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Abstract: Enumeration of chemical compounds has been accomplished by 
various methods. The Polya-Redfield theorem has been a standard method for 
combinatorial enumerations of graphs, polyhedra, chemical compounds, and so 
forth. Heterofullerenes are fullerene molecules in which one or more carbon 
atoms are replaced by heteroatoms such as boron or nitrogen. In this paper by 
using the Pólya's theorem, we compute the number of permutational isomers of 
some fullerene graphs.   
 

1. Introduction 
A mathematician, namely Artur Cayley has been studied the combinatorial 

enumeration of rooted trees as models. Pólya's theorem has been widely applied to 

chemical combinatorics to enumerate objects. In this paper we will show how Pólya 

theory can be used in counting objects, which is often the design basis for statistical 

tests. In other words, Pólya theory determines the number of distinct equivalence 

classes of objects. It can also give counts for specific types of patterns within 

equivalence classes.  

A graph is a collection of points and lines connecting them. The points and 

lines of a graph are also called vertices and edges respectively. If e is an edge of G, 

connecting the vertices u and v, then we write e = uv and say "u and v are adjacent". A 

connected graph is a graph such that there exists a path between all pairs of vertices. A 

molecular graph is a simple graph such that its vertices correspond to the atoms and 

the edges to the bonds. Note that hydrogen atoms are often omitted.  

The fullerene era was started in 1985 with the discovery of a stable C60 cluster 

and its interpretation as a cage structure with the familiar shape of a soccer ball, by 
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Kroto and his co-authors.1 The well-known fullerene, the C60 molecule, is a closed-

cage carbon molecule with three-coordinate carbon atoms tiling the spherical or 

nearly spherical surface with a truncated icosahedral structure formed by 20 

hexagonal and 12 pentagonal rings.2 Let p, h, n and m be the number of pentagons, 

hexagons, carbon atoms and bonds between them, in a given fullerene F. Since each 

atom lies in exactly 3 faces and each edge lies in 2 faces, the number of atoms is n = 

(5p+6h)/3, the number of edges is m = (5p+6h)/2 = 3/2n and the number of faces is f = 

p + h. By the Euler’s formula n − m + f = 2, one can deduce that (5p+6h)/3 – 

(5p+6h)/2 + p + h = 2, and therefore p = 12, v = 2h + 20 and e = 3h + 30. This implies 

that such molecules made up entirely of n carbon atoms and having 12 pentagonal and 

(n/2 � 10) hexagonal faces, where n � 22 is a natural number equal or greater than 20, 

see Figure 1. Heterofullerenes are fullerene molecules in which one or more carbon 

atoms are replaced by heteroatoms such as boron or nitrogen, whose formation is a 

kind of “on-ball” doping of the fullerene cage, see Figure 2. 

 
Figure 1. 3 –D graph of fullerene C20. 

 
Figure 2. 3 –D graph of heterofullerene C16Br4. 
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Balasubramanian3-9 has done a lot of work on methods for isomer counting of 

heterofullerenes and of poly-substituted fullerenes, especially, using the generalized 

character cycle index. Mathematically the isomer counting of poly-substituted 

fullerene is essentially the same as that of heterofullerene. Shao and Jiang10 discussed 

hydrogenated C60. Furthermore, Zhang11 also studied the fullerene cages. In [12 – 20] 

Ghorbani et al. computed the number of permutational isomers of some classes of 

heterofullerenes.  
Detecting symmetry of molecules is a well-studied problem with applications 

in a large number of areas. Randić21, 22 and then Balasubramanian considered the 

Euclidean matrix of a chemical graph to find its symmetry. Here, the Euclidean matrix 

of a molecular graph G is a matrix D(G) = [dij], where for i � j, dij is the Euclidean 

distance between the nuclei i and j. In this matrix dii can be taken as zero if all the 

nuclei are equivalent. Otherwise, one may introduce different weights for different 

nuclei.  
Suppose � is a permutation on n atoms of the molecule under consideration. 

Then, the permutation matrix P� is defines as P� = [xij], where xij = 1 if i = �(j) and 0 

otherwise. It is easy to see that P�P� = P��, for any two permutations � and � on n 

objects, and so the set of all n � n permutation matrices is a group isomorphic to the 

symmetric group Sn on n symbols. It is a well-known fact that a permutation � of the 

vertices of a graph G belongs to its automorphism group if it satisfies P�
tAP� = A, 

where A is the adjacency matrix of G. So, for computing the symmetry of a molecule, 

it is sufficient to solve the matrix equation PtEP = E, where E is the Euclidean matrix 

of the molecule under consideration and P varies on the set of all permutation matrices 

with the same dimension as E.  
Symmetry plays an central role in the analysis of the structure, bonding, and 

spectroscopy of molecules. Chemists classify molecules according to their symmetry. 

The collection of symmetry elements present in a molecule forms a group, typically 

called a point group. Since all the symmetry elements (points, lines, and planes) will 

intersect at a single point, so we name it as point group. The symmetry properties of 

objects (and molecules) may be described in terms of the presence of certain symmetry 

elements and their associated symmetry operations. Symmetry elements are properties 

which are related to the structure of the molecule. They include mirror planes, axes of 

rotation, centers of inversion and improper axes of rotation (An improper axis of 
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rotation is a rotation followed by a reflection perpendicular to the rotational axis). 

Symmetry operations are actions which places the molecule in an orientation which 

appears to be identical to its initial orientation. They include rotation, reflection, 

inversion, rotation followed by reflection, and identity. The identity operation simply 

leaves the molecule where it is. All molecules have the identity operation. Certain 

physical properties of molecules are clearly linked to molecular symmetry. Molecules 

which are symmetrically bonded to the same elements will not be polar, due to the 

canceling dipole moments. Likewise, chirality (left or right handedness) is clearly a 

symmetry property. Chirality can only be present in molecules which lack an improper 

axis or rotation. Molecules with a center of inversion or a mirror plane cannot be 

chiral. The symmetry properties of molecules are tabulated on character tables. A 

character table lists the symmetry elements of the point group, along with characters 

which are consistent with the different symmetry operations of the group. The table 

characterizes how various atomic properties (the symmetry of atomic orbitals, 

rotations about axes, etc) are transformed by the symmetry operations of the group. 
 

2. Main Results and Discussion 
 

Groups are often used to describe symmetries of objects. This is formalized by 

the notion of a group action. Let G be a group and X a nonempty set. An action of G 

on X is denoted by GX and X is called a G-set. It induces a group homomorphism � 

from G into the symmetric group SX on X, where �(g)x = gx for all x � X. The orbit of 

x will be denoted by Gx and defines as the set of all �(g)x, g � G. The set of all G-

orbits will be denoted by G\\X : = { Gx | x � X}. Suppose g is a permutation of n 

symbols with exactly 	1 orbits of size 1, 	2 orbits of size 2, …, and 	n orbits of size n. 

Then the cycle type of g is defined as 1 21 2 ... .nn	 	 	  
 
Example 1. As an example, let us consider the number of ways of assigning one of the 

colors red or white to each corner of a square. Since there are two colors and four 

corners there are basically 24 = 16 possibilities. But when we take account of the 

symmetry of the square we see that some of the possibilities are essentially the same. 

For example, the first coloring as in Figure 3 is the same as the second one after 

rotation through 1800. 

-384-



 
Figure 3. Two indistinguishable colorings. 

 
From above, we regard two colorings as being indistinguishable if one is 

transformed into the other by a symmetry of the square. It is easy to find the 

distinguishable colorings (in this example) by trial and error: there are just six of them, 

as shown in the Figure 4. 

 

Figure 4. The six distinguishable colorings. 
 

Let us here to introduce the notion of cycle index. Let G be a permutation 

group. The cycle index of G acting on X is the polynomial Z(G, X) over Q in terms of 

indeterminates x1, x2, …, xt, t = |X|, defined by Z(G, X) = ( )
1

1 ,
| |

i
t c p

ip G i
x

G � 
� �  in 

which (c1(p), ···, ct(p)) is the cycle type of the permutation p � G. The generalized 

character cycle index is defined as ( )
11 2
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 , where 

χ(g) is the linear character of the irreducible representation of G. In this paper we use 

two special cases: One is the anti-symmetric representation, that is  
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if g is a proper rotation
g
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and the other when χ is 1 for all g. Since, all elements of a conjugacy class of a 

permutation group have the same cycle type, so the cycle index and the generalized 

character cycle index can be rephrased in the following way: 
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Enumeration of chemical compounds has been accomplished by various 

methods. The Polya-Redfield theorem has been a standard method for combinatorial 
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enumerations of graphs, polyhedra, chemical compounds, and so forth. Combinatorial 

enumerations have found a wide-ranging application in chemistry, since chemical 

structural formulas can be regarded as graphs or three-dimensional objects.  

Denote by Cm,n the set of all functions f: {1, 2, …, m}�{x1, x2, ..., xn}. The 

action of p � Sm  induced on Cm,n is defined by p̂ (f) = fop-1, f �  Cm,n. Treating the 

colors x1, x2, …, xn that comprise the range of f �  Cm,n as, independent variables the 

weight of f is W(f) = 
1

( )m

i
f i


� . Evidently, W(f) is a monomial of (total) degree m. 

Suppose G is a permutation group of degree m, Ĝ ={ p̂ :p�G}, p̂  is as defined 

above. Let p1, p2, …, pt be representatives of the distinct orbits of Ĝ . The weight of pi 

is the common value of W(f), f � pi. The sum of the weights of the orbits is the pattern 

inventory WG(x1, x2,…, xn) = 
1

( )t
ii

W p

� . 

 

Theorem 1 (Pólya's Theorem [23]). If G is a subgroup of Sm, the symmetry group on 

m symbols, then the pattern inventory for the orbits of Cm,n modula Ĝ  is  

WG(x1, x2,…, xn)= � �Gp
pC

m
pCpC mMMM

G
)()(

2
)(

1 ...
||

1
21 , 

where Mk = x1
k+x2

k+…+xn
k is the kth power sum of the xi’s. 

 

Theorem 2 (Generalization of Pólya's Theorem [11]). Substituting Mi for xi and in 

the generalized character cycle index, i = 1, 2, , t, we get the chiral generating 

function 1( , , )G kCGF P M M

 , )k,, . 

To enumerate all possibilities of the heterofullerene structures, we have to 

consider the whole automorphism group to enumerate the number of permutational 

isomers. Balasubramanian in one of his paper6 computed the number of isomers of 

substituted fullerene cages C20 – C50. For example, in table 1 one can find these values 

for fullerene graph C20. In tables [2 – 4] the number of Cn-kBk molecules are reported 

for n = 24, 30 and 34, respectively. Fripertinger24 computed the symmetry of some 

fullerenes and then applied SYMMETRICA25 to calculate the number of C60HkCl60-k 

molecules and Balasubramanian computed the number of C60H36 isomers, see table 5. 

In table 6 the number of orbits under whole point group of C72-kBk is reported. Finally, 

in tables [7 - 9] the number of Cn-kBk molecules respectively for n = 80, 84 and 150 are 

reported. The aim of this paper is to explain how we computed the number of 

permutational isomers of heterofullerenes.  
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k, 20 -k 
Number of C20−kBk molecules for 

Symmetry Group 

0,20 

1,19 

2,18 

3,17 

4,16 

5,15 

6,14 

7,13 

8,12 

9,11 

10,10 

1 

1 

12 

51 

265 

931 

2972 

7365 

15730 

27582 

41544 

 
Table 1. The number of C20-kBk  molecules. 

 

 k, 24 -k 
Number of C24-kBk molecules 

For Symmetry Group 

Number of C24-kBk molecules 

For Rotational Group 

0,24 

1,23 

2,22 

3,21 

4,20 

5,19 

6,18 

7,17 

8,16 

9,15 

10,14 

11,13 

12,12 

1 

2 

19 

96 

489 

1826 

5775 

14586 

31034 

54814 

82358 

104468 

113434 

1 

2 

30 

170 

924 

3542 

11350 

28842 

61578 

108968 

163900 

208012 

225898 

 

Table 2. Number of C24-kBk molecules. 
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k, 30 - k Number of C30-kBk molecules 
For Symmetry Group 

Number of C30-kBk molecules 
For Rotational Group 

0,30 
1,29 
2,28 
3,27 
4,26 
5,25 
6,24 
7,23 
8,22 
9,21 
10,20 
11,19 
12,18 
13,17 
14,16 
15,15 

1 
3 

51 
406 

2793 
14253 
59605 

203580 
585975 

1430715 
3006009 
5462730 
8651825 

11975985 
14545485 
15511760 

1 
3 

33 
226 

1467 
7287 

30173 
102468 
294255 
717299 

1506051 
2735358 
4331275 
5994081 
7279821 
7762876 

 
Table 3. Number of C30-kBk molecules. 

 

k, 34 - k Number of C34−kBk molecules for 
Symmetry Group 

0,34 
1,33 
2,32 
3,31 
4,30 
5,29 
6,28 
7,27 
8,26 
9,25 

10,24 
11,23 
12,22 
13,21 
14,20 
15,19 
16,18 
17,17 

1 
6 

102 
1001 
7801 

46376 
224509 
896621 

3027224 
8741931 

21857839 
47682960 
91398638 

154664070 
232005664 
309328074 
367339214 
388934370 

 
Table 4. Number of C34-kBk molecules. 
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k, 60 -k 
Number of C60−kBk 

molecules for 
Rotational Group 

Number of C60−kBk 
molecules for 

Symmetry Group 

Number of Orbits 
under Whole Point 

Group Ih 
0,60 
1,59 
2,58 
3,57 
4,56 
5,55 
6,54 
7,53 
8,52 
9,51 
10,50 
11,49 
12,48 
13,47 
14,46 
15,45 
16,44 
17,43 
18,42 
19,41 
20,40 
21,39 
22,38 
23,37 
24,36 
25,35 
26,34 
27,33 
28,32 
29,31 
30,30 

1 
1 

23 
303 
4190 

45718 
418470 
3220218 

21330558 
123204921 
628330629 
2855893755 

11661527055 
43057432740 
144549869700 
443284859624 

1246738569480 
3226849468425 
7708584971055 
17040023323785 
34932048763560 
66537224405790 
117952355252550 
194877787472550 
300436595453640 
432628675734195 
582384767014701 
733373386161407 
864332935668892 
953746664302456 
985538239868528 

1 
1 
37 

577 
8236 
91030 

835476 
6436782 

42650532 
246386091 

1256602779 
5711668755 

23322797475 
86114390460 

289098819780 
886568158468 

2493474394140 
6453694644705 

15417163018725 
34080036632565 
69864082608210 
133074428781570 
235904682814710 
389755540347810 
600873146368170 
865257299572455 

1164769471671687 
1466746704458899 
1728665795116244 
1907493251046152 
1971076398255692 

0 
0 

14 
274 

4046 
45312 

417006 
3216564 

21319974 
123181170 
628272150 

2855775000 
11661270420 
43056957720 

144548950080 
443283298844 

1246735824660 
3226845176280 
7708578047670 

17040013308780 
34932033844650 
66537204375780 

117952327562160 
194877752875260 
300436550914530 
432628623838260 
582384704656986 
733373318297492 
864332859447352 
953746586743696 
985538158387164 

 
Table 5 The Number of C60-kBk  Molecules. 
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k,72 -k 
Number of C72−kBk molecules for 

Rotational Group 

Number of C72−kBk molecules for  

Symmetry Group 

0,72 
1,71 
2,70 
3,69 
4,68 
5,67 
6,66 
7,65 
8,64 
9,63 
10,62 
11,61 
12,60 
13,59 
14,58 
15,57 
16,56 
17,55 
18,54 
19,53 
20,52 
21,51 
22,50 
23,49 
24,48 
25,47 
26,46 
27,45 
28,44 
29,43 
30,42 
31, 41 
32, 40 
33, 39 
34,38 
35,37 
36,36 

1 
4 

127 
2522 
43243 

583576 
6514407 

61386116 
498746918 

3546427742 
22342414424 

125928884480 
640138180164 

2954479373440 
12451019242744 
48143925115958 
171512731027768 
564983065793776 

1726337142727692 
4906431753373920 

13002044149467636 
32195537606713866 
74635109937400116 
162250238419042800 
331260903551195565 
636020933801574048 
1149730149855983496 
1958799512979179380 
3148070646470848632 
4776383047609873920 
6846149035990297176 
9275427723456099744 

11884141772331102516 
14405020327110683172 
16523405671536565290 
17939697583328247888 
18438022518784399786 

1 
8 

236 
5044 

86168 
1167152 

13025244 
122772232 
997464358 

7092855484 
44684640352 
251857768960 

1280275386294 
5908958746880 

24902034311648 
96287850231916 

343025446924856 
1129966131587552 
3452674238383744 
9812863506747840 
26004088171840416 
64391075213427732 

149270219574397584 
324500476838085600 
662521806476549181 

1272041867603148096 
2299460298556572192 
3917599025958358760 
6296141291043543360 
9552766095219747840 
13692298069196643072 
18550855446912199488 
23768283541008261684 
28810040654221366344 
33046811338774382280 
35879395166656495776 
36876045033031223812 

 
Table 6 The Number of C72-kBk Molecules. 
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Number of Orbits under Whole Point Group Ih 

0 
0 

14 
274 

4046 
45312 

417006 
3216564 

21319974 
123181170 
628272150 

2855775000 
11661270420 
43056957720 

144548950080 
443283298844 

1246735824660 
3226845176280 
7708578047670 

17040013308780 
34932033844650 
66537204375780 

117952327562160 
194877752875260 
300436550914530 
432628623838260 
582384704656986 
733373318297492 
864332859447352 
953746586743696 
985538158387164 

 
Continuing of Table 6. 
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k, 80 -k Number of C80−kBk molecules for 
Symmetry Group 

0, 80 
1,79 
2,78 
3,77 
4,76 
5,75 
6,74 
7,73 
8,72 
9,71 

10,70 
11,69 
12,68 
13,67 
14,66 
15,65 
16,64 
17,63 
18,62 
19,61 
20,60 
21,59 
22,58 
23,57 
24,56 
25,55 
26,54 
27,53 
28,52 
29,51 
30,50 
31,49 
32,48 
33,47 
34,46 
35,45 
36,44 
37,43 
38,42 
39,41 
40,40 

1 
5 

181 
4147 
79546 

1202745 
15031147 

158844959 
1449435558 
11595097111 
82325041251 

523884428977 
3012334769066 
15756817617163 
75407624568509 

331793506218077 
1347911111443259 
5074488744913588 
17760710591159316 
57956002543262252 

176765807739834016 
505045163808913156 

1354439302981356268 
3415542587404475164 
8111913645381087112 
18170686559985988028 
38437990801023264444 
76875981591517458868 

145515250872462217832 
260923898098627253308 
443570626773816168644 
715436494770338700580 

1095512132628624165470 
1593472192879288312630 
2202740972528516942390 
2895030992423701444170 
3618788740556990692460 
4303424448183910977070 
4869664507190697241610 
5244254084621907482050 
5375360436777969680320 

 
Table 7. The number of C80-kBk molecules. 
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k, 84 -k Number of C84−kBk molecules for 
Symmetry Group 

0, 84 
1,83 
2,82 
3,81 
4,80 
5,79 
6,78 
7,77 
8,76 
9,75 

10,74 
11,73 
12,72 
13,71 
14,70 
15,69 
16,68 
17,67 
18,66 
19,65 
20,64 
21,63 
22,62 
23,61 
24,60 
25,59 
26,58 
27,57 
28,56 
29,55 
30,54 
31,53 
32,52 
33,51 
34,50 
35,49 
36,48 
37,47 
38,46 
39,45 
40,44 
41,43 
42,42 

1 
4 

161 
4000 
80724 

1286744 
16941162 

188728904 
1816506426 
15339084436 

115043064318 
773924297744 

4708039172851 
26075285193864 

132238945055628 
617115040987920 

2661308609905260 
10645234310343900 
39623927700233625 

137641011605240660 
447333287699520054 

1363301447106388504 
3903999598530800496 
10523825001987843104 
26748055213518461739 
64195332506438811392 

145674023765218737768 
312929384372799539932 
637034818189367985288 

1230136200620880101792 
2255249701142983248018 
3928499479377611057376 
6506577262729079657604 
10252788413950491335316 
15379182620943916403538 
21970260887002103927160 
29903966207337904208345 
38794334539178147226960 
47982466403762890020840 
56594703963337371170880 
63669041958809577715404 
68327752345967341397280 
69954603592363988835420 

 
Table 8. The number of C84-kBk molecules. 
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k, 150 - k Number of C150−kBk molecules for Symmetry Group 

0,150 
1,149 
2,148 
3,147 
4,146 
5,145 
6,144 
7,143 
8,142 
9,141 
10,140 
11,139 
12,138 
13,137 
14,136 
15,135 
16,134 
17,133 
18,132 
19,131 
20,130 
21,129 
22,128 
23,127 
24,126 
25,125 
26,124 
27,123 
28,122 
29,121 
30,120 
31,119 
32,118 
33,117 
34,116 
35,115 
36,114 
37,113 
38,112 
39,111 
40,110 
41,109 
42,108 
43,107 
44,106 
45,105 

1 
10 
608 

27762 
1015132 

29587626 
714908767 

14705679304 
262861756418 
4147359263564 

58477733568550 
744261878846444 
8621033058155532 

91515579793041740 
895545312914462338 
8119610820294861024 

68509216265755052423 
540013822200718017274 
3990102130481989637532 

27720709537206337672482 
181570647467256032286270 
1124008770030069888944122 
6590778696986152507958223 

36679116226676561530421568 
194093656699453439146865712 
978232029765102584306831360 
4703038604639712304854528992 

21599140258344705503374136608 
94881937563441939987580122208 

399158495956546227316507706912 
1609939267024733028272418627950 
6232022969127988937630220494912 
23175335416444696549270781265772 
82869381186074941227257032574344 

285168164669728433394496223305568 
945128774333956983333854159548184 

3019161362455695793849475118633168 
9302280954593224550068789712330120 
27662045996553535806719975891990092 
79439721836256307048558318405485664 

220445228095611251123048465578384610 
591438416841883842130309387714175824 

1534923510375365207042049180063976208 
3855156723733475398082512651736762064 
9375040214533678803733124039197920912 

22083428060901554502735720945545628656 
 

Table 9. The number of C150-kBk molecules. 
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k, 150 - k Number of C150−kBk molecules for Symmetry 

Group 
46,104 
47,103 
48,102 
49,101 
50,100 
51,99 
52,98 
53,97 
54,96 
55,95 
56,94 
57,93 
58,92 
59,91 
60,90 
61,89 
62,88 
63,87 
64,86 
65,85 
66,84 
67,83 
68,82 
69,81 
70,80 
71,79 
72,78 
73,77 
74,76 
75,75 

50407824921623113527709622686290336312 
111540718975506463949387235122286925152 
239347792801607620535970453784351147068 
498234180933958720246386671215627247400 
1006433045486596614856890256732735499706 
1973398128405091401582018701627687530440 
3757046436771231706787858155503142213536 
6946991524595862401059693903626311024424 

12478855146033308386976398312593227196124 
21781274436712683729716490061393340262312 
36950376276566159898459691595847481631824 
60935708245565246147909753636832722794208 
97707256324785653305903584594286513690016 

152357077658987798374692146630075734026208 
231074901116131494201332210976565629621470 
340930181974620237345396728498808495051488 
489399777350664534253556972312070143515984 
683606038204102841495979056024525881046720 
929276958183702300158285743952520137280386 
1229504898519975350977406221073619443220268 
1583453278396937952016116475798783021139936 
1985225005751384895063598575468858890976508 
2423142286431837445445179468870345772615144 
2879676340397256094585598969401799560569164 
3332196908173967766592027941721540605994000 
3754588065548132694750220759988813194524464 
4119617460809756706740212819065590964482316 
4401783040317274289392463027500946909902536 
4580233704113920544368502750626698489294984 
4641303486835439484959145718568923895458472 

 
Continuing of Table 9. 

 

In [26 – 32] Ghorbani and his coauthors studied some properties of fullerene graphs. A 

coloring of the vertices, edges or faces of a fullerene with k colors can be interpreted 

as a function from the set of all vertices, edges or faces into the set of k colors. Two 

colorings are called different if and only if the corresponding functions lie in different 

orbits of the symmetry group acting on the set of all these functions in a natural way. 

This means that the group is acting on the domain of these functions. From the cycle 

indices above you can compute the number of different colorings using k colors via 

Pólya - theory by replacing each variable xi in the cycle index by k. We mention here 
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that our computations of symmetry properties and cycle indices of fullerenes were 

carried out with the use of GAP33. This software was constructed by the GAP team in 

Aachen. The Pólya theorem says that the number of Cn−kBk molecules is given as the 

coefficient of xk in the expansion of the cycle index of the symmetry group acting on 

the set of vertices when all the indeterminates xi are replaced by 1+xi.  

It is well – known fact that the dihedral group D2n is the symmetry group of an 

n-sided regular polygon for n > 1. These groups are one of the most important classes 

of finite groups currently applicable in chemistry. For example D6, D8, D10 and D12 

point groups are dihedral groups. One group presentation for D2n is <x,y | xn = y2 = e, 

yxy = x-1>. This means that D2n is generated by a two elements set {x, y} with the 

following condition  

xn = y2 = e and yxy = x-1. 

This presentation will be used in the next section for computing the symmetry group 

of fullerenes. 
 

2.1. Enumeration of heterofullerenes with small number of vertices 
 
To demonstrate our method we should to compute number of permutational isomers of 

some well – known fullerenes. In this section we enumerate heterofullerenes Cn-kBk for 

n = 24, 80, 84 and 150. Consider at first the molecular graph of the fullerene C24, 

shown in Figure 5. In [26] the symmetry group of C24 is computed and it is isomorphic 

with the group Z2 × S4. So, we have the following Theorem without proof: 
 

Theorem 3.  
24 12 8 6 4 8 8

24 1 2 3 4 6 1 2Z(C ,X) ( 16 8 12 8 3 ) / 48.x x x x x x x
 � � � � �  

 
Figure 5. 3 - D graph of fullerene C24. 
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Consider now the molecular graph of the fullerene 80C , Figure 6. We have the 

following Theorem: 

Theorem 4. 
80 16 40 8 4 38

80 1 5 2 10 1 2Z(C ,X) ( 4 6 4 5 ) / 20.x x x x x x
 � � � �  
Proof. By using concept of symmetry one can see that the generators of fullerene 

graph C80 are as follows: 

X:=(2,16)(4,14)(5,18)(6,17)(7,20)(8,19)(9,36)(10,35)(11,34)(12,33)(13,49)(15,51)(21,

24)(22,23)(25,37)(26,52)(27,39)(28,50)(29,54)(30,53)(31,56)(32,55)(38,40)(41,42)(43

,44)(45,60)(46,59)(47,58)(48,57)(62,67)(63,66)(65,77)(68,80)(69,73)(70,79)(71,78)(7

2,76)(74,75); 

Y:=(1,65)(2,66)(3,68)(4,67)(5,48)(6,45)(7,46)(8,47)(9,42)(10,43)(11,44)(12,41)(13,69)

(14,70)(15,72)(16,71)(17,36)(18,33)(19,34)(20,35)(21,30)(22,31)(23,32)(24,29)(25,73

)(26,74)(27,76)(28,75)(37,77)(38,78)(39,80)(40,79)(49,61)(50,62)(51,64)(52,63)(53,6

0)(54,57)(55,58)(56,59); 

By using GAP program one can see that X2 = Y2 = (XY)10 = 1 and X-1(XY)X 

=(XY)-1 and so this symmetry group is isomorphic with a dihedral group of order 20, 

namely D20. Now by using definition of the cycle index the proof is completed. 

 
Figure 6. 3 - D graph of fullerene C80. 

 
In continuing consider the molecular graph of fullerene C84, Figure 7. We 

prove that the symmetry group of the C84 fullerene is isomorphic to the group S4. To 
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do this, suppose G is the symmetry group of this fullerene. Then G = �X, Y�, where X 

and Y are the following permutations: 

X = (1, 2)(3, 4)(5, 8) (6,80) (7,81) (9,18) (10,19) (11,20) (12,78) (14,83) (15,82) 

(17,84)(21,54)(22,77)(23,55)(24,79)(25,76)(26,27)(28,59)(29,60)(30,57)(31,58)(32,66

)(33,70)(34,72)(35,67)(36,64)(37,65)(38,74)(39,73)(40,75)(41,56)(42,51)(43,53)(44,5

2)(45,48) (46,49)(47,50)(61,71)(62,63)(68,69), 

Y = (1,76,31,69) (2,59,30,40) (3,79,28,68) (4,58,29,39) (5,51,35,17) (6,84,49,66) 

(7,83,48,65) (8,80,41,71) (9,77,42,61) (10,78,43,62) (11,81,44,63) (12,82,45,64) 

(13,55,27,33) (14,20,53,36) (15,19,52,37) (16,54,26,34) (18,56,32,38) (21,72,23,70) 

(22,74,46,67)(24,73,50,57)(25,75,47,60). 

By using GAP software one can see that this group is isomorphic with S4. Thus 

the cycle index of G is as follows: 
 

Theorem 5. 
84 42 28 21 2 41

84 1 2 3 4 1 2Z(C ,X) ( 3 8 6 6 ) / 24.x x x x x x
 � � � �  

Proof. By means of group action one can see that the number of conjugacy classes of 

symmetric group S4, on the set of vertices of C84 is five. The cycle type of its elements 

are 184, 242, 328, 421 and 12241, respectively. This completes the proof.  

 
Figure 7. 2 - D graph of fullerene C84. 

 
Now consider the molecular graph of the fullerene 150C , Figure 8. In [26] the 

symmetry group of C150 is computed and it is isomorphic with Dihedral group D20. On 

the other hand, in [26] the 3 - dimentional cycle index of C150 is computed. Thus  
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Theorem 6. 
150 75 30 8 71 2 14 10 70

150 1 2 5 1 2 5 10 1 2Z(C ,X) ( 5 4 5 4 ) / 20.x x x x x x x x x
 � � � � �  

Proof. Use from definition of the cycle index and the main Theorem of [26]. 

 
Figure 8. 3 - D graph of fullerene C150. 

 

2.2. Enumeration of infinite classes of heterofullerenes 
 
In this section we enumerate the number of infinite families of heterofullerenes, 

namely C10n, C12n, C12n+6, C24n and C40n fullerenes. Many properties of these classes of 

fullerenes are studied in [12 – 20, 26 – 33].  
 

2.2.1 C10n fullerene 
 

This class of fullerenes has exactly 10n carbon atoms (n ≥ 2). That's why we 

denote this class of fullerenes by C10n, see Figure 9. The first member of this class of 

fullerenes can be obtained by putting n = 2, e. g. C20. Our problem is reduced to the 

coloring of the corresponding fullerene graph with 10n vertices. By considering a 

labeling of its vertices as we did in Figure 9, it is easy to see that the generators of this 

group are: 

2 5 3 4 6 10 7 9 11 15 12 14 10 4 10 10 3 10 1( , )( , )( , )( , )( , )( , )...( n , n)( n , n ),�� 
 � � �  

1 10 4 2 10 3 3 10 2 4 10 1 5 10
7 10 6 9 10 14 11 10 12 13 10 10 15 10 8

( , n , , n , , n , , n , , n) ...
( , n , , n , , n , , n , , n ),

�� 
 � � � �
� � � � �
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where � fixes elements 1, 8, 19, 30, …, 11i-3, 11i+2, …, 10n-2 , i=1,2,…,n-1, 

and � does not have fixed points.  
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20
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22
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24

25

10n-2

10n-1

10n

10n-3

10n-4

 
Figure 9. The Schlegel diagram of C10n.  

Since �2 = �10 = identity and �-1�� = �-1, the symmetry group G of these 

fullerenes is isomorphic to the dihedral group of order 20. In the following table the 

cycle types of elements of G are computed:  
 

#Permutations Cycle type Fullerene 
1 
5 
4 
6 
4 

110n 

12n24n 
52n 
25n 
10n 

C10n 

 
 

Thus, the cycle index of G is computed as: 
10 2 4 2 5
1 1 2 5 2 10Z(G,X) ( 5 4 6 4 ) / 20n n n n n nx x x x x
 � � � � . 

 
2. 2. 2 C12n fullerene 

 
Now consider the graph of fullerene C12n (n ≥ 2), Figure 10. This class of 

fullerenes has exactly 12n carbon atoms and the first member of this class of fullerenes 

can be obtained by putting n = 2, e. g. C24. Again our problem is reduced to the 
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coloring of the corresponding fullerene graph with 12n vertices. By using the labeling 

of its vertices, similar to the last example, one can see that the generators of this group 

are as follows: 

σ=(1,12n-5)(2,12n-4)(3,12n-3)...(12n-24,12n-18)(12n-22,12n-19)(12n-21,12n-20),

τ=(1,12n-5,2,12n,3,12n-1,4,12n-2,5,12n-3,6,12n-4)...(12n-29,12n-25,12n-26,12n-18,

12n-20,12n-19,12n-22,12n-21,12n-24,12n-23,12n-28,12n-27).

 

Since σ2 = τ10 = identity and σ-1τσ = τ-1, the symmetry group G of these fullerenes 

is isomorphic to the dihedral group of order 24. In the following table, the cycle types 

of elements of G are computed:  
 

Fullerene Cycle type #Permutations 

C12n 

120n 1 

12n29n 5 

210n 6 

102n 4 

54n 4 

 

12

3
4 5

6 7

8
9

10
11

12

13

14
15

16
17

18

12n

12n-1

12n-212n-3

12n-4

12n-5

 
Figure 10. The Schlegel diagram of C12n. 
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Thus, the cycle index of G is:  

Z(G, X) = (x1
12n + 6x1

2n x2
5n + 2x6

2n + 2x3
4n + 7x2

6n + 4x12
n + 2x4

3n) / 24.  
 
2. 2. 3 C12n+6 fullerene 
 
In this section consider a fullerene graph C12n+6 (n ≥ 2) with 12n + 6 carbon atoms, 

Figure 11. As we know from the last discussions, our problem is reduced to the 

coloring of the corresponding fullerene graph with 12n + 6 vertices. Consider the 

labeling of the molecular graph C12n + 6, as depicted in Figure 12. The generators of its 

symmetry group will be indicated by a and b, whereas a stands for a reflection. In the 

first step, we consider the labeling of vertices of the fullerene C30 (the first member of 

this class) indicated in Figures 12. The permutation representation of generators of 

symmetry group acting on the set of vertices is given by 

a:=(29,30)(9,14)(10,13)(6,11)(5,12)(1,2)(22,15)(21,16)(19,24)(26,27)(20,23)(3,4)(25,

28); 

b: = (26,30)(10,23)(5,22)(6,21)(7,17)(8,18)(9,24)(11,16)(12,15)(14,19)(13,20)(27,29); 
 
The generators satisfy in the following relations: 

a2 = b2 = 1 and ab=ba. 

This implies that the symmetry group of fullerene C30 is isomorphic with 

Abelian group Z2 × Z2. So its cycle index is as follows: 
30 6 12 4 13 15

30 1 1 2 1 2 2Z(C ,X) ( 4 ) / 4.x x x x x x
 � � �  

By using GAP, one can see that the symmetry group of C12n + 6 fullerenes has 

two generators a, b of order 2, satisfying in the following relations: 

a2 = b2 = 1 and ab=ba. 

 

 

 
Figure 11. 2 – D and 3 – D graph of fullerene C12n + 6, for n = 3. 
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Figure 12. Labling of fullerene C30. 

 
Further, this group is isomorphic to the Abelian group Z2 × Z2 of order 4 and the cycle 

types of elements of S are as in the following table: 
 

#Permutations Cycle type Fullerene 

1 

1 

1 

1 

12 61 n�  

4 6 11 2 n�  

6 61 2 n  

6 32 n�  

12 6nC �  

Thus the cycle index of symmetry group is computed as: 
12 6 4 6 1 6 6 6 3
1 1 2 1 2 2Z(G,S) ( ) / 4.n n n nx x x x x x� � �
 � � �  

 
2. 2. 4 C24n fullerene 

 
In this section we enumerate the number of heterofullerenes C24n (n ≥ 3), Figure 

13. The first member of this family of fullerenes is C72, obtained by putting n = 3. By 

considering the molecular graph of the fullerene 24nC , one can see that the generators of 

its symmetry group will be indicated by a and b, whereas a stands for a reflection. In 

the first step, consider the labeling of vertices of the fullerene C72 as is indicated in 

Figure 14 the permutation representation of generators of symmetry group S acting on 

the set of vertices is given by 
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a:=(1,28,31,54,43,64,50,56,39,30,13,25)(2,24,10,44,51,70,59,65,49,37,16,21)(3,9,32,5

2,60,69,68,66,48,27,19,17)(4,23,42,61,62,72,67,57,38,22,14,8)(5,34,41,63,53,71,58,47

,20,26,7,18)(6,35,11,45,33,55,40,46,15,36,12,29); 

b:=(1,25)(2,18)(3,8)(4,17)(5,21)(6,29)(7,24)(9,14)(10,26)(11,36)(12,35)(13,28)(15,45)

(16,34)(19,23)(20,44)(22,32)(27,42)(30,31)(33,46)(37,41)(38,52)(39,54)(40,55)(43,56

)(47,51)(48,61) (49,63)(50,64)(53,65)(57,60)(58,70)(59,71)(62,66)(67,69)(68,72) 

The generators satisfy in the following relations: 

a12 = b2 = 1 and bab=a11 = a-1. 

This implies that the symmetry group of fullerene C72 is isomorphic with 

Dihedral group D24. However, by using GAP, one can see that the symmetry group of 

this family of fullerenes is isomorphic to the Dihedral group D24 of order 24 and the 

cycle types of elements of S are as in the following table: 

 

#Permutations Cycle type Fullerene 
1 
6 
7 
2 
2 
2 
4 

241 n  
4 12 21 2 n�  

122 n  
83 n  
64 n  
46 n  
212 n  

24nC  

 

 

Thus, the cycle index of symmetry group S is computed as: 
24 12 4 12 2 8 6 4 2
1 2 1 2 3 4 6 12Z(G,S) ( 7 6 2 2 2 4 ) / 24.n n n n n n nx x x x x x x x�
 � � � � � �  

 It is easy to see that the generators of the rotational group of fullerene C72 are: 

a:=(1,2,3,4,5,6)*(7,10,13,16,19,22)*(29,31,33,35,25,27)*(30,32,34,36,26,28)*(8,11,14

,17,20,23)*(62,57,52,47,42,37)*(63,58,53,48,43,38)*(12,15,18,21,24,9)*(66,61,56,51,

46,41)*(65,60,55,50,45,40)*(64,59,54,49,44,39)*(69,70,71,72,67,68); 

b:=(68,69)*(47,53)*(40,65)*(39,66)*(62,38)*(41,64)*(37,63)*(9,8)*(29,28)*(23,12)*(

27,30)*(10,22)*(11,24)*(44,61)*(2,6)*(5,3)*(25,32)*(20,15)*(42,58)*(46,59)*(45,60)

*(67,70)*(13,19)*(36,33)*(21,14)*(52,48)*(17,18)*(34,35)*(57,43)*(49,56)*(50,55)*

(51,54)*(72,71)*(26,31); 
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Figure 13. 2 – D and 3 – D graph of fullerene C24n, for n = 3. 
 

By using GAP it is not difficult to see that a6 = b2 = 1 and bab=a5 = a-1. Hence, this 

group is isomorphic with Dihedral group D12. In generally, the cycle types of elements 

of rotational group R of C24n are as in the following table: 

 

#Permutations Cycle type of Rotational Subgroup Fullerene 
1 
6 
1 
2 
2 

241 n  
12 22 n�  

122 n  
46 n  
83 n  

24nC  

 
 

This implies that the cycle index of rotational group R is as follows: 
24 12 4 12 2 8 4
1 2 1 2 3 6Z(G,R) ( 6 2 2 ) /12.n n n n nx x x x x x�
 � � � �  

But from the cycle indices one can compute the number of possible positional isomers, 

the number of chiral isomers and the number of orbits under the whole point group Ih. 

For the number of orbits under the whole point group Ih, we simply note that 
1

h h hI I IZ P P
� 
 . We use from this relation and then we obtain the number of C72−kBk 

molecules for both symmetry group and rotational group of C24n.  
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Figure 14. Labling of fullerene C72. 

 
2. 2. 5 C40n fullerene 

In this section, we consider an infinite class C40n (n ≥ 2) of fullerene molecules 

with 40n carbon atoms as shown in Figure 15. To compute the number of isomers of 

these fullerenes, we first compute a permutation representation for the symmetry 

group of these fullerenes. Consider the graph of fullerene C40n. The generators of this 

group are: 

σ = (2,5)(3,4)(7,10)...(10n-10,10n-7)(10n-4,10n-2)(10n-1,10n),

τ=(1,10n-4,3,10n-1,5,10n-3,2,10n,4,10n-2)...(10n-44,10n-36,10n-41,10n-38,10n-43,

10n-39,10n-40,10n-37,10n-42,10n-32).

 

Since σ2 = τ10 = identity and σ-1τσ = τ-1, the symmetry group G of these 

fullerenes is isomorphic to the dihedral group D20 of order 20. In the following table, 

the cycle types of elements of G are computed: 
 

Fullerene Cycle type #Permutations 

C40n 

140n 1 
14n218n 5 

220n 6 
104n 4 
58n 4 
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Thus the cycle index of G is computed as  

Z(G, X) = (x1
40n + 5x1

4nx2
18n + 6x2

20n + 4x10
4n + 4x5

8n)/20. 

1

2

34

5

6 7
8

9

10

11
12

1314

15
16

17

18

19
20

40n

40n-1

40n-240n-3

40n-4

 
Figure 15. The Schlegel diagram of C40n. 

 

2.3. Fullerenes constructed by Leapfrog operation 
 
In this section, we enumerate the number of heterofullerenes constructed by a 

new method. In other words, in [34] and [35] a method is described how to construct a 

fullerene C3n from a fullerene Cn having the same or even a bigger symmetry group as 

Cn. This method is called the Leapfrog principle. If we are starting with a Cn cluster 

with icosahedral symmetry all the new clusters will be of the same symmetry, since 

this is the biggest symmetry group in 3-dimensional space. In the first step you have to 

put an extra vertex into the centre of each face of Cn. Then connect these new vertices 

with all the vertices surrounding the corresponding face. Then the dual polyhedron is 

again a fullerene having 3n vertices 12 pentagonal and (3n/2)-10 hexagonal faces. 

Knowing the 3-dimensional cycle index of S(Cn) acting on the sets of vertices, edges 

and faces it is very easy to compute the cycle index for the induced action of S(Cn) on 
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the set of vertices of C3n. We just have to identify the vertices of Cn with the n new 

hexagonal faces of C3n. From Figure 16, one can see that Le(C20) = C60. 

 
 

  
C20 Fullerene Le(C20) = C60 

Figure 16. The Fullerene C20 and Le(C20). 

 

Here, we enumerate the number of heterofullerenes of two series of fullerenes 

constructed by Leapfrog, e. g. 
3 20nC

�
 and two classes of 

3 34nC
�

 (n ≥ 0). From the above 

discussion our problem is reduced to the coloring of the corresponding fullerene graph 

with 3n m�  vertices ( {20,34}m� ).  

 

2. 3. 1 
3 20�nC  fullerene 

 

Consider the molecular graph of the fullerene 
3 20nC

�
 as depicted in Figure 17. 

The first member of this class is C20, obtained by putting n = 0. It is well – known fact 

that the symmetry group of C20 is isomorphic to the non – Abelian group Ih = Z2 × A5 of 

order 120. So, according to the Leapfrog principle35, the symmetry group G of these 

fullerenes is again isomorphic to the group Ih and the cycle types of elements of G are 

as follows: 
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#Permutations Cycle type Fullerene 
1
16
15
20
24
20
24

 

3 201
n �  

3 102
n �  

1 13 4 3 281 2
n n� �� �  

13 203
n� �  
3 45

n �  
13 106

n� �  
3 210

n �  

3 20nC
�

 

 

This implies the cycle index of G can be computed as18 

n n 1 n 1 n n n 1 n 1 n20 3 20 3 10 3 4 3 2 3 4 3 28 3 10 3
1 3 6 5 10 1 2 2Z(G,X) (x 20(x x ) 24(x x ) 15x x 16x .

� � � �� � � � � � � �
 � � � � � �   
 

 
Figure 17. The Schlegel diagram of 

3 20nC
�

, for n = 2. 

 

2. 3. 2 
3 34�nC  fullerene 

 

In this section, we compute the number of permutational isomers of a class of 

fullerenes with 3n × 34 vertices (n = 0, 1, …), see Figure 18. The symmetry group of 

the first member of this class of fullerenes namely, C34 is isomorphic with the non - 

Abelian group S3 of order 6.35 From Leapfrog principle, the symmetry group G of 
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3 34�nC  fullerene is isomorphic to S3 and so, the cycle types of elements of G are as in 

the following table: 

#Permutations Cycle type Fullerene 

1
3
2

 

3 341
n �  

6 17 3 31 2
nn n� �  

13 343
n� �  

3 34nC
�

 

 
Hence, the cycle index of G is computed as19: 

n n n 134 3 6n 17 3 3n 34 3
1 1 2 3Z(G,X) (x 3x x 2x ) / 6.

�� � � �
 � �  
 

 
Figure 18. 3 – D graph of fullerene 

3 34nC
�

, n = 1. 

 

2. 3. 3 
3 34�nF  fullerene 

 
Finally, we enumerate the number of heterofullerenes in a new series of 

fullerenes constructed by Leapfrog. This class of fullerenes has again 3n × 34 vertices 

and we denote this class of fullerenes by 
3 34nF

�
, see Figures 19, 20. Similar to the last 

discussion our problem is reduced to the coloring of the corresponding fullerene graph 

with 3n × 34 vertices. The symmetry group of this fullerene is isomorphic with cyclic 

group of order 2, namely Z2.35 From Leapfrog principle, one can see that the symmetry 

group G of these fullerenes is isomorphic to the group Z2 of order 2 and the cycle types 

of elements of G are as in the following table: 
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#Permutations 
Cycle type 

n is odd 

Cycle type 

n is even 
Fullerene 

1
1

 
34 31

n�  
( 1)/2 ( 1)/24 3 34 3 4 31 2
n n n� �� � � �  

34 31
n�  

2 /2/6 3 3 6 34 31 2
n n n� � ��  

3 34nF
�

 

 

This implies that the cycle index of G is computed as 

/2

( 1)/2 ( 1)/

/2

2

34 3 6 3 17 3
1 1 2

34

3 3

4 3 23 17 3
1

3
1 2

1 ( ) 2 |
2

.
1 ( ) 2 |
2

n n n

n n

n

n n

x x x n
Z(G,X)

x x x n
� �

�� � � �

� �� ��

� ���
 �
� � ���

 

 
We can also apply our GAP program to compute the number of hetero- 

fullerenes 
3 34n kk

F B
� �

. 

 
 

Figure 19. 2 – D and 3 – D graphs of fullerene 
3 34nC

�
, n = 1. 

  
Figure 20. 2 – D and 3 – D graphs of fullerene 

3 34nC
�

, n = 2. 
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A GAP Program for Enumerating the Heterofullerenes 
 
h:=function(f, g) 

local t,i,tt; 

Print(“Coefficients of f are:”, “\n”); 

t:=Coefficients of LaurentPolynomial(f); 

for i in t[1] do 

Print(i,“\n”); 

od; 

Print(“Coefficients of g are:,” “\n”); 

tt:=CoefficientsofLaurentPolynomial(g); 

for i in tt[1] do 

Print(i,“\n”); 

od; 

return( ); 

end; 
  
#Notice that in above program f and g denote to the symmetry group and 

rotational group, respectively.  

 

3. Conclusions 

In this paper, an efficient method is presented which is useful for computing 

permutational isomers of heterofullerenes. We applied our method on some classes of 

fullerenes and we computed the number of such isomers. We mention here that our 

computations of symmetry properties and cycle indices of fullerenes were carried out 

with the use of GAP. The study of IPR fullerene is very important, that's why some 

classes of fullerenes studied in this paper are IPR fullerenes. Among all classes of 

fullerene graphs, IPR fullerenes (fullerenes with isolated pentagons) are more stable. 

For this, we also computed the number of chiral isomers of these fullerenes. 
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