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Abstract

The edge-Szeged index is recently introduced graph invariant, having applica-
tions in chemistry. In this paper, a method of calculating the edge-Szeged index of
hexagonal chain is proposed, and the results of the index are presented.

1 Introduction

In theoretical chemistry, the physico-chemical properties of chemical compounds are often

modeled by the molecular graph based molecular structure descriptors which are also

referred to as topological indices. Among the variety of those indices, the Wiener index

is the best known one [1]. The first reported use of a topological index in chemistry was

by wiener in the study of paraffin boiling points. From then on, in order to model various

molecular properties, many topological indices have been designed. I. Gutman extended

the Wiener index to Szeged index and edge-Szeged index to all connected graph [1–4].

The main advantage of the Szeged index and edge-Szeged index is that it is a modification

of Wiener index. Under the condition of tree, the two indexes are coincident. I. Gutman

and S. Klavzar gave a good algorithm for the calculation of the Szeged index of benzenoid

hydrocarbons [5]. This cut-method was shown to be applicable to all sorts of benzenoids.

The method was eventually extended by Klavzar to a number of other topological indices

[6]. It plays an important role in the theory of benzenoid systems.
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Hexagonal chains are of great importance of theoretical chemistry because they are

the natural graph representations of benzenoid hydrocarbons, a great deal of investi-

gations in mathematical chemistry has been developed to hexagonal chains(benzenoid

hydrocarbons) [7].

Let G = (V (G), E(G)) be a graph, where |V (G)| and |E(G)| are respectively referred

to as the order and the size of G. The length of the shortest path of two vertices

u, v ∈ V (G) is called their distance d(u, v). Let w ∈ V (G) and e = uv ∈ E(G). The

distance between w and e is denoted by d(w, e), which is defined as min{d(w, u), d(w, v)}.
Furthermore, m1(e) is the number of edges whose distance to u is smaller than that to v

, m2(e) is the number of edges whose distance to v is smaller than that to u. Define the

edge Szeged index of graph G as

Sze(G) =
∑

e∈E(G)

m1(e)m2(e).

Hexagonal chains are exclusively constructed by hexagons of length one. In a hexagonal

chain, any two hexagons either have one common edge or have no common vertices. The

two hexagons which have one common edge is said to be adjacent. No three or more

hexagons share one common vertex. Each hexagon except the terminal ones has two

adjacent hexagons. A hexagonal chain has exactly two terminal hexagons.

The vertex number of a hexagonal chain with n hexagons is 4n + 2, and the edge

number of which is 5n + 1 [7]. The linear hexagonal chain is a hexagonal chain without

kinks, where the kinks are the angularly connected or branched hexagons. The linear

hexagonal chain with n hexagons is denoted by Ln(as shown in Fig. 1). The hexagonal

chain with n hexagons shown in Fig. 2 is called zig-zag hexagonal chain, which is denoted

by Zn.

Fig. 1: linear chain Ln

Fig. 2: zig-zag chain Zn

The cut of a hexagonal chain is defined as follows: Choose an edge e of the hexagonal

chain and draw a line through the center of e, orthogonal on e. This line will intersect
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the perimeter in two points P1 and P2 . The straight line segment C whose end points

are P1 and P2 is the cut, intersecting the edge e [5]. Some cuts of the hexagonal chain

are illustrated in Figure.3.

The primary aim of the investigation is to introduce a new method to calculate the

edge-Szeged index of hexagonal chain with the help of cut-method. Moreover, by this new

method, we can simplify some complex calculations of edge-Szeged index of hexagonal

chains.

2 Main results

The maximal linear chain of a hexagonal chain, including the kinks and/or terminal

hexagons at its end, is called a segment S. The number of hexagons in the segment S is

refered to as the length of segment S , which is denoted by l(S). For any segment S of a

hexagonal chain with n ≥ 2 hexagons, 2 ≤ l(S) ≤ n.

A hexagonal chain consists of a series of segments S1, S2, . . . , Sm, m ≥ 1, with lengths

l(Si) = li, i = 1, 2 . . . ,m, where l1 + l2 + · · ·+ lm = n+m− 1, where n is the number of

hexagons of a hexagonal chain, since two neighboring segments have always one hexagon

in common.

For the kth segment of a hexagonal chain, the cut intersecting these lk + 1 parallel

edges of hexagons in this segment ( the dotted line shown in Fig. 3) is called the cut

of this segment. If the cut of this segment parallels the horizontal, then the segment is

called horizontal, otherwise it is called oblique segment. If the angles always equal that

the cut of every oblique segment in a hexagonal chain makes with the same horizontal

direction, then the hexagonal chain is called one-sided hexagonal chain. The hexagonal

chain shown in Fig. 3 is a one-sided hexagonal chain. It is obvious that Zn is a one-sided

hexagonal chain which has n− 1 segments, and the length of every segment equals 2; Ln

is a one-sided hexagonal chain which has only one segment. In this paper, we shall be

mainly concerned with one-sided hexagonal chain.

Let e be an edge of a hexagonal chain, we make a cut of hexagonal chain which

intersects the edge e. These edges intersecting the cut are equidistant to the both ends

of them. Because in all case of cyclic graphs there are edges equidistant to the both ends

of the edges, such edges are not taken into account in m1(e) and m2(e) [7]. So these

edges intersecting the cut are not taken account in m1(e) and m2(e) of hexagonal chain

either.Then the number of those edges which are located at both sides of the cut are

m1(e) and m2(e) respectively.
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Fig. 3: I type cut (denoted by dotted lines) and II type cut (denoted by real lines) in
one-sided hexagonal chain

Theorem 2.1. Let G be a one-sided hexagonal chain with n hexagons. G consists of m

segments S1, S2, . . ., Sm, where m ≥ 1, l(Si) = li (i = 1, 2 · · ·m). Then

Sze(G) = 16[5(
∑m

i=1 li −m + 1)− 3] + 2
∑m−1

k=1 [5(
∑k

i=1 li − k + 1)− 3][5(
∑m

i=k+1 li −
m+ k)+ 2]+ 4

∑m
k=1

∑lk−1
j=2 [5(

∑k−1
i=1 li− k+1)+5j− 3][5(

∑m
i=k+1 li−m+ k)+ 5lk − 5j+

2] +
∑m

k=1(lk + 1)[5(
∑k−1

i=1 li − k + 1) + 2lk][5(
∑m

i=k+1 li −m+ k) + 2lk].

Proof. In order to describe convenience, these edges intersecting I type cut are called

I type edges, these edges intersecting II type cut are called II type edges. The edges

of the hexagonal chain are classified into two categories: I type and II type(as shown in

Fig. 3).

Case 1. If e is the I type edge in the jth hexagon of the kth segment of a hexagonal

chain (as shown in Fig. 3), then the calculation of m1(e) is as follows:

m1(e) = [5(
∑k−1

i=1 li − k + 1) + 1]− 1 + 5(j − 1) + 1 + 1 = 5(
∑k−1

i=1 li − k + 1) + 5j − 3.

Especially, if j = lk, m1(e) = 5(
∑k

i=1 li − k + 1)− 3.

The calculation of m2(e) is as follows:

m2(e) = [5(
∑m

i=k+1 li−m+k)+1]−1+5(lk−j)+1+1 = 5(
∑m

i=k+1 li−m+k)+5lk−5j+2.

Especially, if j = lk, m2(e) = 5(
∑m

i=k+1 li −m+ k) + 2.

Case 2. If e is the II type edge in the jth hexagon of the kth segment of a hexagonal

chain (as shown in Fig. 3), then the calculation of m1(e) is as follows:

m1(e) = [5(
∑k−1

i=1 li − k + 1) + 1] + 2lk − 1 = 5(
∑k−1

i=1 li − k + 1) + 2lk.

And the calculation of m2(e) is as follows:

m2(e) = [5(
∑m

i=k+1 li=1 −m+ k) + 1] + 2lk − 1 = 5(
∑m

i=k+1 li −m+ k) + 2lk.

According to the discussion above, the theorem is proved. �

Corollary 2.2. Let Ln be linear hexagonal chain with n hexagons, then

Sze(Ln) =
62

3
n3 − 6n2 +

28

3
n .
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Proof. Ln be linear hexagonal chain with n hexagons,then m = 1, l1 = n. According to

Theorem 2.1, we have

Sze(Ln) = 16(5n− 3) + 4
∑n−1

j=2 [(5j − 3)(5n− 5j + 2)] + (n+ 1)(2n)2.

By calculating, we have

Sze(Ln) =
62
3
n3 − 6n2 + 28

3
n . �

Corollary 2.3. Let Zn be zig-zag hexagonal chain with n hexagons, then

Sze(Zn) =
125
6
n3 − 20n2 + 301

6
n− 27 .

Proof. Because Zn is zig-zag hexagonal chain with n hexagons,then li = 2 (i = 1, 2 · · ·m),

and m = n− 1. According to theorem 2.1, we have

Sze(Zn) = 16[5(2(m − 1 + 1) − 3) + 2
∑m−1

k=1 [5(2k − k + 1) − 3][5(2m − 2k + k) + 2)] +∑m
k=1(2 + 1)[5(2k − 2− k + 1) + 4][5(2m− 2k −m+ k) + 4].

Because Zn satisfies n = m+ 1 , by calculating and simplifying, we have

Sze(Zn) =
125
6
n3 − 20n2 + 301

6
n− 27 . �

By the two corollaries above, we can draw a conclusion: If n ≤ 80, then Sze(Ln) >

Sze(Zn); if n ≥ 82, then Sze(Ln) < Sze(Zn).

By this cut method, we can not only calculate the edge-Szeged index of one-sided

hexagonal chains, but also calculate the edge-Szeged index of some benzenoid systems.

We illustrate two benzenoid systems in figure.4. The helicenes Hn [7] and the hexagonal

squeeze with seven hexagons HS2 [8] are not one-sided hexagonal chains.

Fig. 4: (a)The helicenes Hn, (b)The hexagonal squeeze with seven hexagons HS2 . I
type cut (denoted by dotted lines), II type cut (denoted by real lines)

Now let’s calculate the edge-Szeged index of the helicenes Hn and the hexagonal

squeeze with seven hexagons HS2.

Because the helicenes Hn has n− 1 segments, and the length of every segment equals

2. It is obvious m1(e) of each edge of these edges intersecting I type cut in Hn is same,

m2(e) of them equals too. And m1(e) of these edges intersecting II type cut in two

terminal hexagons is same, so is m2(e) of them. Then we have:
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Sze(Hn) = (n− 1) · 3 · 4 · (5n− 6) + 2 · 4 · 2 · [5(n− 1) + 1 + 1] +
∑n−1

i=2 2 · [5(i− 1) +

1 + 1][5(n− i) + 1 + 1] = 12(5n2 − 11n+ 6) + 8(5n− 3) + 2
∑n

i=1(5i− 3)(5n− 5i+ 2).

By calculating, we have

Sze(Hn) =
25

3
n3 + 55n2 − 262

3
n+ 48.

With regard to HS2 with seven hexagons, m1(e) of these edges intersecting II type cut

in three terminal hexagons equals, so is m2(e) of them. Then we have:

Sze(HS2) = 3× 4× 2× 32 + 2× 7× 27 + 4× 12× 22 + 2× 27× 7 + 2× 3× 4× 29 +

4× 11× 21 + 2× 3× 14× 19 = 5796.

Acknowledgements

The authors are grateful to Professor S. Klavžar for his valuable suggestions that
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