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Petra Žigert

Faculty of Chemistry and Chemical Engineering, University of Maribor, Slovenia

e-mail: petra.zigert@uni-mb.si

(Received November 18, 2011)

Abstract

It is shown that if G is an elementary benzenoid graph without nice coronenes then
there exists a bijective mapping from the set of subgraphs of the resonance graph R(G),
that are maximal hypercubes into the set of maximal resonant sets of G. In addition
to this a connection between alternating sets of G and a subgraphs of R(G) that are
maximal hypercubes is presented.

1 Introduction

Benzenoid graphs are investigated in chemical graph theory [1, 2] since they represent

the chemical compounds known as benzenoid hydrocarbons. A necessary condition for a

benzenoid hydrocarbon to be (chemically) stable is that it possesses Kekulé structures,

which describe the distribution of so called π-electrons.

The resonance graph or a Z-transformation graph [3] of a benzenoid graph models

interactions among its Kekulé structures. The vertices of the resonance graph are the

Kekulé structures; two vertices are adjacent if the corresponding Kekulé structures inter-

act, that is if one Kekulé structure is obtained from the other by rotating three double

bonds in a hexagon. This concept of resonance graphs was first put forward by Gründler
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[4] and was then re-invented by El-Basil [5, 6] and, independently, by Randić [2]. In ad-

dition to this, without any reference to chemistry, where instead of searching for Kekulé

structures we are interested in perfect matchings of a more general family of graphs,

i.e. plane bipartite graphs, Zhang, Guo and Chen introduced resonance graphs under

the name Z-transformation graphs and established their basic mathematical properties

[3, 7, 8]. For some recent developments see the survey paper [9]. One of the most impor-

tant properties established by Lam et al. [10] is that the resonance graphs are median

graphs.

The main motivation for this paper is the result from [11] saying, that there ex-

ists a one-to-one mapping from the set of subgraphs of R(G) isomorphic to the Cl(G)-

dimensional hypercube into the family of maximum cardinality resonant sets of G. Here

Cl(G) is a Clar number of a benzenoid graph G and is equal to the size of the maximum

cardinality resonant set of G. We generalized this theorem to any maximal resonant set

of G, if G is an elementary benzenoid graph without nice coronenes. In addition to this,

we present the connection between alternating sets of G and subgraphs of R(G), that are

maximal hypercubes.

In the next section we formally introduce the concepts and notations of this paper.

The known results are presented in Section 3. Then new results concerning maximal

resonant sets are in the first part of Section 4 and the new results about alternating

sets are given in the second part of that section. We conclude with some open problems

regarding this topic.

2 Preliminaries

Benzenoid graphs are 2-connected subgraphs of the hexagonal lattice such that every

bounded face is a hexagon. If all vertices of a benzenoid graph lie on its perimeter,

then G is said to be catacondensed; otherwise it is pericondensed. In Figure 1 we see

a well known pericondensed benzenoid graph called coronene. We refer to [1] for more

information about these graphs, especially for their chemical meaning as representation

of benzenoid hydrocarbons.

A matching of a graph G is a set of independent edges of G. A matching is perfect, if

it covers all vertices of G.

A hexagon h isM -alternating if the edges of h appear alternately in and off the perfect
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Figure 1: Coronene with a maximal resonant set.

matching M . An edge of a graph that has a perfect matching is fixed if it belongs to

all or none of the perfect matchings of the graph. An elementary benzenoid graph is a

benzenoid graph that has a perfect matching but no fixed edges. A benzenoid graph G is

elementary if and only if there exists a perfect matching M of G such that the boundary

of the outer face of G, a cycle, is M -alternating [12]. It is clear that every catacondensed

benzenoid graph is elementary.

Let P be a set of hexagons of a benzenoid graph G. The subgraph of G obtained by

deleting from G the vertices of the hexagons in P is denoted by G − P . It is clear that

G− P can be the empty graph.

Let P be a set of hexagons of a benzenoid graph G. Then the set P is called an

alternating set of G if there exists such a perfect matching of G that contains a perfect

matching of each hexagon in P . It is easy to see that if P is an alternating set of

a benzenoid graph G, then G − P is empty or has a perfect matching [13, 14]. An

alternating set is maximal if it is not contained in another alternating set. An alternating

set P of a benzenoid graph G satisfying G−P is empty or has a unique perfect matching

is called a canonical alternating set.

The Fries number of a benzenoid graph G with at least one perfect matching [15] is

the maximum of the cardinalities over all alternating sets of G and is denoted by Fr(G).

Let P be an alternating set of a benzenoid graph G. If the hexagons of P are pair-wise

disjoint, then P is a resonant set [16, 17]. Alternatively [18, 19], P is a resonant set of G

if the hexagons in P are pair-wise disjoint and there exists such a perfect matching of G

that contains a perfect matching of each hexagon in P .

In figures, resonant sets are indicated with circles (see Figure 1 with the coronene and

its maximal resonant set (which is not canonical) and alternating sets with filled circles

(see Figure 2 for an example of alternating sets).
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Figure 2: Maximal alternating sets of a pericondensed and a catacondensed benzenoid
graph.

The Clar number of a benzenoid graph with at least one perfect matching [20] is

the maximum of the cardinalities of all the resonant sets of G and is denoted by Cl(G).

A resonant set whose cardinality is the Clar number is called a maximum cardinality

resonant set.

Let P be an alternating set of a benzenoid graph G. If there exists a perfect matching

M of G such that M contains a perfect matching of each hexagon of P , than P is called

anM-alternating set of G. Each hexagon of P is then aM-alternating hexagon. For every

perfect matching M of a benzenoid graph G, there exists an M -alternating hexagon [22].

Consequently, P is called an M-resonant set, if hexagons of P are pair-wise disjoint (i.e.

if P is a resonant set) [21]. It is clear that a set of hexagons P is resonant if and only if

it is M -resonant for some perfect matching M .

The symmetric difference of two finite sets A and B is defined as A⊕B = (A∪B)−
(A ∩ B). Let G be a benzenoid graph possessing at least one perfect matching. Then

the vertex set of the resonance graph R(G) of G consists of all perfect matchings of G,

two vertices being adjacent whenever their symmetric difference forms the edge set of a

hexagon of G.

A subgraph H of a graph G is said to be nice if G−H admits a perfect matching.

Let the distance dG(u, v) between vertices u and v of a graph G be the usual shortest

path distance, the index can be omitted if the considered graph is clear from the context.

A subgraph H of a graph G is an isometric subgraph if dH(u, v) = dG(u, v), for all

u, v ∈ V (H).

The k-dimensional hypercube Qk, where k is a positive integer, is the graph whose

vertex set is the set of all binary sequences of length k and two vertices are adjacent

iff they differ in exactly one position. For our purposes we will consider a vertex as a

0-dimensional hypercube. A partial cube is an isometric subgraph of a hypercube [23, 24].
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It is well known, that the set of edges of a partial cube whose end vertices differ in the i-th

position and coincide in all others, form an equivalence class of the Djoković-Winkler’s

relation Θ [25, 23], where edges e = uv and f = xy of a graph G are in relation Θ, if

dG(u, x) + dG(v, y) �= dG(u, y) + dG(v, x) .

Let v be a vertex of a graph G. Then the degree of v is d(v) = |{u; vu ∈ E(G)}|. The
maximum degree of a graph G, Δ(G), is the maximum of degrees over all vertices of G.

3 Known results

For the clarity we will explicitly state the known results, that are of importance for us.

In order to do that some preparation is needed.

Let G be a benzenoid graph with a perfect matching and R(G) its resonance graph.

LetH be a subgraph of R(G) isomorphic to the k-dimensional hypercube for some positive

integer k. We may assume that the vertices of H (considered as the vertices of R(G)) are

labeled with the binary sequences of length k such that two vertices of H are adjacent if

and only if their binary sequences differ in exactly one position. Consider the following

vertices of H:

M ≡ 〈000 . . . 0〉 , M1 ≡ 〈100 . . . 0〉 , M2 ≡ 〈010 . . . 0〉 , . . . , Mk ≡ 〈000 . . . 1〉 .

By the definition of the resonance graph, each of the edges MM 1, MM2, . . . ,MMk

corresponds to a unique hexagon of G. More precisely, for each j = 1, 2, . . . , k, let hj

denote the symmetric difference of M and M j. It was proved in [26] that, given arbitrary

vertices M ′ and M ′′ of H whose binary sequences differ only at the j-th place for some

j ∈ {1, 2, . . . , k}, the symmetric difference of M ′ and M ′′ is the hexagon hj. Moreover

[26], the set SH = {h1, h2, . . . , hk} is a resonant set of G of cardinality k. Therefore, we

call SH the resonant set associated with a subgraphH of R(G) isomorphic to a hypercube.

Let us mention, that edges MM j, j = 1, 2, . . . , k, belong to different Θ-classes, since no

two incident edges of a partial cube can be in the same Θ-class.

Let G be a benzenoid graph with a perfect matching and R(G) its resonance graph.

Let S be a resonant set of G of cardinality k for some positive integer k. If the subgraph

G−S is empty, let M be the empty set, otherwise, let M be a perfect matching of G−S.

For each choice of M , the 2k perfect matchings of the hexagons in S produce 2k perfect
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matchings of G. It is clear that for each choice of M , the set of 2k perfect matchings

of G can be coded with integer sequences of length k + 1 where the first integer in the

sequence denotes the choice of M and the remaining k integers are binary digits. Hence,

the subgraph of R(G) induced by each such set of 2k perfect matchings of G is isomorphic

to a k-dimensional hypercube.

Thus, given a resonant set of G of cardinality k for some positive integer k this

procedure associates a unique subgraph R(G) isomorphic to the k-dimensional hypercube

if S is a canonical resonant set, otherwise, it associates as many subgraphs of R(G)

isomorphic to the k-dimensional hypercube as the number of perfect matchings of G−S.

This allows the definition of the set of subgraphs of R(G) isomorphic to a hypercube

associated with a resonant set. For a resonant set S, let us denote the associated set of

hypercubes with HS.

Let G be a benzenoid graph with a perfect matching and R(G) its resonance graph.

Let H(R(G)) be the set of subgraphs of R(G) isomorphic to hypercubes and S(G) be the

family of nonempty resonant sets of G. Then we can state the following theorems from

[11].

Theorem 3.1. [11] Let G be a benzenoid graph with a perfect matching and let f :

H(R(G)) → S(G) be a mapping defined with f(H) = SH for H ∈ H(R(G)). Then the

inverse image of a nonempty resonant set S under the mapping f is HS.

Note that Theorem 3.1 asserts that mapping f is surjective, a result first proved in

[26].

Theorem 3.2. [11] Let G be a benzenoid graph with a perfect matching. Then there

exists a bijective mapping from the set of subgraphs of R(G) isomorphic to the Cl(G)-

dimensional hypercube into the family of maximum cardinality resonant sets of G.

4 New results

4.1 R(G) and maximal resonant sets of G

We will generalize Theorem 3.2 to the family of maximal resonant sets of an elementary

benzenoid graph without nice coronenes. First we need the following lemma.

Lemma 4.1. [27] Let G be an elementary benzenoid graph. Then G has no nice coronenes

-70-



if and only if for any pair of disjoint cycles that form a nice subgraph of G their interiors

are disjoint.

Lemma 4.2. Let G be an elementary benzenoid graph without nice coronenes. Then S

is a maximal resonant set of G if and only if S is a canonical set of G.

Proof. The only if part follows from [28].

For the if part let S be a maximal resonant set of G and suppose S is not canonical.

Then G−S allows at least two different perfect matchings. It follows that G−S contains

a cycle C which is an alternating cycle in both perfect matchings. Let C denote the cycle

C together with its interior. We now consider two possibilities.

First assume that S ∩ C = ∅. Since C is an alternating cycle, C is an elementary

benzenoid graph. Therefore C contains at least one alternating hexagon h [12, 16]. But

then S ∪ {h} is also a resonant set which contradicts the maximality of S.

Assume now S ∩C �= ∅. Since C ∈ G−S, then there exists at least one such hexagon

h ∈ S that h ∈ C, moreover C and h are disjoint and form a nice subgraph of G. By

Lemma 4.1 graph G has a nice coronene what is, again, a contradiction.

Theorem 4.3. Let G be an elementary benzenoid graph G without nice coronenes. Then

there exists a bijective mapping from the set of subgraphs of R(G) that are maximal

hypercubes into the family of maximal resonant sets of G.

Proof. Let H be a maximal hypercube of dimension k of the resonance graph R(G).

Then the image of H under the mapping f defined in Theorem 3.1 is a resonant set S

of cardinality k. S must be a maximal resonant set, otherwise the inverse image of S

under the mapping f is HS, where the hypercubes in HS are of dimension greater than

k, which is a contradiction, since H ∈ HS.

By Lemma 4.2 a maximal resonant set S of G is also a canonical resonant set. Hence,

by Theorem 3.1 the inverse image of a maximum cardinality set under the mapping f

defined in Theorem 3.1 is a singleton set containing a subgraph of R(G) isomorphic to

the k-dimensional hypercube.

Now we can assign to each maximal resonant set S of an elementary benzenoid graph

G without nice coronenes a unique hypercube HS ⊆ R(G) of dimension |S|. For a

pericondensed benzenoid graph from Figure 3 we have eight maximal resonant sets, one
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of them has cardinality one, six have cardinality two and there is one maximum cardinality

resonant set {h3, h5, h7}. Therefore in the resonance graph R(G) we have eight maximal

hypercubes, where six of them are 2-dimensional and then we have one 3-dimensional

and one 1-dimensional hypercube. For example, for a maximal resonant set S = {h2, h7}
the corresponding maximal hypercube HS ⊆ R(G) is a 2-dimensional hypercube, induced

with edges from Θ-classes Eh2 , Eh7 (for the clarity of figures an edge of R(G) from the

Θ-class Ehi
is denoted with i).

Figure 3: The resonance graph R(G) of a benzenoid graph G.

4.2 R(G) and alternating sets of G

We are interested in a connection between different maximal hypercubes of the resonance

graph of a benzenoid graph G. In order to explain it we need to consider the alternating

sets of G.

Theorem 4.4. Let G be a benzenoid graph without nice coronenes and R(G) its resonance

graph. Then a vertex M ∈ R(G) is incident with vertices M1,M2, . . . ,Mk, where M ⊕
Mi = hi, for i = 1, 2, . . . , k, if and only if P = {h1, h2, . . . , hk} is an M-alternating set

of G.

Proof. Let M be a vertex of a resonance graph R(G) and let M1,M2, . . . ,Mk be incident

vertices of M in R(G). By the definition of the resonance graph, a symmetric difference

M ⊕Mi is a hexagon hi of G, where i = 1, 2, . . . , k. Since R(G) is a partial cube [10], no

two incident edges belong to the same Θ-class and hexagons h1, h2, . . . hk are all distinct.

Further, they are all M -alternating hexagons and we have an alternating set.
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For the converse, let P be an alternating set of G and M such a perfect matching,

that every hexagon in P is M -alternating set. Let h be a hexagon of P . Since h is

M -alternating, there exists a perfect matching M ′ such, that M ⊕M ′ = h and therefore

MM ′ is an edge in R(G). By the same conclusion as above, different hexagons of P

induce different edges incident with M .

Corollary 4.5. Let G be a benzenoid graph without nice coronenes. The maximum degree

of a vertex in R(G) equals the size of a maximum cardinality alternating set of G.

Proof. Let P be a maximum cardinality alternating set of G. From Theorem 4.4 there

exists such a vertexM in the resonance graph R(G) that the degree ofM is |P |. Following
the same line of thought as in the proof of Theorem 4.4 we can see that the existence

of a vertex with a larger degree would be a contradiction to the maximum cardinality of

P .

From the definition of the Fries number the next corollary immediately follows.

Corollary 4.6. Let G be a benzenoid graph without nice coronenes. The Fries number

of G is the maximum degree of the resonance graph R(G)

Fr(G) = Δ(R(G)) .

Let P be a maximal alternating set and let [P ] ⊆ G be a graph, induced with vertices

of hexagons from P . Let M be the set of such perfect matchings of G, that for any

M ∈ M all the hexagons in P are M -alternating. First we observe, that the connected

components of [P ] must be catacondensed benzenoid graphs, since the hexagons of a

pericondesed benzenoid graph can not be simultaneously alternating.

Let the number of hexagons in a connected component of [P ] be a size of the compo-

nent. If a component of [P ] has the size greater then one, then perfect matchings from

M restricted to that component, are identical. On the other hand, if the component is

of size one, t.i. a single hexagon, say h, then for any M ∈ M there exists M ′ ∈ M such,

that M ⊕M ′ = h. Since any maximal alternating set of a benzenoid graph is canonical

([13]), we can conclude that if [P ] has k components of size one, t.i. single hexagons,

then |M| = 2k.

By the same argument as in Section 3, where we considered resonant sets, the sub-

graph in R(G) induced with perfect matchings fromM is isomorphic to the k-dimensional
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hypercube. So, to any maximal alternating set P ⊆ G we can associate a unique hyper-

cube HP in R(G). If h1, h2, . . . , hk are single hexagons of P , then HP is spanned with

edges from Θ-classes Eh1 , Eh2 , . . . , Ehk
of R(G). All the vertices of HP are therefore inci-

dent with edges from Θ-classes Eh1 , Eh2 , . . . , Ehk
as well as with edges from any Θ-class

Ehj
, where hexagon hj is in P and is not a single hexagon (t.i. j �= 1, 2, . . . , k). Let us

mention, if there are no single hexagons in P , then HP is a hypercube of dimension 0,

that is a vertex.

Figure 4: The resonance graph R(G) of a benzenoid graph G and two hypercubes HP ⊂
R(G).

In Figure 4 we have an example of a catacondensed benzenoid graph G together with

its resonance graph R(G), where for a maximal alternating set P1 = {h1, h2, h3, h5, h6}
the associated hypercube HP1 of dimension two is highlighted, and for a second maxi-

mal alternating set P2 = {h1, h3, h4, h5, h6, h7} the associated hypercube HP2 is a ver-

tex, marked with a black circle on Figure 4, and is incident with edges from Θ-classes

Eh1 , Eh3 , Eh4 , Eh5 , Eh6 , Eh7 (as in Figure 3 edges from Θ-class Ehi
are labeled with i).

Theorem 4.7. Let G be an elementary benzenoid graph without nice coronenes. Let P

be a maximal alternating set and S a maximal resonant set of G, and let HP and HS be

the associated hypercubes in R(G), respectively. Then S ⊆ P if and only if HP ⊆ HS.
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Proof. Let P = {h1, h2, . . . , hk} be a maximal alternating set and further let

S = {hs1 , hs2 , . . . , hsi} be a maximal resonant set, such that S ⊆ P . Let M be a vertex

of the hypercube HP . Then d(M) = k and the incident edges of M belong to distinct Θ-

classes Eh1 , Eh2 , . . . , Ehk
. Since the hypercube HS is spanned with edges from Θ-classes

Ehs1
, Ehs2

, . . . , Ehsi
and S is a maximal resonant set, by Theorem 4.3 the hypercube HS

is uniquely determined and the vertex M must belong to HS.

If at least one of the hexagons from P is a single hexagon, then HP is not a vertex.

Considering this, let MM ′ be an edge of the hypercube HP . We have just shown that

M,M ′ ∈ V (HS). Suppose MM ′ /∈ E(HS). Since MM ′ is an edge of HP , the symmetric

difference M ⊕M ′ = h, where h is a single hexagon of P and by our assumption, h /∈ S,

which is a contradiction with the maximality of S.

For the only if part, suppose HP ⊆ HS. Let M be a vertex of HP and let h be

an arbitrary hexagon of S. Then M ∈ V (HS) and since every vertex of HS is incident

with an edge from the Θ-class Eh, the vertex M is also incident with an edge from Eh.

Therefore h must belong to P . Since h was arbitrarly chosen it follows that S ⊆ P .

Corollary 4.8. Let G be an elementary benzenoid graph without nice coronenes, with P

being a maximal alternating set of G and let S be the union of all maximal resonant sets

of [P ]. Then S = P .

Proof. Since every maximal resonant set of [P ] is also a maximal resonant set of G, the

corollary follows immediately from the proof of Theorem 4.7.

5 Open problems

1. Theorem 4.3 holds also in the case of any benzenoid graph without nice coronenes.

2. Let H be a set of all maximal hypercubes of an elementary benzenoid graph G

without nice coronenes. The question is, Can the resonance graph R(G) be com-

posed from the elements of H with the additional information on the adjacency of

hexagons without computing 1-factors?
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[11] K. Salem, S. Klavžar, A. Vesel, P. Žigert, The Clar formulas of a benzenoid system

and the resonance graph, Discr. Appl. Math. 157 (2009) 2565–2569.

[12] F. Zhang, R. Chen, When each hexagon of a hexagonal system covers it, Discr. Appl.

Math. 30 (1991) 63–75.

[13] K. Salem, H. Abeledo, A maximal alternating set of a hexagonal system, MATCH

Commun. Math. Comput. Chem. 55 (2006) 159–176.

[14] K. Salem, I. Gutman, The unfixed subgraph of a catacondensed hexagonal system

obtained by fixing an alternating set, J. Math. Chem. 38 (2005) 503–510.

-76-



[15] P. Hansen, M. Zheng, Numerical bonds for the perfect matching vectors of a polyhex,

J. Chem. Inf. Comput. Sci. 34 (1994) 305–308.

[16] I. Gutman, Topological properties of benzenoid systems. XIX. Contributions to the

aromatic sextet theory, Wiss. Z. Thechn. Hochsch. Ilmenau 29 (1983) 57–65.

[17] H. Hosoya, T. Yamaguchi, Sextet polynomial. A new enumeration and proof tech-

nique for the resonance energy applied to the aromatic hydrocarbons, Tetrahedron

Lett. 52 (1975) 4659–4662.

[18] H. Abeledo, G. Atkinson, The Clar and Fries problems for benzenoid hydrocarbons

are linear programs, in: P. Hansen, P. Fowler, M. Zheng (Eds.), Discrete Mathemat-

ical Chemistry , Am. Math. Soc., Providence, 2000, pp. 1–8.

[19] H. Abeledo, G. Atkinson, Unimodularity of the Clar number problem, Lin. Algebra

Appl. 420 (2007) 441–448.

[20] P. Hansen, M. L. Zheng, Upper bounds for the Clar number of a benzenoid hydro-

carbon, J. Chem. Soc. Faraday Trans. 88 (1992) 1621–1625.

[21] K. Salem, Towards a combinatorial efficient algorithm to solve the Clar problem

of benzenoid hydrocarbons, MATCH Commun. Math. Comput. Chem. 53 (2005)

419–426.

[22] I. Gutman, Covering hexagonal systems with hexagons, in: Proceedings of the Fourth

Yugoslav Seminar on Graph Theory , Univ. Novi Sad, Novi Sad, 1983, pp. 151–160.

[23] P. Winkler, Isometric embeddings in products of complete graphs, Discr. Appl. Math.

7 (1984) 221–225.
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