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Abstract

It has been claimed that relational properties among chemical substances are
at the core of chemistry. Here we show that chemical elements and a wealth of
their trends can be found by the study of a relational property: the formation of
binary compounds. We say that two chemical elements A and B are similar if they
form binary compounds AC and BC, C being another chemical element. To allow
the richness of chemical combinations, we also included the different stoichiomet-
rical ratios for binary compounds. Hence, the more combinations with different
chemical elements, and with similar stoichiometry, the more similar two chemical
elements are. We studied 4,700 binary compounds by using network theory and
point set topology, we obtained well-known chemical families of elements, such as:
alkali metals, alkaline earth metals, halogens, lanthanides, actinides, some transi-
tion metal groups and chemical patterns like: singularity principle, knight’s move,
and secondary periodicity. The methodology applied here can be extended to the
study of ternary, quaternary and other compounds, as well as other chemical sets
where a relational property can be defined.

1 Mathematical approaches to the chemical elements

Chemical elements and their organization in the periodic table (PT) have been studied us-

ing different mathematical tools [1, 2] such as: information theory, order theory, quantum
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similarity, group theory, cluster analysis and most recently using a mixture between clus-

ter analysis and point set topology, called chemotopology. An example of the application

of information theory to the study of the PT is the one by Bonchev et al. [3], who argued

that the electronic and nuclear distribution of an atom is given by a principle of maximum

information content. Moreover, Klein et al. [4, 5, 6], using order theory, described the

chemical elements as a partially ordered set or “poset”, based on the increase or decrease

of properties as one moves in a row or column in the conventional PT. Kreinovich et al.

[7] also applied order theory, this time to the Madelung rule. Using quantum similarity

Carbó-Dorca et al. [8, 9] studied the resemblance of electronic density functions of a set of

20 atoms of different elements. Continuous and discrete groups have been used in chem-

istry, however, based on the idea that only continuous groups and more specifically Lie

groups are relevant to study the periodic system, Novaro [10], Kibler [11] and Ostrovsky

[12] developed several studies using those kinds of groups to try to reproduce some peri-

odic trends of the chemical elements. However, they exclusively used physical information

such as electronic configurations, ionization energies, etc., disregarding valuable chemical

information given by valence, chemical reactions, etc.

Other studies of chemical elements based upon their resemblances using more diverse

sets of properties are those of Zhou et al. [13] , Sneath [14] and Restrepo et al. [15,

16, 17, 18]. Zhou et al. studied 50 chemical elements (Z = 1 − 50) characterized by

seven properties; after classification using cluster analysis, they found families such as

halogens, transition metals, alkali metals and some others. Sneath [14] also used cluster

analysis and dealt with 69 chemical elements (Z = 1 − 83, omitting Z = 58 − 71) using

a set of 54 properties; among the clusters found there are fragments of chemical families

(groups on the periodic table) such as noble gases, chalcogens, halogens, alkali metals,

alkaline earth metals, transition metal groups, among others. Most recently, Restrepo et

al. studied a set of 72 chemical elements (Z = 1 − 86, omitting Z = 58 − 71 initially

using a set of 31 properties [15], later on enlarged to include 128 properties [19]. In

these studies they applied cluster analysis in combination with topology using a method

nowadays called chemotopology (details can be found in [20, 21]). Some of the results

of those chemotopological studies are the appearance of chemical groups as open sets of

a topology. Additionally, evidence of the singularity principle, diagonal relationship and

the inert pair effect [19] were found. Perhaps the most important result by Restrepo et al.
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is that the topological boundary of nonmetals is made from semimetallic elements. Some

of these works as well as others addressing the mathematical study of chemical elements

can be found in the book edited by Rouvray and King [22].

We think that a deeper understanding of periodicity in mathematical terms demands

greater emphasis on the choice of the property set used to characterize chemical elements.

In the present contribution we advance a topological study of the elements using a property

set that, we believe, lies closer to the core of the chemical approach to the study of matter.

2 An approach with chemical taste

Chemical properties may be characterized as those that arise from affinity and precursor-

product relationships established between substances by means of chemical reactions [23].

Chemical knowledge thus involves a vast network of chemical reactions, whose structure

determines chemical similarities, classes, and properties [23]. Yet the current vision,

interpretation, and learning of chemical periodicity are addressed mainly through physical

ideas and concepts, i.e. concepts that arise without explicitly considering the structure

of a chemical reaction network. The fact that a significant part of the periodic trends of

the chemical elements discovered by Mendeleev were initially found taking into account

similarity in chemical properties is often overlooked.

The works of Restrepo et al. [1, 15, 16, 17, 18, 19, 20, 21, 24] and Bernal [25] have

shown that the more chemical properties are included in the characterization of chemical

elements, the better agreement of clusters of chemical elements with chemical groups

depicted in the periodic table is obtained. This should not be a matter of surprise since

the inclusion of chemical properties should yield clusters with more chemical taste, i.e.

groups with chemical meaning. These findings motivate us to move further into the realm

of strictly chemical properties in the sense proposed by Schummer [23], to find out how

far can they advance the enterprise of designing a classification system of the elements

that recovers the trends found by Mendeleev.

In the current work we analyzed a small fraction of the network of chemical knowledge,

namely a network of chemical elements based upon their presence in binary compounds (of

the form AB, with A �= B). The mathematical tool used is network theory, which has had

several applications in social sciences [26], computer science [27], biochemistry [28, 29],

among many other areas [30, 31]. Estrada et al. [32] have published an attempt to study
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chemical elements from a network-theoretical viewpoint, that looked into some topological

properties of large-scale organization networks of minerals and chemical elements. The

authors found a good correlation between the frequency with which two elements appear

together and their abundance in some minerals. However, Estrada et al.’s interest in

applying network theory to the set of chemical elements was neither looking for similarities

between them nor making a classification of them based upon their trends in the formation

of compounds, which is our aim in the current paper.

The present approach combines methods from network analysis, particularly role

assignment techniques, with the chemotopological method designed by Restrepo et al.

[1, 15, 18, 33]. We first construct a network of chemical elements that accounts for the

affinity relations determined by the binary compounds they may form. Then, we define a

measure of structural similarity on the vertex set of this network, i.e. on the chemical ele-

ments themselves. This measure answers to the similarities in the neighborhoods of each

pair of vertices, which in turn relates to similarity in the composition of the binary com-

pounds that different elements form. Last, we apply the chemotopological methodology

using this measure of similarity, and analyze the topological properties of some subsets of

chemical elements.

3 Methodological foundations

3.1 Network analysis

Some important definitions of network analysis for the ensuing discussion are the following

[34]:

Definition 1 A graph G consists of a set V of vertices and a set E of pairs of vertices

called edges. Another customary notation for V and E is V (G) and E(G) with cardinali-

ties n and m, respectively. A graph H is a subgraph of a graph G if V (H) ⊂ V (G) and

E(H) ⊂ E(G).

Definition 2 Two vertices u, v ∈ V are called adjacent or “neighbors” iff (u, v) ∈ E.

The set formed by the neighbors of u is called the neighborhood of u and is denoted by

Nu. The degree of a vertex is the cardinality of its neighborhood. In this work we used

(u, v) to represent either an arc or and edge.

Thus, a network can be defined as follows [35]:
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Definition 3 A network consists of a graph G = (V,E) with additional information

either on the vertices or on the edges.

If we look at how vertices are linked to the rest of the network, it is possible to find

trends in these connectivities. In trying to formalize this, network theoreticians have

come up with the idea of equivalence among vertices. Hence, elements related in a similar

fashion, i.e. sharing the same neighbors, are considered as equivalent [36].

Definition 4 Let (V,E) be a graph and u, v ∈ V , we say that u and v are structurally

equivalent, and note it u ∼ v, iff Nu = Nv.

It has been proven that structural equivalence is an equivalence relation [37]. As is

known, an equivalence relation on a set induces a canonical partition over it. In the case

of structural equivalence, classes of this partition are known as positions.

Definition 5 Let (V,E) be a graph and u ∈ V . The set ū of all vertices structurally

equivalent to u is known as a position in (V,E).

Each of the positions, in sociology, represents what is known as a social role. Strictly

speaking, a role should be represented by a position in the network, but in practice it

is not common to find sets of vertices which are structurally equivalent. The reason is

that in practice one hardly finds a subset of vertices connected with exactly the same

neighbors. Thus, it is necessary to establish a measure quantifying how similar are two

vertices in structural terms. We discuss this later.

3.2 Chemotopology

Broadly speaking, chemotopology consists on the topological analysis of the results of

a classification. Such a classification may be performed using different methods and

techniques. We have used hierarchical cluster analysis in several studies; in the following

we summarize how to go from cluster analysis results to topology. Further information

can be found in reference [21].

Hierarchical cluster analysis is a classification technique based on a similarity measure

[38] between pairs of elements of a set X of interest and a grouping methodology [39, 40].

The final outcome of a cluster analysis study is a dendrogram, which can be defined as

follows:
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Definition 6 A dendrogram (also known as a full binary tree) on a set X is a graph

that represents the resemblances among the elements of the set; it is acyclic, connected,

and has the following classes of vertices:

1. vertices of degree 1 called leaves, which corresponds to the elements of X,

2. a single vertex of degree 2 called the root node, and

3. vertices of degree 3, called nodes.

Restrepo et al. in 2004 showed how to build topologies on a set X from a dendrogram

on the same set [15]. The methodology is based on the selection of certain kinds of

“branches”, particular subgraphs of the dendrogram, to build a topological basis, therefore

a topology. Some basic definitions of the method are the following [33]:

Definition 7 Let D be a dendrogram on X. A subgraph T of D is called a subtree if:

1. T does not contain the root node, and

2. there is a node p of D with a degree different from 1 such that T corresponds to one

of the connected graphs obtained by removing p from D.

Definition 8 A n-subtree is a subtree with n or fewer leaves.

Definition 9 A maximal n-subtree is a n-subtree for which it is not possible to find

another n-subtree containing it.

A full collection of maximal n-subtrees gives a viable partition in classes of equivalence

of the leave set of a dendrogram. In other words, it determines a classification of the

elements under scrutiny that is consistent with the input data. The central idea of the

chemotopological method is to use such a classification to induce a topology, so that

topological invariants related to neighborhood relations in the resulting topological space

may be used to describe similarity among the elements being classified.

Definition 10 Let X be any finite nonempty set and τ a collection of subsets of X, such

that:

1. X ∈ τ ,
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2. ∅ ∈ τ ,

3. For any Oi, Oj ∈ τ , Oi ∩Oj ∈ τ and

4. For any Oi, Oj ∈ τ , Oi ∪Oj ∈ τ .

Then τ is called a topology over X, (X, τ) is called a topological space and the

elements of τ are called open sets.

Definition 11 Let B be a collection of subsets of X, such that:

1. X =
⋃

B∈B B and

2. If B1, B2 ∈ B, then B1 ∩ B2 is the union of elements of B.

Then B is a topological basis for τ , where τ =
{⋃

B∈F B | F ⊆ B
}
.

Theorem 1 Let D be a dendrogram on X. Let Bn = {B ⊆ X |B is formed by the

leaves of a maximal n-subtree of D}. Then Bn is a basis for a topology on X.

According to theorem 1, (proven in [42]), by selecting different values of n for the max-

imal n-subtrees, we obtain topological basis, which may be different. Therefore, different

topologies may be obtained on the set X. For example, for n = 1 the corresponding basis

is made from single-element sets.

Recall that our goal is to unveil similarity and dissimilarity relations between chemical

elements. The more such relations we uncover, the better the topological model turns out

to be. Now, notice e.g. that if we choose n = 1 we obtain many clusters minimally

populated, indicating that all elements are dissimilar, and giving no similarity relations.

On the other hand, for n = |X| we obtain only one cluster highly populated, showing

that all elements have similar properties among them, but telling nothing about their

dissimilarities. Neither of this options looks very promising. Instead, we want a value

of n optimizing both the number of similarities and dissimilarities established, i.e. we

need to build a topological basis such that both its cardinality and the cardinality of its

elements are as high as possible. In consequence, the best value for n can be found by

maximizing the selection number Sn [24, 43]:

Sn = Cn

∏
i

|Cni| (1)
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where Cn is the number of clusters formed by a cut of the dendrogram in n-maximal

subtrees, and Cni is the i-th cluster in that cut.

As we can see, the value of Sn grows with both, an increase of the number of clusters

and an increase of its population, so by maximizing Sn we find the cut that gives the best

balance between cluster size and diversity.

Based on the n found, the topological basis Bn is built.

Through this methodology, similarity relations among the elements of a set X, that

were initially represented by a metric, are translated into the classificatory structure of a

dendrogram with leaves X, and then turned into neighborhood relations in the topological

space (X, τ) induced by Bn. In this way topology becomes a tool for speaking about

similarity; so that topological properties of subsets of X, that can be easily calculated

from Bn, now give an interesting description of similarity between its elements: some

topological properties of subsets of X.

Definition 12 Let A ⊂ X and x ∈ X; x is a closure point of A iff for all O ∈ τ , such

that x ∈ O, then we have O ∩ A �= ∅.

Definition 13 Let A ⊂ X; the closure of A, denoted by A, is defined as: A = {x ∈ X | x
is a closure point of A}.

The closure of a set A contains those elements of X ⊃ A which are similar to the

elements of A. In a recent publication Restrepo and Mesa [21] take the following case

to exemplify the meaning of this property: Suppose a set X collecting substances with

activity against either cutaneous or visceral leishmaniasis, now suppose we are interested

in those with activity against the cutaneous disease, they constitute the set A. Its closure

collects those chemicals which are similar to the ones active against cutaneous leishmani-

asis.

Definition 14 Let A ⊂ X and x ∈ X; x is an accumulation point of A iff for all

O ∈ τ , such that x ∈ O, then we have (O − {x}) ∩ A �= ∅.

Definition 15 Let A ⊂ X; the derived set of A, denoted by A′, is defined as: A′ =

{x ∈ X | x is an accumulation point of A}.

This set contains those elements x of X whose similarity to A ⊂ X is caused by their

similarity to elements of A different to x themselves. In other words, the derived set of A is
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made of those elements x of X which are similar to at least one element of A different to x.

Therefore, if an element x belongs to a subtree containing just x, and even if that subtree

is contained in A, x is not part of the derived set since x is not an accumulation point

i.e. x does not accumulate similarity to elements of A around it. Another interpretation

of the derived set is that it gathers those elements of X which are similar to elements of

A ⊂ X not because of their own similarity but because of the similarity of their neighbors.

The derived set may be regarded as an extreme version of the closure. In fact the derived

set is a subset of the closure, gathering all the elements of the closure except those whose

similarity is caused only by themselves and not by their similarity to at least one member of

the set under study. Taking the example of antileishmaniasis substances, if one calculates

the derived set of the active chemicals against cutaneous leishmaniasis, then one finally

has those substances of the database which actually accumulate similarity upon the active

chemicals against the cutaneous disease. With the derived set one eliminates chemicals

which are in the class of active substances against cutaneous leishmaniasis but are not

similar to any other chemical of the class i.e. do not accumulate similarity regarding other

substances of the class [21].

Definition 16 Let A ⊂ X; A is a perfect set iff A′ = A.

Definition 17 Let A ⊂ X and x ∈ X; x is a boundary point of A iff for all O ∈ τ ,

such that x ∈ O, then we have O ∩ A �= ∅ and O ∩ (X − A) �= ∅.

Definition 18 Let A ⊂ X; the boundary of A, denoted by b(A), is defined as: b(A) =

{x ∈ X | x is a boundary point of A}.

We have in this set those elements of X whose neighbourhoods have elements of A and

of the complement of A. This set gathers the elements of X whose properties are similar

to the ones of the elements in A and also similar to the rest of the elements in X. Taking

again the set of substances with activity against either cutaneous or visceral leishmaniasis,

the boundary of the chemicals acting against cutaneous leishmaniasis gathers those active

substances against both kinds of leishmaniasis [21].

Definition 19 Let A ⊂ X and x ∈ X; x is an interior point of A iff for all O ∈ τ ,

such that x ∈ O, then we have O ∩ (X − A) = ∅.
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Definition 20 Let A ⊂ X; the interior of A, denoted by Å, is defined as: Å = {x ∈
X | x is interior point of A}.

This is the set of elements of X whose neighbourhoods are embedded in A. In other

terms, it contains the elements of X whose properties are exclusively similar to the el-

ements of A. It can be thought of as the core of A, containing the most representative

elements of A. The meaning of this property is different to the one of closure because in

the closure similar elements to A are contained, also those which share some similarity

with some elements not belonging to A. Considering the example of antileishmaniasis

substances, the interior of those with activity against the cutaneous disease are those

chemicals which are only active against the cutaneous manisfestation with no activity at

all against visceral leishmaniasis [21].

Definition 21 Let A ⊂ X and x ∈ X; x is an exterior point of A iff for all O ∈ τ ,

such that x ∈ O, then we have O ∩ A = ∅.

Definition 22 Let A ⊂ X; the exterior of A, denoted by Ext(A), is defined as:

Ext(A) = {x ∈ X | x is exterior point of A}.

It contains the elements of X whose neighbourhoods do not contain elements of A i.e.

the elements of X which are completely different to the elements of A. The exterior of

the chemicals acting against cutaneous leishmaniasis are those which hold activity only

against visceral leishmaniasis. Note that those substances acting simultaneously against

both kinds of leishmaniasis are not part of the exterior in question [21].

4 From networks to topologies

The set of chemical elements and compounds can be formally studied by defining a rela-

tional property and using network theory [44, 45]. In this sense, we know that in chemistry

it is usual to classify substances according to their activity, i.e. how they interact with

each other [46]. For instance, in organic chemistry we talk about typical reactions of

alkanes, alcohols, carboxylic acids, esters, etc. [47]; i.e. we define families of compounds

which are related via chemical reactions with compounds of the same given families, and

are regarded as similar in that sense [23]. In the same way, here we consider a network

whose vertices are chemical elements, related by their mutual presence in a compound

[45]. For convenience, in this article we consider only the subset of binary compounds.
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Definition 23 Let X be a set of chemical elements and B a set of binary compounds.

Let E = {(x, y)|x, y ∈ X ∧ ∃ a compound xayb ∈ B with a, b ∈ R+}. We call G = (X,E)

the network of chemical elements derived from binary compounds.

Two chemical elements are adjacent in this network if they form a binary compound

xayb. The neighborhood of a chemical element consists of the set of elements with which

it forms a binary compound. Two chemical elements would thus be equivalent if their

corresponding vertices are structurally equivalent, that is, if they form binary compounds

with the same set of elements. In this way, G formalizes our idea of relating elements based

on the compounds they form. However, it misses the large diversity of binary compounds

a couple of elements may form. To take one example, let us consider H and B, which form

a large number of binary compounds called boranes; according to our formalization they

would be represented in our network by a single edge (H,B). A single edge would also

be the result of considering H and F i.e. (H,F), two chemical elements forming, as far as

reported in the literature, only one binary compound, i.e. HF. Hence, the formalization

here discussed misses the variety of binary compounds with different stoichiometries. As

a consequence, in the previous example H would be seen as as common element of the

neighborhoods of B and F, determining a similarity between these two elements regarding

their behavior in chemical combination. And though this is not an entirely wrong take on

the matter, it ignores the important chemical idea that valences of the elements present

in a chemical combination are just as important as the presence of the combined elements

in the compound.

It is thus important to modify the original model of definition 23 in order to include

stoichiometrical coefficients of the compounds, aiming at the ultimate goal of re-defining

the neighborhoods of chemical elements in such a way that, for each element v, its neigh-

borhood includes information both regarding the elements with which v combines, and

regarding the proportion in which they combine. We achieve this goal in two steps: first,

we define a new network Gs of ‘stoichiometrical chemical elements’, whose vertices are

identified with pairs (x, q), where x is a chemical element and q is the proportion with

which it occurs in a binary compound. Edges are introduced joining stoichiometrical ele-

ments whenever the corresponding chemical elements occur in a binary compound in the

corresponding proportions. Then, on a second step we define the ‘chemical neighborhood’

of an element v as the union of the graph-theoretical neighborhoods (i.e. as defined in

definition 2) in Gs of all stoichiometrical chemical elements of the form (v, q). In this way,

each stoichiometrical element (x, q) in the chemical neighborhood of a chemical element
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v gives both an element x with which v combines, and the proportion q with which they

combine.

Definition 24 Let X be a set of chemical elements and B a set of binary compounds

involving elements in X. We call Xs = {(x, a
b
), (y, b

a
)|xayb ∈ B} the set of stoichiomet-

rical chemical elements. To simplify the notation, we define xa
b
= (x, a

b
). We call

Es = {(xa
b
, y b

a
)|xayb ∈ B} the set of edges of stoichiometrical chemical elements

and Gs = (Xs, Es) the network of stoichiometrical chemical elements.

This enriched chemical network allows us to take stoichiometry into account. However,

since we are interested in knowing similarities among chemical elements rather than among

stoichiometrical chemical elements, we must now define the ‘chemical’ neighborhood of

an element by reference to the graph-theoretical neighborhoods in Gs of its corresponding

stoichimetrical elements.

Definition 25 Let X be a set of chemical elements, B a set of binary compounds involv-

ing elements in X, and Gs the corresponding network of stoichiometrical elements. We

define the chemical neighborhood of x ∈ X to be the set Cx = ∪a,bNxa
b
.

Let us summarize what we have done so far. Following the basic formalism of network

analysis, the basic criterion of equivalence between chemical elements would be given by

structural equivalence in the network of chemical elements G (definition 23), that is, two

chemical elements u, v ∈ X are equivalent if their neighborhoods Nu, Nv in G are identical.

However, the highly relevant stoichiometrical factor is being ignored in this construction.

In order to take stoichiometry into account we introduced the network of stoichiomet-

rical elements Gs (definition 24). This network could be seen as a ‘refinement’ of G,

that expands each chemical element in X into a collection of stoichiometrical chemical

elements, each corresponding to a different proportion with which the chemical element

may combine in a binary compound. Last, by defining the chemical neighborhoods of the

chemical elements as the union of the neighborhoods in Gs of its associated stoichiometri-

cal elements, we are ultimately performing the same refinement over the graph-theoretical

neighborhoods in G of the chemical elements, thus including stoichiometrical data into the

primary descriptors of the chemical behavior of the elements. Identity on this chemical

neighborhoods, then, becomes our new criterion of equivalence for chemical elements:

u � v iff Cu = Cv.
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However, as we noted above, structural equivalence is a very restrictive criterion. It is

highly unlikely that two chemical elements would have exactly the same neighborhoods

according to the previous definition. Since our aim is to look for similarities among chem-

ical elements and to gain some helpful flexibility, we replace the above defined criterion of

equivalence by a measure of similarity. Clearly, this measure of similarity should also be

defined with respecto to the chemical neighborhoods of definition 25, and to be consistent

maximum similarity must imply equivalence. This means that we must assess the degree

of similarity of two chemical elements by contrasting their neighborhoods, in such a way

that the less different neighbors two elements have, the more similar the elements are. In

mathematical terms:

Definition 26 Let X be a set of chemical elements, and u, v ∈ X. The difference

δ(u, v) between u, v ∈ X is equal to the cardinality of the symmetric difference between

their chemical neighborhoods Cu, Cv respectively, denoted by |Cu  Cv|, where Cu  Cv =

(Cu − Cv) ∪ (Cv − Cu).

Hence, |Cu  Cv| counts the number of non-common stoichiometrical chemical ele-

ments of the neighborhoods of u and v. It is proven and widely known that the cardinal

of the symmetric difference is a metric (see e.g. [48]). Thus, we may use the above defined

difference as the metric required to apply the chemotopological method to the network

of chemical elements: we run a non-hierarchical clustering algorithm on a set of chemical

elements X using the metric function δ(u, v) to obtain a dendrogram; then we use the

selection number to choose a cut of the dendrogram; and last we use that dendrogram

cut as a basis for a topology on X. In this way, we build a topological representation

of the network of chemical elements that allows us to analyze the similarities among the

elements determined by a relational property, i.e. by their presence in binary compounds.

4.1 Data set and results

We gathered 4,700 binary compounds from references [49, 50, 51]. Highly unstable com-

pounds found in the sources such as free radicals (e.g. CH, CH2, and CH3) were excluded

from the data set. Taking into account that our methodology groups elements according

to their structural equivalence in the network, then noble gases would be equivalent to

some heavy metals for which binary compounds have not been reported in the litera-

ture (actually only He, Ne, Ar do not have reported compounds, Kr and Xe form some

halides). That is why in this study we included only chemical elements for which one or

more binary compounds have been reported. Hence, when we refer to a chemical family,
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we consider it as formed only by the elements belonging to it and additionally forming

at least one binary compound. The set X of 94 chemical elements for which at least one

binary compound has been reported is shown in definition 27, also the distribution of

binary compounds per element is depicted in Figure 1:

Definition 27 Let

X =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H, Li, Be, B, C, N, O, F, Na, Mg, Al, Si,
P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co,
Ni, Cu, Zn, Ga, Ge, As, Se, Br, Kr, Rb, Sr, Y,
Zr, Nb, Mo, Tc, Ru, Rh, Pd, Pt, Cd, In, Sn, Sb,
Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu,
Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re,
Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Po, At, Ra, Ac,

Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

be the set of chemical elements for which at least one binary compound has been re-

ported in the literature.

Figure 1 shows the plot of the number of binary compounds formed by each element

(which is proportional to its frequency of occurrence in the data set), with elements

ordered by increasing atomic number. We can see the following trends in this plot:

• Due to their inert nature, noble gases (crosses) appear as some of the lowest points

of the histogram, if we take them as the end of a period, like in the periodic table,

we can see trends for some chemical families as described below.

• Alkali metals (circles) appear in the first peaks starting each period, except the first

one.

• Following alkali metals (increasing atomic number), in a lower position are the

alkaline earth metals (squares).

• As expected, halogens (diamonds) are located on the highest peaks in the histogram

due to its high presence in binary compounds.

• Before halogens, in a lower position, are the chalcogens (hexagons).

• If we look at the elements of the second period, we see a different behavior from the

other periods, this can be regarded as an evidence of the singularity principle.

In summary, the previous observations show that oscillations between maximum and

minimum frequency in the histogram of Figure 1 follow the trends of chemical periodicity.
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Figure 1: Number of binary compounds (frequency) in which chemical elements (ordered
by atomic number) are present.
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Figure 2: Dendrogram of chemical elements using the cardinality of the symmetric differ-
ence as metric and the average union as grouping methodology.

Going ahead with the methodology proposed, we used the difference of definition 26

as a metric and average union as a grouping methodology to built the dendrogram shown

in Figure 2. To select an optimal cut in n-subtrees, we used the selection number and

then generated the corresponding topological basis Bn. The value of n maximizing S was

n = 4; therefore we built B4. Thus, for the dendrogram shown in Figure 2 we have that

-432-



B4 is:

B4 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{Ge, Sn,Pb}, {Zr,Hf,Th,U}, {Ga, In,Al,Tl}, {Am,Cf}, {As, Sb}, {Ac}, {La},
{Au}, {Ag,Cu}, {Ru,Os,Pt}, {Mo,W}, {Co,Fe,Ni,Pd}, {Ce}, {Cd,Zn,Hg}
{Ta,Nb,V}, {Tc,Re,Pa,Np}, {Rb,Cs,K}, {Na,Li}, {Ca,Mg}, {Ba, Sr,Be}
{Mn}, {Er,Ho,Lu,Gd}, {Pm,Dy,Tm,Nd}, {Eu,Yb, Sm}, {Bi}, {Y, Sc},
{Cm,Bk,Es}, {Tb,Pr}, {Si}, {Ra,Kr,Xe,At}, {Ir,Rh}, {Se,Te}, {Pu},

{Po}, {Ti}, {Cr}, {Cl,Br, I,F}, {N}, {P}, {C}, {B}, {H}, {S}, {O}

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2)

We can see clusters whose elements belong to well known families in chemistry such

as alkali metals, alkaline earth metals and halogens. We see also fragments of groups such

as {Al,Ga, In,Tl}, {Ge, Sn,Pb}, {Sc,Y}, {Mo,W}, {Ir,Rh} and {Cu,Ag}; some families

of transition metals like {V,Nb,Ta}, and {Zn,Cd,Hg}. As columns on the periodic

table (groups) are customarily regarded as depicting similar elements, we calculated the

number of clusters found by our procedure, matching with columns (or parts of them)

of the periodic table. We considered the open sets of the topological basis and found 18

single clusters (with only one element), 10 clusters with two elements, eight with three

elements and eight with four elements. Out of these, we took those with more than one

element for carrying out the analysis. Thus, 26 clusters might match with columns of the

periodic table. We found that 15 of them (58%) are columns or parts of them, while 11

(42%) are not (Figure 3). However, other authors [52, 53, 54, 55, 56] have pointed out

some other resemblances among chemical elements not matching with the columns of the

periodic table. Some instances of those resemblances are the singularity principle (the

chemistry of the second period elements often differs from that of the later members of

their respective groups) [52], the diagonal relationships (there are similarities in chemical

properties between an element and that at the lower right of it in the periodic table) [52],

the inert pair effect (in some groups, the elements following the fifth and sixth periods

exhibit oxidation states two values below the maximum of their respective groups) [52],

the knight’s move (there are similarities between an element of group n and period m with

the element in group n+2 and period m+1 in the same oxidation state) [53, 54], and the

secondary periodicity (there are similarities between the properties of the corresponding

elements belonging to period m and those belonging to period m+ 2) [55].

Of these similarity patterns we found instances of the singularity principle, as can be

seen on the respective single clusters: B, C, N, and O. This result indicates that no other

element forms binary compounds with those B, C, N, and O do and with the stoichiometry

they do. Laing [53] has discussed the knight’s move relationship, which has been notorious

for Zn-Sn, Cd-Pb, and Ag-Tl. Although we did not find those similarities, we did found
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others which fulfill knight’s move definition; they are: Ru-Pt and Fe-Pd. Instances of

the secondary periodicity we found are the resemblances between Xe-Rn, Kr-At, Tc-Pa,

Tc-Np, Zr-Th, and Zr-U.

Perhaps the most interesting result of a non-vertical, in fact horizontal, similarity on

the periodic table is that of the lanthanides. All of them are similar to at least another

lanthanide, except by La and Ce, which appear in unitary clusters. For the case of

actinides, we found two self similarities: the clusters {Cm,Bk,Es} and {Am,Cf}. It is

worth noting that all the other actinides, except Ac and Pu are similar to some transition

metals, as Rayner-Canham has pointed out based upon experimental facts [54]. These

similarities are part of the already discussed secondary periodicity.

It is also interesting to note the similarities {Fe,Co,N,Pd}, {Ru,Os,Pt}, and {Rh, Ir}.
Besides the first two sets being instances of the knight’s move, they constitute the group

VIII, in the old IUPAC group numbering or VIIIB in the CAS numbering. But above

all, the VIII group of Mendeleev’s periodic table [56]. The similarities among these nine

elements was what led Mendeleev to group them together.

Figure 3: Open sets of the topological basis (similarity classes).

We can contrast the above results with those of Zhou et al., some clusters founds were:

{Cl,Br}, {Zn,Cd}, {Li,Na,K,Rb}, {Mg,Ca}, {Ar,Kr,Ne,He} and {Cu,Ag}, which

highlights some fragments of families such as alkali metals and noble gases. On the other

hand, some results obtained by Sneath were: {He,Ne,Ar,Kr,Xe}, {Cr,Mn,Fe,Co,Ni},
{Cl,Br}, {Cu,Ag,Au}, {Li,Na,K,Rb,Cs}, and {Mg,Ca, Sr,Ba} which show fragments

belonging to the alkali metals, noble gases and unlike the work by Zhou et al., alkaline

earth metals and clusters of transition metals {Cu,Ag,Au}. In the study by Restrepo et.
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al., unlike the studies of Zhou et al. and Sneath, they went further and developed the

methodology to provide the set of study with a topology. In that study they obtained

fragments of chemical families such as alkali metals, alkaline earth metals, noble gases

and unlike the work by Zhou et al. and Sneath, fragments of families such as: pnictogens,

chalcogens, halogens and relationships as the singularity principle, the inert pair effect

and the diagonal effect. When contrasting Zhoe et al., Sneath and Restrepo et al. works

with the current one, it is found that, in the current work there are more resemblances

matching those depicted in the groups of the periodic table than in the previous works

mentioned. The current results are specially interesting for transition metals, where the

number of similarities found for these elements matched to a big extent those found in the

periodic table (groups or columns). Due to the enlarged set of chemicals considered in this

study, bigger than the sets studied by Zhou et al., Sneath and Restrepo et al., we could,

for the first time using cluster analysis and in general chemotopology, analyze lanthanides

and actinides, which turned out to be similar among themselves and not depicting the

typical vertical similarity (group) on the periodic table.

In the following we describe the topological properties found for different families of

chemical elements.

Topological properties of halogens (H) and other perfect sets

Let H = {F,Cl,Br, I}.

• Closure:

H = {F,Cl,Br, I}

• Interior:

H̊ = {F,Cl,Br, I}

• Exterior:

Ext(H) = X −H = Hc

• Boundary:

b(H) = ∅

• Derived set:

H ′ = {F,Cl,Br, I}

In this case H ′ = H, which indicates that halogens form a perfect set according to

definition 16. The same topological property is found for the following chemical sets:

alkaline metals, alkaline earth metals, lanthanides, V group, Cr group, VIII group (old

IUPAC numbering), Cu group, Zn group, B group, C group, pnictogens, and chalcogens,

as well as {B,C,N,O}, among others. In topological terms, this means that, for any

x ∈ H (or in any other perfect set), each point adherent to {x} is included in H. In

chemical terms, this means that the set of halogens (or any other perfect set) includes
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Figure 4: Topological properties of the halogens

every element that is ‘comparably similar’ to some element of the set. In this way, perfect

sets are ‘closed’ (in the strict topological sense) and ‘separated’ from the rest of the space

of chemical elements, so they may be regarded as robust chemical families.

This is quite clear for the case of halogens, which are all similar among themselves

regarding their behavior when conforming binary compounds: each halogen combines

with the same set of other elements in a similar ratio. This kind of combination is not

shared with any other element out of the halogens, so that they clearly conform a robust

family. But this fact only applies for perfect sets B that are also basic open sets, as that

implies that no proper subset of B is perfect. Consider, on the other hand, the set of

halogens and alkaline metals, which is also perfect. In this case, we have a perfect set

conformed by two radically different families of elements. Yet it is also reasonable to

regard it as a robust chemical family, as there is no ‘comparably similar’ element in its

complement. For instance, if we were to remove any element (e.g. fluorine) from this set,

it would no longer be a perfect set.

The set S = {B,C,N,O}, besides being a robust family, is interesting because any

subset of S is also a perfect set. In other words, regardless of whether we take the

whole set, or {B,C}, or {C, S,O}, or whatever subset of S we may please, no elements

‘comparably similar’ to those of the set being considered are left out. This means that

elements in S are exceptionally separated from the rest of the elements, not by properties

they share, but by characteristic properties that distinguish each individual element in

the set. In other words, this set comprises ‘singularities’ of the space of chemical elements.

Thus, here we have a topological image of the singularity principle.
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But, besides robust families there are some other chemical sets of interest. In the

following we show their topological properties:

Topological properties of metalloids (M)

Let M = {B, Si,Ge,As, Sb,Te,Po}.

• Closure:

M =

{
B, Si,Ge,As, Sb,
Te,Po, Sn,Pb, Se

}

• Interior:

M̊ = {B, Si,As, Sb,Po}

• Exterior:

Ext(M) = X −M

• Boundary:

b(M) = {Ge, Sn,Pb, Se,Te}

• Derived set:

M ′ = {Sn,Pb,As, Sb, Se}

Figure 5: Topological properties of metalloids.

It turns out that the closure ofM is the set formed by the elements ofM ∪ {Sn,Pb, Se},
which indicates that metalloids relate each other in a similar fashion to metals Sn, Pb and

non-metal Se. Although metalloids, as a set, are similar to some metals and non-metals, it

is possible to find representatives of metalloids, which are those belonging to the interior,

i.e. B, Si, As, Sb, and Po. Those elements having the particularity of combining in the

way metalloids do and also combining similarly as non-metalloids are Ge, Sn, Pb, Se, and

Te, which are metalloids’ boundary.
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Topological properties of actinides (AC)

Let AC = {Pu,Am,Cm,Bk,Cf,Es,Ac,Th,Pa,U,Np}
• Closure:

AC =

{
Pu,Am,Cm,Bk,Cf,Es,Ac,
Th,Pa,U,Np,Zr,Hf,Tc,Re

}

• Interior:
ÅC =

{
Ac,Pu,Am,Cm,Bk,Cf,Es

}
• Exterior:

Ext(AC) = X −AC = (AC)c

• Boundary:
b(AC) =

{
Th,Pa,Np,Zr,Hf,Tc,Re,U

}
• Derived set:

AC ′ =
{

Pu,Am,Cm,Bk,Cf,Es,Th,
Pa,Np,Zr,Hf,Tc,Re

}

Figure 6: Topological properties of actinides.

The topological properties of actinides show the existence of chemical elements not

belonging to the actinides but combining in a similar way with other elements as actinides

do, they are Zr, Hf, Tc, and Re.

5 Conclusions

Previous similarity studies of chemical elements have shown that groups of chemical el-

ements (on the periodic table) are clusters of similar elements. These similarities have

been found through the characterization of chemical elements by their chemical, physical

and physicochemical properties. Some studies combine all these properties, some others

focus on some of them. All in all, the conclusion regarding a group as a set of similar

elements remains, independently of the kind of properties discussed in use. In the cur-

rent manuscript we did not use neither physical nor physicochemical properties, we ran
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a study based only upon a relational property: two chemical elements are related if they

are found on a binary compound. This property, according to Schummer, is a chemical

property. The results show that chemical groups can be found with this unique property

and the idea of a group as a set of similar elements remains. What is worth nothing is

the chemical taste we gave to the similarity; we went from physical and physicochemical

similarity (of previous works by our group) to chemical similarity. With this study it is

possible to claim that two chemical elements are similar if they combine with other (same)

elements forming binary compounds with similar stoichiometries. This kind of similar-

ity on chemical combination grounds was in fact one of the key properties Mendeleev

considered when finding chemical periodicity.

Besides finding groups and fragments of groups of the periodic table, we also found

instances of the singularity principle, the knight’s move and of the secondary periodicity.

In topological terms, we found that a wealth of groups of the periodic table constitute

robust families, here defined as perfect sets, which means that the elements belonging to

a chemical family have only similar properties to themselves, and different from those pre-

sented by elements belonging to another family. We found that the topological boundary

of semimetallic elements contains, on the one hand, some metals and, on the other, some

nonmetals.

From the mathematical viewpoint we linked network theory with chemotopology by

proving that the set of positions of a network is a topological basis. This result opens the

field of network theory to further chemotopological analyzes.

6 Acknowledgements

The authors thank to Excmo. Dr. Eugenio J. Llanos (Corporación Scio, Colombia), José
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