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Abstract

Several classes of graphs based on Fibonacci strings were introduced in the last
10 years as models for interconnection networks, among them Lucas cubes. The
vertex set of a Lucas cube Λn is the set of all binary strings of length n without
consecutive 1’s and 1 in the first and the last bit. Two vertices of the Lucas cube
are adjacent if their strings differ in exactly one bit.

Carbon nanotubes were discovered 20 years ago and their unique structure ex-
plains their unusual properties such as conductivity and strength. Our interest is
in a class of carbon nanotubes, called cyclic polyphenanthrenes. The resonance
graph of an aromatic hydrocarbon reflects the structure of its perfect matchings
(t.i. Kekulé structures).

The main result of this paper is the following: Lucas cubes are the nontriv-
ial component of the resonance graphs of cyclic polyphenanthrenes. This result
has some interesting applications regarding hamiltonicity and observability of the
resonance graph of the cyclic polyphenanthrene.
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1 Introduction

Several classes of graphs based on Fibonacci strings were introduced as models for inter-

connection networks. Fibonacci cubes were introduced in 1993 [12, 13] and intensively

studied afterwards [3, 22, 25, 31], see also a survey [17], followed with extended Fibonacci

cubes [32] and finally Lucas cubes [3, 7, 16, 18, 24]. We are interested in the connec-

tion between Lucas cubes and the resonance graphs of chemical structures called cyclic

polyphenanthrenes, which are related to non-cyclic fibonacenes.

Fibonacenes are benzenoid graphs, t.i. 2-connected bipartite plane graphs where every

inner face is a hexagon (for details see a survey [10]). If we embed a class of fibonacenes

called polyphenanthrenes on a surface of a cylinder, we obtain cyclic polyphenanthrenes.

They belong to very interesting structures chemically known as carbon nanotubes. Carbon

nanotubes vere discovered in 1991 [14] and can be imagined as a C70 fullerene with many

thousands od carbon rings inserted across its equator, giving a tiny tube with about

1.5 nm of diameter and a length of several microns. In 1996 Smalley group at Rice

university successfully synthesized the aligned single-walled nanotubes [30], which are

carbon nanotubes with the almost alien property of electrical conductivity and super-

steel strength. Carbon nanotubes have attracted great attention in different research

fields such as chemistry physics, artificial materials, and so on. For the details, see [4, 5].

Open-ended single-walled nanotubes without caps are also called tubulenes [29].

The resonance graph of a graph G reflects the structure of perfect matchings of G. In

[19] authors proved the following theorem: Fibonacci cubes are precisely the resonance

graphs of fibonacenes. Our main result is very similar to that one: Lucas cubes are the

nontrivial component of the resonance graphs of cyclic polyphenanthrenes.

In the next section we give all the necessary definitions. The third section is about

Fibonacci cubes and the resonance graphs, since that result is strongly connected to the

main result which is presented in section 4, together with some consequences.

2 Preliminaries

Each open-ended single-walled nanotube can be viewed as a mapping of a graphene sheet

onto the surface of a cylinder by rolling up a hexagonal lattice. Let us define nanotubes

more precisely. Choose any lattice point in the hexagonal lattice as the origin O. Let �a1
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and �a2 be the two basic lattice vectors. Choose a vector �OA = n�a1+m�a2 such that n and

m are two integers and at least one of them is not zero. Draw two straight lines L1 and L2

passing through O and A perpendicular to OA, respectively. By rolling up the hexagonal

strip between L1 and L2 and gluing L1 and L2 such that A and O superimpose, we can

obtain a hexagonal tessellation H of the cylinder. L1 and L2 indicate the direction of the

axis of the cylinder. Using the terminology of graph theory, a nanotube T is defined to be

the finite graph induced by all the hexagons of H that lie between c1 and c2, where c1 and

c2 are two vertex-disjoint cycles of H encircling the axis of the cylinder. The vector �OA is

called the chiral vector of T , denoted by Ch. The cycles c1 and c2 are the two open-ends

of T .

Figure 1: Illustration of a (4, 2)-type nanotube.

For any nanotube T , if its chiral vector is Ch = n�a1 +m�a2, T will be called an (n,m)-

type nanotube, see Figure 1. If n = m, nanotube is an armchair nanotube and if exactly

one of n or m is zero, then it is a zigzag nanotube. Let T be a nanotube encircled with

cycles c1 and c2 and e an edge of T . If e is not in c1 or c2, then e is an inner edge of T .

If every inner edge of T has one end vertex in c1 and another in c2, then T is said to be

a catacondensed nanotube, otherwise it is pericondensed. If a vertex u of a nanotube T is

not in c1 or c2, then u is an inner vertex of T .

Cyclic polyphenanthrenes are armchair nanotubes, consisting of polyphenanthrene

strips. In this paper we are interested in a single strip cyclic polyphenanthrenes, which

are catacondensed (n, n)-type nanotubes and will be denoted with T2n (note that 2n is

the number of hexagons of T2n), see Figure 2 (a). Instead of a term single strip cyclic

polyphenanthrenes we will name them just cyclic polyphenanthrenes. Note, the drawings

of cyclic polyphenanthrenes will be as the one of T8 on Figure 2 (b) with pending edges
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indicating the cycling structure.

Figure 2: (a) A (single strip) cyclic polyphenanthrene T8 embedded in a hexagonal lattice,
(b) a drawing of T8 and edges e,e′ of the corresponding fibonacene B8.

If we do the opposite of rolling and gluing the hexagonal lattice, t.i. if we open it, we

obtain the usual 2-dimensional hexagonal lattice. More precisely, let T be a nanotube and

c1, c2 the cycles encircling T . Let P be a path in T such that the end vertices of P belongs

to c1 and c2, respectively, and all the other vertices of P are inner vertices. By opening

the nanotube T through the path P , we obtain a benzenoid system B. An edge e of path

P is a tessellation edge of T and let the corresponding pairwise edge in the benzenoid

system B be e′, see for example Figure 2 (b) or 3 (c). If T was a cata- or peri-condensed

nanotube, so is then B a cata- or pericondensed benzenoid system. For more information

on these graphs see [9]. If two hexagons of a benzenoid system share an edge, then they

are adjacent. If every hexagon of a catacondensed benzenoid system B has at most two

adjacent hexagons, then B is a hexagonal chain. Note that a hexagon h of a hexagonal

chain that is adjacent to two other hexagons contains two vertices of degree two. We

say that h is angularly connected if its two vertices of degree two are adjacent. Now, a

hexagonal chain is called a fibonacene if all of its hexagons, apart from the two terminal

ones, are angularly connected , cf. Figure 3 (a). Note that there are fibonacenes, that

can not be embedded in the hexagonal lattice, but they are not of any interest for us. If

T2n is the cyclic polyphenanthrene, cf. Figure 3 (c), then the corresponding benzenoid

system is the fibonacene B2n called polyphenanthrene, cf. Figure 3 (b).

It is convenient for us to consider a benzenoid system B as a subgraph of the hexagonal

lattice from Figures 1 and 2 (a). Then there are three different directions of edges of B

called horizontal, positive (at the angle 60◦) and negative (at the angle −60◦).
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Figure 3: (a) A fibonacene, (b) the polyphenanthrene B4, (c) the cyclic polyphenanthrene
T4 with the tesselation edge e and its pairwise edge e′.

A 1-factor or a perfect matching of a graph G is a spanning subgraph with every vertex

having degree one (in the chemical literature these are known as Kekulé structures); see [1]

and [9]. Thus a perfect matching of a graph with 2n vertices will consist of n non-touching

edges.

Let G be a planar 2-connected bipartite graph. Then the vertex set of the resonance

graph R(G) of G consist of all perfect matchings of G, and two perfect matchings are

adjacent whenever their symmetric difference is the edge set of a face of G. The concept

is quite natural and has a chemical meaning, therefore it is not surprising that it has been

independently introduced in the chemical literature [6, 8] as well as in the mathematical

literature [33] under the name Z-transformation graph. On Figure 5 we can see the cyclic

polyphenanthrene T4 together with its resonance graph.

Let h and h′ be adjacent hexagons of a catacondensed benzenoid system. Then the

two edges of h that have exactly one vertex in h′ are called the link from h to h′ (cf. on

Figure 5 there is a link from h3 to h2).

The vertex set of the n-dimensional hypercube Qn, n ≥ 1, consists of all binary strings

of length n, two vertices being adjacent if the corresponding strings differ in precisely one

place.

The Fibonacci cubes are for n ≥ 1 defined as follows. The vertex set of Γn is the

set of all binary strings b1b2 . . . bn containing no two consecutive 1’s. Two vertices are

adjacent in Γn if they differ in precisely one bit. A Lucas cube Λn is very similar to the

Fibonacci cube Γn. The vertex set of Λn is the set of all binary strings of length n without

consecutive 1’s and also without 1 in the first and the last bit. The edges are defined

analogously as for the Fibonacci cube. On Figure 4 we see first four Lucas cubes. Both,

Fibonacci and Lucas cubes are subgraphs of hypercubes.

Vertices of the Fibonacci cube Γn, n ≥ 1, are Fibonacci strings of length n and the

number of all such strings is a Fibonacci number Fn+2 = |V (Γn)| (Fn is the Fibonacci

sequence, where F1 = F2 = 1). Similary are the vertices of the Lucas cube Λn, n ≥ 1,
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are Lucas strings of length n and the number of all such strings is a Lucas number Ln =

|V (Λn)|. The following identity is well known: for n ≥ 2, Ln = Fn+1 + Fn−1 (L1 = 1).

Figure 4: First four Lucas cubes.

3 Fibonacci cubes and the resonance graphs

Our main result is strongly connected with the following result from [19].

Theorem 3.1 [19] Let B be an arbitrary fibonacene with n hexagons. Then R(B) is

isomorphic to the Fibonacci cube Γn.

Since Theorem 3.1 is very important for our main result, let us explain some concepts

introduced in [19].

Let Bn be the polyphenanthrene with n hexagons, consecutively labeled h1, h2, . . . , hn.

We first establish a bijective correspondence between the vertices of R(Bn) and the vertices

of Γn. LetM(Bn) be the set of all perfect matchings of Gn and define a (labeling) function

� : M(Gn) → {0, 1}n

as follows. Let M be an arbitrary perfect matching of Bn and let e be an edge of h1 with

end vertices of degree two in the positive direction. Then for i = 1 we set

(�(M))1 =

{
0; e ∈ M,
1; e /∈ M ,

while for i = 2, 3, . . . , n we define

(�(M))i =

{
1; M contains the link from hi to hi−1,
0; otherwise .

For instance, the fibonacene with four hexagons contains eight perfect matchings. On

Figure 5 the labels obtained by � are shown.
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For detailed proof of Theorem 3.1 the reader is referred to [19], here we just present

a very useful simple argument that the labeling � produces the vertices of Γn. This is

clearly true for n = 2 and n = 3. So let the polyphenanthrene Bn be obtained from the

polyphenanthrene Bn−1 with n − 1 hexagons h1, h2, ... , hn−1 by adding the hexagon hn

to Bn−1.

The perfect matchings of Bn can be partitioned into two disjoint sets M1(Bn) and

M2(Bn), where M1(Bn) contains perfect matchings without the link from hn to hn−1,

whileM2(Bn) contains all other perfect matchings of Bn. Note that each perfect matching

M of Bn−1 can be in a unique way extended to a perfect matching M1 of M1(Bn).

Moreover, �(M1) = �(M)0, where �(M)0 denotes the concatenation of the label �(M)

with the symbol 0.

Consider next a perfect matching M2 ∈ M2(Bn). Then there is no link from hn−1

to hn−2. Hence we are interested only in perfect matchings of Bn−1 without this link.

Consequently, �(M2) must have 0 in the last position. Similarly as above, each perfect

matching of Bn−1 without a link from hn−1 to hn−2 can be in a unique way extended

to a perfect matching from M2(Bn). The labellings of perfect matchings from M2(Bn)

are obtained by adding 1 as the nth bit. Hence �(M2) ends with 01. Since the above

construction is a well-known procedure for obtaining all the vertices of Γn, we conclude

that the labeling � indeed produces all the vertices of Γn.

4 Main result and some consequences

Here is our main result:

Theorem 4.1 Let T2n be the cyclic polyphenanthrene, n ≥ 1. Then the resonance graph

of T2n is isomorphic to the union of the Lucas cube Λ2n and two isolated vertices.

Proof. Let T2n be the cyclic polyphenanthrene with 2n hexagons and let B2n be the

corresponding polyphenanthrene with a tesselation edge e and its pairwise edge e′ in B2n.

Further, let us label hexagons of B2n consecutively with h1, h2, . . . , h2n such that e and e′

belongs to h1 and h2n, respectively.

By Theorem 3.1 the perfect matchings of B2n can be represented with the binary

strings of length 2n without consecutive 1’s, obtained by the labeling function �, as de-
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Figure 5: (a) All 8 perfect matchings of a fibonacene B4 and the contraction to 7 perfect
matchings of T4 together with the 2 additional ones, (b) the resonance graph R(T4).

scribed above. Then the corresponding resonance graph R(B2n) is isomorphic to the

Fibonacci cube Γ2n.

Let M(B2n) be the set of perfect matchings of the polyphenanthrene B2n and M(T2n)

be the set of perfect matchings of the cyclic polyphenanthrene T2n. Further, let M1(B2n)

be the set of perfect matchings of B2n that contain at least one of edges e and e′ and let

M be a perfect matching from M1(B2n). It is straightforward to see, that with removal

of either an edge e or e′, the perfect matching M can be contracted onto the perfect

matching MT of T2n. Let M1(T2n) be the set of all such perfect matchings of the cyclic

polyphenanthrene T2n.

Now, let M ′ be a perfect matching from M(B2n) \ M1(B2n). Then M ′ does not

contain neither edge e nor e′ and it can not be contracted to a perfect matching of T2n.

Also (�(M ′))1 = (�(M ′))2n = 1.

Therefore the subgraph of the resonance graph of B2n (t.i. of a Fibonacci cube Γ2n),

induced with the vertex set M1(B2n) is isomorphic to the Lucas cube Λ2n. Since any

M ∈ M1(B2n) can be contracted to the perfect matching MT ∈ M1(T2n), the subgraph

of the resonance graph of the cyclic polyphenanthrene T2n, induced with the vertex set

M1(T2n), is also isomorphic to Λ2n.
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Next, let us consider perfect matchings of T2n that are not in M1(T2n). Let u1 and

u2 be the end vertices of the tesselation edge e of T2n and let M2 be a perfect matching

from M(T2n) \ M1(T2n). Then in M2 the vertices u1 and u2 must be covered with two

different edges, say f1 and f2, and they can not belong to the same hexagon. So, f1 must

be in the hexagon h1 and f2 in the hexagon h2n or vice versa. Then the only way to

extend M2 to the other vertices of T2n is to either choose all edges of T2n in the horizontal

direction, or edges of M2 alternate in a positive and a negative direction, as seen on Figure

5. So, |M(T2n) \M1(T2n)| = 2. To conclude the proof we observe, the both new perfect

matchings are not adjacent to any other perfect matching of T2n. �

For example, on Figure 6 there is the cyclic polyphenanthrene T6 together with the

resonance graph. The nontrivial connected component of the resonance graph R(T6) is

isomorphic to the Lucas cube Λ6.

Figure 6: The cyclic polyphenanthrene T6 with the resonance graph R(T6).

Let K(G) be the number of perfect matchings (t.i. Kekulé structures) of a bipartite

graph G. Enumeration of Kekulé structures in aromatic hydrocarbons has been a great

challenge and was first accomplished in 1933 [26]. Since then there were several approaches

and methods used in finding the number K(G) for different kind of benzenoid systems

G, for example see [27], [21], [28], [11], [34]. Determination of the number of perfect

matchings in nanotubes is a complex problem and it was addressed first in [29], [21],

[15], after that several methods of enumeration were described in [2], [20]. In [23] the

authors deduced a recursive formula for determination K(G) of cyclic polyphenanthrenes

. Since we have an explicit formula for the Lucas numbers Ln (see [24] for instance), we

immediately have the first corollary of Theorem 4.1.
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Corollary 4.2 Let T2n be the cyclic polyphenanthrene, n ≥ 1. Then the number of perfect

matchings of T2n is

K(T2n) = L2n + 2 =
n∑

i=0

(
2n− i

i

)
2n

2n− i
+ 2 .

In [22] it vas proved that the Fibonacci cubes have a Hamiltonian cycle in the case

of even number of vertices. We can not claim the same for the Lucas cubes, since it was

proven in [24] that no Lucas cube is a Hamiltonian graph. Therefore the next corollary

is also straightforward.

Corollary 4.3 Let T2n be the cyclic polyphenanthrene, n ≥ 1. Then the nontrivial con-

nected component of the resonance graph R(T2n) is not a Hamiltonian graph.

Let G be a graph. An edge coloring of G is proper if any two adjacent edges receive

different colors and is vertex-distinguishing if distinct vertices are assigned distinct color

sets, where the color set of a vertex v is the set of colors assigned to the edges incident

to v. The observability of G, denoted by obs(G), is the minimum number of colors to be

assigned to the edges of G so that the coloring is proper and vertex-distinguishing.

In [3] the authors proved that the observability of the Lucas cube Λn is n, for n ≥ 2.

Therefore we present our last corollary.

Corollary 4.4 Let T2n be the cyclic polyphenanthrene, n ≥ 1. Then the observability of

the resonance graph of T2n is

obs(R(T2n)) = 2n .
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Commun. Math. Comput. Chem. 33 (1996) 169–241.

[30] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.
G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomnnek, J. E. Fischer,
R. E. Smalley, Crystalline ropes of metallic carbon nanotubes, Science 273 (1996)
483–487.

[31] M. S. Tong, C. H. Liu, T. Y. Fan, Z. C. Huang, An algorithm for finding parallel
paths between two nodes in Fibonacci cubes (Chinese), J. Beijing Inst. Technol.
(Chin. Ed.) 19 (1999) 180–185.

[32] J. Wu, Extended Fibonacci cubes, IEEE Trans. Parallel Distr. Systems. 8 (1997)
3–9.

[33] F. Zhang, X. Guo, R. Chen, Z-transformation graphs of perfect matchings of hexag-
onal systems, Discr. Math. 72 (1988) 405–415.
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