
Wiener Index in Random Polyphenyl
Chains1

Weiling Yang and Fuji Zhang2

School of Mathematical Sciences, Xiamen University,
Xiamen, Fujian 361005, P. R. China

ywlxmu@163.com & fjzhang@xmu.edu.cn

(Received December 9, 2011)

Abstract

The Wiener index of a connected graph is the sum of the distances between all
pairs of vertices of the graph. In this paper, we obtain a simple exact formula for
the expected value of the Wiener index of a random polyphenyl chain.

1 Introduction

A kind ofmacrocyclic aromatic hydrocarbons called polyphenyls and their derivatives

attracted the attention of chemists for many years [1–3]. The derivatives of polyphenyls

are very often seen chemicals, which can be used in organic synthesis, drug synthesis,

heat exchanger, etc. Biphenyl compounds also have extensive industrial applications.

For example, 4,4-bis (chloromethyl) biphenyl can be used for the synthesis of brightening

agents. Especially, polychlorinated biphenyls (PCBs) can be applied in print and dyeing

extensively [4, 5]. On the other side, PCBs are dangerous organic pollutants, which lead

to global pollution.

The Wiener index of a connected graph is the sum of the distances between all pairs

of vertices of the graph. It was first reported by Wiener [6] in the study of paraffin boiling

points. In the second half of the 20th century, the Wiener index was found to be cor-

related to many physico-chemical properties and to have pharmacologic applications. [7]

characterize the polyphenyl chains with minimum and maximum Wiener indices among

all polyphenyl chains with n hexagons, and tree-like polyphenyl systems with maximum
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Wiener index. I. Gutman [8–10] studied the perfect matchings and Wiener index about

random benzenoid chains in 1990s. In this paper, we obtain a simple exact formula for

the expected value of the Wiener index of a random polyphenyl chain. Furthermore its

asymptotic behavior is also considered.

2 Preliminaries

Let G be a graph with vertex set {v1, v2, · · · , vn}. The distance d(vr, vs) between vr

and vs in G is the length, or number of edges, of a shortest path in G that connects vr

and vs. Under this definition d(vr, vr) = 0. The Wiener number of G is then defined by

W (G) =
∑
r<s

d(vr, vs) =
1

2

n∑
r=1

n∑
s=1

d(vr, vs) =
1

2

n∑
r=1

d(vr|G)

where d(vr|G) is the Wiener number of vertex vr in G, defined by

d(vr|G) =
n∑

s=1

d(vr, vs)

The molecular graphs (or more precisely, the graphs representing the carbon-atoms)

of polyphenyls are called the polyphenyl system. If each vertex of the polyphenyl system

lies in a hexagon and the graph obtained by contracting every hexagon into a vertex in

the polyphenyl system is a path, we say that it is a polyphenyl chain. Fig. 1 show the

unique plyphenyl chains for n = 1, 2 and all the polyphenyl chains for n = 3, 4.

More generally, a polyphenyl chain PPCn with n hexagons can be regarded as a

polyphenyl chain PPCn−1 with n − 1 hexagons to which a new terminal hexagon has

been adjoined by an edge (see Fig. 2).

But for n ≥ 3, the terminal hexagon can be attached in three ways, which results in

the local arrangements we describe as PPC1
n+1, PPC2

n+1, PPC3
n+1 (see Fig. 3).

A random polyphenyl chain PPC(n, p1, p2) with n hexagons is a polyphenyl chain

obtained by stepwise addition of terminal hexagons. At each step k (= 3, 4, . . . , n) a

random selection is made from one of the three possible constructions: (1) PPCk−1 →
PPC1

k , with probability p1, (2) PPCk−1 → PPC2
k , with probability p2, (2) PPCk−1 →

PPC3
k , with probability 1 − p1 − p2. We assume that the probabilities p1 and p2 are

constants, invariant to the step parameter k. That is, the process described is a zeroth-

order Markov Process. For PPC(n, p1, p2), the Wiener number is a random variable. In

this paper, we obtain a simple exact formula of its expected value E(W (PPC(n, p1, p2))).
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Figure 1: Polyphenyl chain
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Figure 2: A polyphenyl chain PPCn with n hexagons
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Figure 3: The three types of local arrangements in polyphenyl chains
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3 Main result

Theorem 1 For n ≥ 1, we have

E(W (PPC(n, p1, p2))) = (24− 6p1 − 12p2)n
3 + (18p1 + 36p2)n

2 + (3− 12p1 − 24p2)n

Proof: As described above, the plyphenyl chain PPCn is obtained by attaching PPCn−1

a new terminal hexagon by an edge (see Fig. 2). Suppose the terminal hexagon spans by

vertices x1, x2, · · · , x6, and the new edge is un−1x1 (see Fig. 2). Note that:

1. For any v ∈ PPCn−1, d(xk, v) = d(un−1, v) + k, (k = 1, 2, 3, 4),

d(x5, v) = d(un−1, v) + 3, d(x6, v) = d(un−1, v) + 2;

2. PPCn−1 has 6(n− 1) vertices;

3.
∑6

i=1 d(xk, xi) = 9, ∀k ∈ {1, 2, 3, 4, 5, 6}.

So we have:

d(x1|PPCn) = d(un−1|PPCn−1) + 1× 6(n− 1) + 9 (1a)

d(x2|PPCn) = d(un−1|PPCn−1) + 2× 6(n− 1) + 9 (1b)

d(x3|PPCn) = d(un−1|PPCn−1) + 3× 6(n− 1) + 9 (1c)

d(x4|PPCn) = d(un−1|PPCn−1) + 4× 6(n− 1) + 9 (1d)

d(x5|PPCn) = d(un−1|PPCn−1) + 3× 6(n− 1) + 9 (1e)

d(x6|PPCn) = d(un−1|PPCn−1) + 2× 6(n− 1) + 9 (1f)

and

W (PPCn) = W (PPCn−1) + 6d(un−1|PPCn−1) + 90n− 36− 1

2

6∑
i=1

6∑
j=1

d(vi, vj)

Then

W (PPCn+1) = W (PPCn) + 6d(un|PPCn) + 90n+ 27 (2)

For a random polyphenyl chain PPC(n, p1, p2), the distance number d(un|PPC(n, p1, p2))

is a random variable and we denote its expected value by

Un = E(d(un|PPC(n, p1, p2)))
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There are three cases to consider:

case 1. PPCn → PPC1
n+1. In this case, un coincides with the vertex labeled x3 or x5.

Consequently, d(un|PPCn) is given by eq. (1c) or (1e).

case 2. PPCn → PPC2
n+1. In this case, un coincides with the vertex labeled x2 or x6.

Consequently, d(un|PPCn) is given by eq. (1b) or (1f).

case 3. PPCn → PPC3
n+1. In this case, un coincides with the vertex labeled x4. Conse-

quently, d(un|PPCn) is given by eq. (1d).

Since the above three cases occur in random polyphenyl chains with probabilities p1,

p2 and 1− p1 − p2, we immediately obtaine

Un =p1[d(un|PPC(n− 1, p1, p2)) + 3× 6(n− 1) + 9]

+ p2[d(un|PPC(n− 1, p1, p2)) + 2× 6(n− 1) + 9]

+ (1− p1 − p2)[d(un|PPC(n− 1, p1, p2)) + 4× 6(n− 1) + 9]

By applying the expectation operator to the above equation, and noting that E(Un) =

Un, we obtain

Un = p1(Un−1 + 18n− 9) + p2(Un−1 + 12n− 3) + (1− p1 − p2)(Un−1 + 24n− 15)

It is easily transformed into:

Un = Un−1 + (24− 6p1 − 12p2)n+ 6p1 + 12p2 − 15

The boundary condition is

U1 = E(d(u1|PPC(1, p1, p2))) = 1 + 1 + 2 + 2 + 3 = 9

Using the above recurrence relation and the boundary condition, we have

Un = (12− 3p1 − 6p2)n
2 + (3p1 + 6p2 − 3)n (3)

A recurrence relation for the expected value of the Wiener number of a random

polyphenyl chain can be obtained from eq. (2) by using PPC(k, p1, p2) in place of PPCk

(k = n, n+ 1) and by using the expectation operator. and using eq. (3) we obtain

E(W (PPC(n, p1, p2))) =E(W (PPC(n− 1, p1, p2))) + 6Un + 90n+ 27

=E(W (PPC(n− 1, p1, p2))) + 6[(12− 3p1 − 6p2)n
2

+(3p1 + 6p2 − 3)n] + 90n+ 27
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The boundary condition is

E(W (PPC(1, p1, p2))) = 27

Using the above recurrence relation and the boundary condition, we have

E(W (PPC(n, p1, p2))) = (24− 6p1 − 12p2)n
3 + (18p1 + 36p2)n

2 + (3− 12p1 − 24p2)n

�
At the end of this paper, we point out that

E(W (PPC(n, p1, p2))) ∼ (24− 6p1 − 12p2)n
3

That is E(W (PPC(n, p1, p2))) is asymptotic to a cubic in n as n → ∞
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