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Abstract

Convex hexagonal systems (CHS) i. e., hexagonal systems with no bay regions are studied.

Among CHS with a fixed number of hexagons, the species with minimal/maximal number of

inlets have minimal/maximal or maximal/minimal values for a variety of vertex–degree-based

topological indices. These extremal CHS are characterized.

1 Convex hexagonal systems

In this paper we study a special class of hexagonal systems [1] in which there are no bay

regions. These will be referred to as convex hexagonal systems and will be abbreviated

by CHS. Their general form is depicted in Fig. 1.

1Corresponding author. Member of Centro Interdisciplinario de Lógica y Álgebra, Universidad
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Fig. 1. The general form of a convex hexagonal system (CHS). The parameters ai ≥
1 , i = 1, 2, . . . , 6, count the hexagons on the respective side of CHS. For details see text.

The definition of hexagonal systems and details of their theory can be found in the

book [1]. Recall that hexagonal systems provide the natural graph representation of

benzenoid hydrocarbons. A hexagonal system with h hexagons and ni internal vertices

represents a benzenoid hydrocarbon of the formula C4h+2−ni
H2h+4−ni

. For this reason,

hexagonal systems with equal number of hexagons and equal number of internal vertices

will be said to be isomeric. Isomeric hexagonal systems have also equal number of vertices

and equal number of edges.

When going along the perimeter of a hexagonal system, then certain features may

be encountered, called [1] fissure, bay, cove, and fjord, see Fig. 2. These, respectively,

correspond to vertex degree sequences

(2, 3, 2) , (2, 3, 3, 2) , (2, 3, 3, 3, 2) , (2, 3, 3, 3, 3, 2) . (1)

The number of fissures, bays, coves, and fjords of a hexagonal system S are denoted

by f = f(S), B = B(S), C = C(S), and F (S), respectively. The parameter

r(S) = f(S) +B(S) + C(S) + F (S)

was introduced in [2], and is called the number of inlets of S.
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Fig. 2. Features lying on the perimeter of a hexagonal system, corresponding to se-
quences of vertex degrees specified in (1).

The following relations are well known [2] for a hexagonal system S with n vertices, h

hexagons, r inlets and mij edges between vertices of degree i and degree j:

m22 = n− 2h− r + 2 (2)

m23 = 2r (3)

m33 = 3h− r − 3 (4)

Another quantity much studied in the theory of benzenoid systems [1] is the number

of bay regions b = b(S) defined as b = B + 2C + 3F . It is easy to recognize that b(S)

counts the number of edges on the perimeter, connecting two vertices of degree 3.

One special class of hexagonal systems is formed by the convex hexagonal systems

(CHS). These are defined as the hexagonal systems for which b = 0 i. e., B = C =

F = 0. The motivation for their study is explained in a subsequent section. Here we

first establish a few basic properties of CHS, noting that these hexagonal systems were

previously considered by one of the present authors [3].

At the first glance, a CHS is determined by the six parameters a1, a2, a3, a4, a5, a6

indicating the length of its six sides, cf. Fig. 2. However, these parameters are not all

mutually independent.
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From the fact that the sides 1 and 4 are parallel, it follows that condition (6) must be

obeyed. In a fully analogous manner we arrive also at (5) and (7):

a1 + a2 = a4 + a5 (5)

a2 + a3 = a5 + a6 (6)

a3 + a4 = a6 + a1 . (7)

Of these relations only two are linearly independent, e. g., (5) and (6), and then the

values of a5 and a6 can be expressed in terms of a1, a2, a3, a4:

a5 = a1 + a2 − a4 (8)

a6 = a3 + a4 − a1 . (9)

We thus arrive at the following:

Theorem 1. Let H(a1, a2, a3, a4, a5, a6) be a convex hexagonal system, cf. Fig. 2. Four

parameters among a1, a2, a3, a4, a5, a6 fully determine this CHS. Of these four parameters

only two can correspond to opposite sides of the CHS. In particular, the structure of the

CHS is fully determined by a1, a2, a3, a4.

From Fig. 2 one may get the impression that the shape of any CHS is hexagonal and

that any CHS has six sides. Although this is correct from a formal point of view, some

noteworthy special cases need to be pointed out. These are depicted in Fig. 3.

In view of Theorem 1 we may ask how the basic structural parameters of a CHS are

determined by the parameters a1, a2, a3, a4. A partial answer to this question is given in

Theorem 2.

Theorem 2. Let H = H(a1, a2, a3, a4, a5, a6) be a convex hexagonal system, cf. Fig. 2.

Let r(H), h(H), and ni(H) be the number of inlets, hexagons, and internal vertices of H.

Then

r(H) = a1 + 2a2 + 2a3 + a4 − 6 (10)

h(H) = a1 a3 + a1 a4 + a2 a3 + a2 a4 − a2 − a3

− 1

2
a1(a1 + 1)− 1

2
a4(a4 + 1) + 1 (11)

ni(H) = 2(a1 a3 + a1 a4 + a2 a3 + a2 a4)

− a1(a1 + 2)− a4(a4 + 2)− 4(a2 + a3) + 6 . (12)
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Fig. 3. Special cases of the CHS H(a1, a2, a3, a4, a5, a6) from Fig. 2, when some of the
parameters ai are equal to unity: pentagon-shaped P (a1 = 1, a2, a3, a4, a5, a6 > 1),
quadrangle-shaped Q1 (a2 = a5 = 1, a1 = a4, a3 = a6) and Q2 (a2 = a5 = 1, a2 = a6),
triangle-shapedT (a1 = a3 = a5 = 1, a2 = a4 = a6), and linear L (a2 = a3 = a5 = a6 = 1,
a1 = a4).

Proof. Eq. (10) follows from the fact that the i-th side of H has ai − 1 inlets. Therefore

r(H) = a1 + a2 + a3 + a4 + a5 + a5 + a6 − 6. Eq. (10) is then obtained by taking into the

relations (8) and (9). �
Eq. (11) is deduced by counting the hexagons in the auxiliary hexagonal system

depicted in Fig. 4, and subtracting the number of shaded hexagons. By taking into

account that a triangle-shaped hexagonal system (cf. T in Fig. 3) of size k has k(k−1)/2

hexagons, and using the relations (8) and (9), after a lengthy calculation we arrive at Eq.

(11). �
Eq. (12) is deduced in an analogous manner as Eq. (11), bearing in mind that a

triangle-shaped hexagonal systems of size k has (k − 1)2 internal vertices.

-101-



a -1

a

a -1aa -1

1

2

345

Fig. 4. An auxiliary triangle-shaped hexagonal systems used in the proof of Theorem 2.
For notation see Fig. 2.

Remark 3. From Theorem 2, expressions for other structural parameters of a CHS di-

rectly follow: The numbers of vertices and edges are obtained from n = 4h + 2 − ni and

m = 5h + 1 − ni. The number of edges of various types can then be computed by using

Eqs. (2)–(4).

Remark 4. A convex hexagonal system H(a1, a2, a3, a4, a5, a6) is Kekuléan if and only if

a1 = a4, a2 = a5, and a3 = a6. Details on various classes of Kekuléan CHS, their names,

and their Kekulé structure counts can be found in the book [4].

2 Randić connectivity index and its congeners

In 1975, Randić [5] introduced one of the graph–based molecular structure descriptors

most widely used in applications to physical and chemical properties, which is now called

the Randić index or connectivity index. It is defined for a graph G as

χ(G) =
∑
uv

1√
d(u) d(v)

where d(u) denotes the degree of the vertex u of G and the summation goes over all edges

uv of G.
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In 1998 Bollobás and Erdős [6] considered the generalized version of the connectivity

index

Rα(G) =
∑
uv

[d(u) d(v)]α

defined for every α ∈ R. For α = −1/2 one recovers the ordinary connectivity index.

Literature on the connectivity index over the set of hexagonal systems can be found in

[2,3]. Recently, Wu and Deng [7] extended the results of [3] to the generalized connectivity

indices. Particularly, they found the hexagonal system with maximal Rα for every α ∈ R

such that 2α+1−3α > 0. Naturally, the following question arises: which hexagonal systems

havemaximalRα for α ∈ R such that 2α+1−3α ≤ 0? Apparently, a solution to this problem

is complicated when considering the set of all hexagonal systems with a fixed number of

hexagons. However, when we restrict the consideration to convex hexagonal systems, then

the solution can be found, applicable not only to the generalized connectivity index, but

to all indices of the form (13) (see below).

The connectivity and generalized connectivity indices are two special cases of the

expression

TI = TI(G) =
∑
uv

Ψ(d(u), d(v)) (13)

when Ψ(x, y) = 1/
√
x y and Ψ(x, y) = [x y]α, respectively. In the meantime, a great

variety of other analogous vertex–degree–based topological indices (molecular structure

descriptors) has been considered in the mathematico–chemical literature [8]. Of these we

mention the topological indices in which the function Ψ is defined in the following manner:

Ψ(x, y) = x y second Zagreb index [9]

Ψ(x, y) =
√
(x+ y − 2)/(x y) atom–bond connectivity index [10]

Ψ(x, y) = 1/
√
x+ y sum-connectivity index [11]

Ψ(x, y) = 2
√
x y/(x+ y) geometric–arithmetic index [12]

Ψ(x, y) = [x y/(x+ y − 2)]3 augmented Zagreb index [13]

Ψ(x, y) = 2/(x+ y) harmonic index [14]

Since any hexagonal system S possesses only vertices of degree 2 and 3, the general
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expression for the above listed topological indices reads

TI(S) = m22 Ψ(2, 2) +m23 Ψ(2, 3) +m33 Ψ(3, 3)

which in view of the relations (2)–(4) yields:

TI(S) = Ψ(2, 2)n+
[
3Ψ(3, 3)− 2Ψ(2, 2)

]
h+

[
2Ψ(2, 3)−Ψ(2, 2)−Ψ(3, 3)

]
r

+
[
2Ψ(2, 2)− 3Ψ(3, 3)

]
(14)

=
[
3Ψ(3, 3) + 2Ψ(2, 2)

]
h−Ψ(2, 2)ni +

[
2Ψ(2, 3)−Ψ(2, 2)−Ψ(3, 3)

]
r

+
[
4Ψ(2, 2)− 3Ψ(3, 3)

]
. (15)

From Eqs. (14) or (15) we conclude the following general property of the vertex–

degree–based topological indices of hexagonal systems:

Theorem 5. (a) If 2Ψ(2, 3)−Ψ(2, 2)−Ψ(3, 3) > 0, then among isomeric hexagonal sys-

tems, those having smallest (resp. greatest) number of inlets have smallest (resp. greatest)

topological index TI, Eq. (13).

(b) If 2Ψ(2, 3) − Ψ(2, 2) − Ψ(3, 3) < 0, then among isomeric hexagonal systems, those

having smallest (resp. greatest) number of inlets have greatest (resp. smallest) topological

index TI.

(c) If 2Ψ(2, 3) − Ψ(2, 2) − Ψ(3, 3) = 0, then all isomeric hexagonal systems have equal

values of the topological index TI.

3 Estimating the number of inlets

From Theorem 5 it should be evident why we are interested in the number of inlets and

its maximal and minimal possible value. We begin this section with a sharp upper bound

for the number of inlets in a hexagonal system.

Lemma 6. If S is a hexagonal system with h hexagons and r inlets, then r ≤ 2(h− 1).

Proof. It is well known [1] that

m23 = 4h− 4− 2b− 2ni

where ni denotes the number of internal vertices of S. Using relation (3) we get

r = 2(h− 1)− (ni + b) .

Since ni + b ≥ 0, Lemma 6 immediately follows.
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Note that r(Lh) = 2(h− 1), where Lh is the linear hexagonal chain (cf. L in Fig. 3).

Hence, Lemma 6 states that the linear hexagonal chain has the maximal number of inlets

among all hexagonal systems with h hexagons. The following question arises naturally:

Problem 7. Which are the hexagonal systems with h hexagons with minimal number of

inlets?

As far as we can see, this problem is not easy to solve. At the moment we can present

only a partial answer to this question, namely for convex hexagonal systems. Thus, we

consider the following special cases of Problem 7.

Problem 8. (a) Which are the convex hexagonal systems with h hexagons with minimal

number of inlets?

(b) Which are the convex hexagonal systems with h hexagons and ni internal vertices with

minimal number of inlets?

We first try to solve Problem 8 by a standard analytical approach – the method of

Lagrange multipliers.

Let H = H(a1, a2, a3, a4, a5, a5, a6) be a convex hexagonal system with h hexagons

and ni internal vertices, whose r-value we want to minimize. In view of Eqs. (10)–(12),

consider the expression

ρ =
[
a1 + 2a2 + 2a3 + a4 − 6

]
+ λ

[
a1 a3 + a1 a4 + a2 a3 + a2 a4 − a2 − a3

− 1

2
a1(a1 + 1)− 1

2
a4(a4 + 1) + 1− h

]
+ μ

[
2(a1 a3 + a1 a4 + a2 a3 + a2 a4)

− a1(a1 + 2)− a4(a4 + 2)− 4(a2 + a3) + 6− ni

]
and impose the conditions

∂ρ

∂ai
= 0 , i = 1, 2, 3, 4 .

After appropriate calculation, a system of four linear equations is obtained:⎛
⎜⎜⎝

−1 0 1 1
0 0 1 1
1 1 0 0
1 1 0 −1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

a1
a2
a3
a4

⎞
⎟⎟⎠ = Γ

⎛
⎜⎜⎝

1
2
2
1

⎞
⎟⎟⎠

where Γ = (λ+ 4μ− 2)/(2λ+ 4μ). By solving this system we obtain a1 = a2 = a3 = a4,

which together with Eqs. (8) and (9) yields

a1 = a2 = a3 = a4 = a5 = a6 = k .
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Thus, by the Lagrange multiplier method we find that the convex hexagonal systems with

minimal number of inlets are the members of the circumcoronene series (benzene, k = 1,

coronene, k = 2, circumcoronene, k = 3, circumcircumcoronene, k = 4, . . . ) [15, 16].

This result is of little use, because it restricts us to CHS with 3k(k − 1) + 1 hexagons

and 6(k − 1)2 internal vertices. For all other possible values of h and ni the Lagrange

multiplier method fails to yield a solution.

The solution of Problem 8 can be obtained in another, somewhat simpler, manner.

From Eqs. (11) and (12) we directly obtain 2h(S)− ni(S) = a1 + 2 a2 + 2 a3 + a4 + 4,

which combined with Eq. (10) yields

r(S) = 2h(S)− ni(S)− 2 . (16)

This implies the following remarkable answer to question (b) of Problem 8:

Theorem 9. All isomeric convex hexagonal systems have equal number of inlets.

Corollary 10. All isomeric convex hexagonal systems have equal topological indices TI

defined via Eq. (13).

Remains part (a) of Problem 8. The answer to it was obtained long time ago by

Harary and Harborth [17]. Namely, from Eq. (16) we see that for a fixed value of h, the

number of inlets will be minimal if the number of internal vertices is maximal. Hexagonal

systems with maximal number of internal vertices are constructed by the “spiral” method

illustrated in Fig. 5.

Fig. 5. The Harary–Harborth construction of hexagonal systems with maximal number
of internal vertices [17]. Hexagons have to be added one-by-one, going along the indicated
spiral line.

-106-



The hexagonal systems constructed by the “spiral” method are not necessarily convex

(and may have a single bay, B = 1). If this happens, then the newly added hexagon has

to be removed to another position, without altering the number of internal vertices. This

is illustrated in Fig. 6.

h=1 h=2 h=3 h=4 h=5

h=6 h=6 h=7

h=8 h=9 h=10

h=11

or

Fig. 6. The convex hexagonal systems with the first few h-values, possessing minimal
number of inlets. These are constructed by the Harary–Harborth “spiral” method (see
Fig. 5), with amendments when necessary (moving one or more hexagons so as not to
change the ni-value). The case h = 6 illustrates the fact that the CHS with minimal
number of inlets needs not be unique.
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