-

tion pathways leading out from X6 generate an X1 and an X5 but the complex X1 +X5

has not been included in the procedure. We might consider appending the procedure,

therefore, to include C19 = X2 + X4 and C20 = X1 + X5. Repeating the algorithm in

GLPK gives the network

N ′′ :
X1 +X2

1

�
2

X3
2−→ X2 +X4

X4 +X5

2

�
1

X6
1−→ X1 +X5

and the conjugacy constants c1 = 1, c2 = 1, c3 = 2, c4 = 1, c5 = 2, c6 = 1. This is easily

identified as the enzyme network

S1 + E � SE −→ S2 + E
S2 + F � PF −→ S1 + F

where an enzyme E facilitates the transfer of a substrate S1 into another substract S2 and

another enzyme F facilitates the transfer back. This network was considered extensively

in [3] and [4]. In particular, it was shown in [4] that for all rate constant values, the

network possesses within each invariant space a unique positive equilibrium concentration

which is globally asymptotically stable relative to that invariant space. It follows by the

properties of linearly conjugate reaction networks that (29) inherits the same qualitative

dynamics.

4 Structural Dynamical Equivalence

In this section we extend the computation procedure given in Section 3 for dynamical

equivalence to the case of networks N which are structurally fixed but have undetermined

parameters.

4.1 Dynamical Equivalence

The MILP framework outlined so far requires that the rate constants be specified for the

network N . Consequently, when we search for networks which are linearly conjugate to a

given network N , we are really asking if there are networks which are linearly conjugate

for a given choice of parameter values.

For networks where the dynamical behaviour is heavily dependent on the chosen rate

constants, however, it is possible that certain behaviours are being overlooked by poor
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rate constant selection. There are networks, for instance, which are known to be linearly

conjugate to weakly reversible networks or complex balanced networks for certain values

of the rate constants but not for others (see Examples 2 and 3 of [25]). In such cases, if the

rate constants are not carefully chosen, the algorithm may overlook these networks and

we would not realize that the mechanism shares characteristics with these other networks.

Therefore, we now change the problem setup by fixing only the structure of the initial

network N but not the parameter values. We will show that this problem class can also

be casted to the framework of MILP. This would remove the above mentioned limits of

using a fully specified initial network model.

The conditions for dynamical equivalence, keeping the entries of both Ak and A′
k

general, are

(DE)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Y · A′
k = Y · Ak

m∑
i=1

[A′
k]ij =

m∑
i=1

[Ak]ij = 0, j = 1, . . . ,m

[A′
k]ij ≥ 0, [Ak]ij ≥ 0, i, j = 1, . . . ,m, i �= j

[A′
k]ii ≤ 0, [Ak]ii ≤ 0, i = 1, . . . ,m

(30)

Note that in (30) both the off-diagonal entries of Ak and A′
k are now decision variables.

As in Section 2.3, we want to keep track of the structure of A′
k. The conditions

corresponding to (8) for the matrix A′
k are

(S2)

⎧⎨
⎩

0 ≤ [A′
k]ij − εδij, i, j = 1, . . . ,m, i �= j

0 ≤ −[A′
k]ij + uijδij, i, j = 1, . . . ,m, i �= j

δij ∈ {0, 1} , i, j = 1, . . . ,m, i �= j,
(31)

As before, the binary variables δij keep track of whether a reaction is in the network N ′

or not and thus are capable of counting the number of reactions in N ′.

We also, however, want to permit Ak to have a variable rate constant values within a

fixed network structure. In order to fix this network structure, we introduce the binary

variables γij ∈ {0, 1}, i, j = 1, . . . ,m, i �= j, and the logical equations

γij = 1 ⇐⇒ [Ak]ij > ε, i, j = 1, . . . ,m, i �= j (32)

for some 0 < ε � 1. In other words, the γij’s keep track of whether the reaction Cj → Ci is
in the networkN . The conditions required to allow the entries of Ak to vary independently

within this pre-defined structure are

(Ind)

{
0 ≤ [Ak]ij − εγij, i, j = 1, . . . ,m, i �= j
0 ≤ −[Ak]ij + uijγij, i, j = 1, . . . ,m, i �= j

(33)
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where

γij =

{
1, if (Cj, Ci) ∈ R
0, otherwise.

(34)

Further constraints can be implemented to search through subspaces of the parameter

spaces for alternative realizations. For instance, if we suspect the reaction rate for the

reaction Cj1 → Ci1 is slaved to that of Cj2 → Ci2 we can add [Ak]i1j1 = [Ak]i2j2 to the

procedure, etc.

The conditions (30), (31) and (33) can be combined with the structural conditions for

reversibility (15) and weak reversibility (13 and 14) and the objective functions (9) and

(10) to search over the parameter space of N for sparse and dense alternative realizations

N ′ which satisfy these further structural constraints.

4.2 Complex Balanced Realizations

It is also desirable to explore the parameter space of N for alternative realizations N ′

which are complex balanced. The linear constraints (22) and (18), however, cannot be

used in the parameter-independent case since the required equilibrium concentrations

x∗ ∈ R
n
>0 depend on the rate constants for N which are not specified.

We might expect, however, since all weakly reversible networks are complex balanced

for some choice of rate constants, that if a network N has a weakly reversible alternative

realization N ′ for some other choice of rate constants then it also has a complex bal-

anced alternative realization N ′′ for some choice of rate constants. That is to say, in the

parameter-independent optimization procedure weak reversibility is sufficient to demon-

strate complex balancing. The main result of this subsection guarantees this (Theorem

4.3).

First, however, we need the following results about weakly reversible networks.

Theorem 4.1 (Theorem 3.1, [19]; Proposition 4.1, [16]). Let Ak be a kinetics matrix

and let Λi, i = 1, . . . , �, denote the support of the ith linkage class. Then the reaction

graph corresponding to Ak is weakly reversible if and only if there is a basis of ker(Ak),{
b(1), . . . ,b(�)

}
, such that, for i = 1, . . . , �,

b(i) =

{
b
(i)
j > 0, j ∈ Λi

b
(i)
j = 0, j �∈ Λi.
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Theorem 4.2 (Theorem 1, [13]). Under the assumption of mass-action kinetics, weakly

reversible chemical reaction networks possess at least one positive equilibrium concentra-

tion within each positive invariant space of the system.

An immediate consequence of Theorem 4.1 is that a network is weakly reversible if

and only if there is a vector b ∈ R
n
>0 in the kernel of Ak. We will exploit this fact in the

next result.

Theorem 4.3. Suppose there is a choice of rate constants such that the network N is

dynamically equivalent to N ′ and N ′ is weakly reversible. Then there exists a choice of

rate constants such that the network N is dynamically equivalent to N ′′ where N ′′ is

complex balanced. Furthermore N ′′ can be selected to have the same structure as N ′.

Proof. Let Ak be the kinetics matrix associated with N and A′
k be the kinetics matrix

associated with N ′, and suppose that N ′ is weakly reversible. Let b ∈ R
n
>0 denote the

positive vector in ker(Ak) guaranteed to exist by Theorem 4.1 and x∗ ∈ R
n
>0 be any

positive equilibrium concentration of (1) guaranteed to exist by Theorem 4.2.

We now define a new network N ′′ with the associated kinetics matrix

A′′
k = A′

k · diag
{

b

Ψ(x∗)

}
(35)

where we define vector division to be componentwise division, i.e.

x/y = [x1/y1, x2/y2, . . . , xn/yn] for x,y ∈ R
n. Notice that all the terms in the definition

of A′′
k can be determined under the assumption that N ′ is weakly reversible. We have

that

A′′
k ·Ψ(x∗) = A′

k · b = 0

since b ∈ ker(A′
k) so that N ′′ is complex balanced at x∗ ∈ R

m
>0. Furthermore, we have

that

Y · A′′
k = Y · A′

k · diag
{

b

Ψ(x∗)

}
= Y · Ak · diag

{
b

Ψ(x∗)

}
.

It is clear that Ak· diag{b/Ψ(x∗)} has the same structure as Ak so that this corresponds

to different choice of rate constants for the network N . The result follows.

Note that, while we do not have linear constraints capable of determining complex

balanced networks explicitly, we can always construct a complex balanced network from a

weakly reversible or reversible network output by the optimization procedure. (Although

this may not hold if further restrictions on the parameter space of N have been imposed.)
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It is worth noting that the corresponding result for reversible and detailed balanced

networks does not follow in the same manner as the proof of Theorem 4.3. This is because,

for reversible networks with cycles, it is known that the detailed balancing condition entails

further conditions on the rate constants above and beyond complex balancing [14,18]. We

can still, however, construct a complex balanced realization from an arbitrary reversible

network according to Theorem 4.3. Since detailed balancing implies no further dynamical

information above and beyond complex balancing, for all practical purposes this is as far

as we need to go.

It is also worth noting that this algorithm cannot determine networks which are linear

conjugate to a given structurally-fixed network; it can only find dynamically equivalent

networks. This is clear since linear conjugacy requires that

Y · Ak = T · Y · Ab (36)

where T = diag {c} and c ∈ R
m
>0. Regardless of whether we consider the transformation

T on the left-hand-side or right-hand-side of (36), it produces a non-linear condition and

therefore cannot currently be placed within the existing MILP framework.

4.3 Examples

In this section, we introduce a few examples which illustrate how the algorithm for produc-

ing weakly reversible, reversible, and complex balanced realizations of a structurally-fixed

but parameter-variable network works.

Example 3: Consider the reaction network N given by

N : 2X1 +X2
α−→ 3X1

1

�
1

3X2
α←− X1 + 2X2

where α > 0. Despite the reversible step in the central reaction, N is neither fully nor

weakly reversible and therefore the dynamics do not fall within the scope of the theory of

such networks.

We want to check whether there are weakly or fully reversible networks which are

dynamically equivalent to N for some value of α. We set C1 = 2X1 + X2, C2 = 3X1,

C3 = 3X2, and C4 = X1 + 2X2. Searching for a sparse network (9) in GLPK over the

weakly reversible constraints (30), (31), (33), (13) and (14), with the additional constraints

[Ak]21 = [Ak]34 and [Ak]23 = [Ak]32 = 1 and the bounds ε = 1/20 and uij = 20 i, j =
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1, . . . 4, i �= j, gives the alternative realization

N ′ :
2X1 +X2

1/20−→ 3X1
3/2 ↑ ↓3/2

3X2
1/20←− X1 + 2X2

and α = 1/20 for the original network N . The network N ′ has the corresponding kinetics

matrix

A′
k =

⎡
⎢⎢⎣

− 1
20

0 3
2

0
1
20

−3
2

0 0
0 0 −3

2
1
20

0 3
2

0 − 1
20

⎤
⎥⎥⎦

and the positive equilibrium concentration (x∗
1, x

∗
2) = (1, 1). It can easily be checked that

N ′ is not complex balanced at this equilibrium concentration.

In order to construct a complex balanced network N ′′ with the same structure as N ′

by (35) we need to determine a vector b ∈ R
4
>0 such that b ∈ ker(A′

k). It can be easily

checked that the vector b = [3/2 1/20 1/20 3/2]T works; however, using this choice of

b produces a set of rate constants by

Ak · diag
{

b

Ψ(x∗)

}
which clearly violates the condition [Ak]23 = [Ak]32 = 1. This can be solved by choosing

another multiple of b. In fact, we can see that for the vector b = [30 1 1 30]T the

appropriate rate constant choices for N occur by choosing α = 3/2 and the corresponding

complex balanced realization given by (35) is

N ′′ :
2X1 +X2

3/2−→ 3X1
3/2 ↑ ↓ 3/2

3X2
3/2←− X1 + 2X2

(This corresponds to a scaling by 3/2 of the ‘block’ network given in [24]. From the

analysis presented in that paper, we know the network is complex balanced only for this

particular value of α.)

We may also be interested in fully reversible alternative realizations of N . Replacing

the constraints (13) and (14) in the above algorithm by (15) and running in GLPK gives

the network

N ′ : 2X1 +X2

1/20

�
3

3X1, X1 + 2X2

1/20

�
3

3X2

and α = 1/20 for the network N . The corresponding kinetics matrix is

A′
k =

⎡
⎢⎢⎣

− 1
20

3 0 0
1
20

−3 0 0
0 0 −3 1

20

0 0 3 − 1
20

⎤
⎥⎥⎦
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which has the positive equilibrium concentration (x∗
1, x

∗
2) = (1, 1) which is neither com-

plex nor detailed balanced. In order to find a complex balanced network with the same

structure as N ′ we notice that the kernel of A′
k is given by the span of [3 1/20 0 0]T

and [0 0 1/20 3]T . In order to preserve the property [Ak]23 = [Ak]32 = 1 for the network

N we need to choose b = [60 1 1 60]T . This gives the value of α = 3 for the network N
and the complex balanced realization

N ′′ : 2X1 +X2

3

�
3

3X1, X1 + 2X2

3

�
3

3X2.

It can easily be checked that N ′′ is also detailed balanced.

Example 4: Consider the reaction network N given by

N : 2X1
1−→ X1 +X2

1←− 2X2

and the reversible alternative realization N ′ given by

N ′ : 2X1

1/2

�
1/2

X1 +X2

1/2

�
3/4

2X2

1/8

�
1/4

2X1.

If we make the associations C1 = 2X1, C2 = X1+X2 and C3 = 2X2, then the network

N ′ has the corresponding kinetics matrix

A′
k =

⎡
⎣ −3

4
1
2

1
8

1
2

−1 3
4

1
4

1
2

−7
8

⎤
⎦ .

Choosing any equilibrium concentration x∗ ∈ R
2
>0 we have A′

k · Ψ(x∗) �= 0 so that the

network is not complex balanced.

We wish to construct a complex balanced realization N ′′ using the methodology out-

lined in the proof of Theorem 4.3. We choose the equilibrium value (x∗
1, x

∗
2) = (1, 1) so

that Ψ(x∗) = [1 1 1]T and the kernel vector b = [1 5/4 1]T . According to (35) we have

A′′
k =

⎡
⎣ −3

4
1
2

1
8

1
2

−1 3
4

1
4

1
2

−7
8

⎤
⎦
⎡
⎣ 1 0 0

0 5
4

0
0 0 1

⎤
⎦ =

⎡
⎣ −3

4
5
8

1
8

1
2

−5
4

3
4

1
4

5
8

−7
8

⎤
⎦ .

It can be easily checked that the corresponding network N ′′ is complex balanced and is

dynamically equivalent to N . (In general the rate constants of N may change; however,

in this case we have Ak· diag{b/Ψ(x∗)} = Ak.)

Despite being complex balanced and reversible, the realization N ′′ is not detailed

balanced according to (20). We might wonder if we can construct an alternative realization

in a similar manner as (35). We can easily see, however, that applying the detailed
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balancing conditions to Ak· diag{c}, where c ∈ R
3
>0 is arbitrary, produces the unsatisfiable

set of conditions

c1
2
x2
1 =

c2
2
x1x2,

c1
4
x2
1 =

c3
8
x2
2,

c2
2
x1x2 =

3c3
4
x2
2.

In other words, we cannot always construct a detailed balanced network from an arbi-

trary reversible network N ′ in the same constructive manner used for complex balanced

networks from weakly reversible networks.

5 Conclusions and Future Work

In this paper, new computational methods were presented for finding networks which

are linearly conjugate and dynamically equivalent to a given chemical reaction network

endowed with mass-action kinetics.

It was demonstrated that finding a dense or sparse reversible, detailed balanced and

complex balanced network which is linearly conjugate to a given network can be framed

as a MILP optimization problem. The case of determining conjugate networks which have

the greatest and fewest number of complexes was also extended to the case of non-trivial

linear conjugacies.

It was shown that, similarly to the case of dynamical equivalence [37], the graph

structure of linearly conjugate dense networks containing the maximal number of nonzero

reaction rate coefficients is unique, and that the unweighted directed reaction graph of

any linearly conjugate network is a proper subgraph of the unweighted directed reaction

graph of the dense one if the set of complexes is given. Moreover, it was proved that

arbitrary equilibrium points of the initial network can be used for the existence checking

and computation of linearly conjugate complex balanced and detailed balanced networks.

Additionally, the problem of dynamical equivalence was studied when only the struc-

ture of the initial network N is fixed, but its rate constants can take any positive value.

It was shown that in this case, the computation of dense and sparse weakly reversible and

reversible networks N ′ can also be formulated as a MILP problem. It was also shown that

complex balanced networks N ′′ with identical structure to N ′ can be constructed from

these realizations and corresponded to an alternative choice of rate constants for N . This

modification allows us to scan through a range of parameters as part of the procedure and

therefore answer questions about a network based on its structure alone. The operation of

the developed methods were illustrated on numerical examples. The achievements further
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extend the applicability range of many existing structure-dependent results of chemical

reaction network theory.

Further areas of research and open questions include:

1. The procedure introduced to determine structurally dynamically equivalence net-

works is as of yet unable to search through non-trivial linearly conjugate networks

in a linear manner. As such, many networks with potentially insightful information

about the dynamics of a given network are being overlooked. Incorporating non-

trivial linear conjugacy into a manageable optimization framework is therefore of

primary interest.

2. The results obtained so far depend on the reaction networks under consideration

having mass-action kinetics (1). Conjugacy and computational results for other

widely-used kinetic schemes (e.g. Michaelis-Menten kinetics [29], Hill kinetics [21])

would greatly expand the scope of applicability of these methods.

3. There are many classes of networks with known behaviour lying outside the scope

of weakly reversible network theory [4, 8, 9]. Determining constraints which could

restrict our search to within these classes of networks would broaden the scope of

dynamical behaviours (e.g. periodicity, oscillatory behaviour, multistability, etc.)

we could guarantee through this computational procedure.
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