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Abstract: The vertex Padmakar-Ivan (PIv) index of a graph G was introduced as the sum
over all edges e = uv of G of the number of vertices which are not equidistant to the vertices
u and v. In this paper we provide an analogue to the results of T. Mansour and M. Schork
[The PI index of bridge and chain graphs, MATCH Commun. Math. Comput. Chem. 61
(2009) 723-734]. Two efficient formulas for calculating the vertex PI index and Szeged index
of chain graphs are determined. Using these formulas, the vertex PI index and Szeged index
of a spiro chain of hexagons are computed.

1 Introduction

A single number, representing a chemical structure in graph-theoretical terms via the

molecular graph, is called a topological descriptor and if it in addition correlates with

a molecular property it is called topological index, which is used to understand physico-

chemical properties of chemical compounds. The Wiener index, introduced by H. Wiener

[1] in 1947, is one of the oldest and most thoroughly examined molecular graph-based

structural descriptor of organic molecule [2]. It is only applicable to acyclic (tree) graphs.

For cyclic compounds (graphs), I. Gutman [3] introduced another generalization that
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is known under the name of Szeged index. Many methods for the calculation of Szeged

indices of some systems are considered in [4–9]. Szeged andWiener indices are the same for

acyclic graphs. Consequently, P. V. Khadikar et al. [10, 11] proposed another Szeged-like

index called Padmakar-Ivan (PI) index. In recent times, the PI index has been considered

for many special graphs, such as product graphs [12, 13], bridge and chain graphs [14],

polyomino chains [15] and so on. Since the PI index is viewed as the edge-version, it

is natural to introduce another index called vertex PI index which is viewed as vertex-

version, see [4, 12, 13]. Very recently, T. Mansour and M. Schork [5] have considered the

vertex PI index and Szeged index for bridge graphs. For chain graphs (to be defined more

precisely later) the PI index and the Wiener, hyper-Wiener, detour and hyper-detour

indices were determined in [14] and [16], respectively.

Suppose that e = uv is an edge of a connected graph G = (V (G), E(G)). Then we de-

note the number of vertices lying closer to the vertex u than to the vertex v by nu(e|G) and

the number of vertices lying closer to v than to u by nv(e|G). The vertex Padmakar-Ivan

(PIv) and Szeged (Sz) indices of G are defined as PIv(G) :=
∑

e∈E(G)(nu(e|G) + nv(e|G))

and Sz(G) :=
∑

e∈E(G) nu(e|G)nv(e|G), respectively. Note that in these definitions the

vertices equidistant from the two ends of the edge e are not counted. Hence if we let ne(G)

denote the number of vertices of G that are not equidistant from the two end vertices of

e, then ne(G) = nu(e|G) + nv(e|G) and PIv(G) =
∑

e∈E(G) ne(G).

Let us recall the definition of chain graphs; see [14, 16]. If {Gi}di=1 is a set of pairwise

disjoint graphs with vi, wi ∈ V (Gi), then the chain graph G = C(G1, · · · , Gd; v1, w1, · · · ,
vd, wd) of {Gi}di=1 with respect to {vi, wi}di=1 is the graph obtained from the graphs

G1, G2, · · · , Gd by identifying the vertex wi and vi+1 for i = 1, 2, · · · , d − 1, as shown

in Fig. 1.
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In this paper we will compute exact formulas for the vertex PI index and the Szeged

index of the chain graph from the respective indices of the individual graphs. Using these

formulas, we also obtain the vertex PI index and Szeged index of a spiro chain of hexagons.
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2 Main results

For convenience we introduce the following notation. Let v be a vertex of a graph G. We

denote by Mv(G) the set of all edges xy ∈ E(G) such that d(x, v) = d(y, v). We denote

by |S| the cardinality of a set S.

Theorem 1. Let G = C(G1, G2, · · · , Gd; v1, w1, v2, w2, · · · , vd, wd) be a chain graph shown

in Fig. 1. Then we have

PIv(G) =
d∑

i=1

PIv(Gi) +
d∑

i=2

(|E(Gi)| − |Mvi(Gi)|)αi +
d−1∑
i=1

(|E(Gi)| − |Mwi
(Gi)|)βi,

where αi =
∑i−1

j=1 |V (Gj)|, βi =
∑d

j=i+1 |V (Gj)|.

Proof. From the definition we have

PIv(G) =
d∑

i=1

∑
e∈E(Gi)

ne(G) =
∑

e∈E(G1)

ne(G) +
d−1∑
i=2

∑
e∈E(Gi)

ne(G) +
∑

e∈E(Gd)

ne(G).

If e ∈ E(G1) \ Mw1(G1), then each vertex in ∪d
j=2V (Gj) is not equidistant from the

ends of the edge e, and so ne(G) = ne(G1) + β1; if e ∈ Mw1(G1), then all vertices in

∪d
j=2V (Gj) are equidistant from the ends of the edge e, and so ne(G) = ne(G1). Thus we

have ∑
e∈E(G1)

ne(G) = PIv(G1) + (|E(G1)| − |Mw1(G1)|)β1.

Similarly, we can obtain∑
e∈E(Gd)

ne(G) = PIv(Gd) + (|E(Gd)| − |Mvd(Gd)|)αd.

For e ∈ E(Gi) (2 � i � d− 1), we distinguish the following four cases.

Case 1. If e ∈ Mvi(Gi) ∩ Mwi
(Gi), then all vertices in V (G)\V (Gi) are equidistant

from the ends of the edge e, and so ne(G) = ne(Gi).

Case 2. If e ∈ Mvi(Gi)\Mwi
(Gi), then all vertices in ∪i−1

j=1V (Gj) are equidistant from

the ends of the edge e, but all vertices in ∪d
j=i+1V (Gj) are not equidistant from the ends

of the edge e, and so ne(G) = ne(Gi) + βi.

Case 3. If e ∈ Mwi
(Gi)\Mvi(Gi), then, as above, we can obtain ne(G) = ne(Gi)+αi.

Case 4. If e ∈ E(Gi) \ (Mvi(Gi)∪Mwi
(Gi)), then all vertices in V (G)\V (Gi) are not

equidistant from the ends of the edge e, and so ne(G) = ne(Gi) + αi + βi.
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Combining the above arguments we have∑
e∈E(Gi)

ne(G) =
∑

e∈Mvi (Gi)∩Mwi (Gi)

ne(Gi) +
∑

e∈Mvi (Gi)\Mwi (Gi)

(ne(Gi) + βi)

+
∑

e∈Mwi (Gi)\Mvi (Gi)

(ne(Gi) + αi) +
∑

e∈E(Gi)\(Mvi (Gi)∪Mwi (Gi))

(ne(Gi) + αi + βi)

= PIv(Gi) + (|E(Gi)| − |Mvi(Gi)|)αi + (|E(Gi)| − |Mwi
(Gi)|)βi.

Eventually, we obtain the assertion. �

Suppose that v and w are two vertices of a graphH, and let Gi = H and vi = v, wi = w

for all i = 1, 2, · · · , d. Then, by simple calculations, we can easily obtain the following

result.

Corollary 2. The vertex PI index of the chain graph G = C(H,H, · · · , H; v, w, v, w, · · · ,
v, w) (d times) is given by

PIv(G) = dPIv(H) +

(
d

2

)
(2|E(H)| − |Mv(H)| − |Mw(H)|) .

Suppose that G is a chain graph shown in Fig. 1. Then we further define the four

subsets Lvi , Rvi , Lwi
and Rwi

of E(Gi)\Mvi(Gi) as follows. For e = uv ∈ E(Gi)\Mvi(Gi),

we let e ∈ Lvi if d(u, vi) < d(v, vi) and e ∈ Rvi otherwise; and e ∈ Lwi
if d(u, wi) < d(v, wi)

and e ∈ Rwi
otherwise.

Theorem 3. Let G = C(G1, G2, · · · , Gd; v1, w1, v2, w2, · · · , vd, wd) be a chain graph shown

in Fig. 1. Then we have

Sz(G) =
d∑

i=1

Sz(Gi) +
d−1∑
i=1

βi(
∑
e∈Lwi

nv(e|Gi) +
∑
e∈Rwi

nu(e|Gi))

+
d∑

i=2

αi(
∑
e∈Lvi

nv(e|Gi) +
∑
e∈Rvi

nu(e|Gi)) +
d−1∑
i=2

(|Lvi ∩Rwi
|+ |Rvi ∩ Lwi

|)αiβi,

where αi =
∑i−1

j=1 |V (Gj)|, βi =
∑d

j=i+1 |V (Gj)|.

Proof. From the definition we have

Sz(G) =
∑

e∈E(G1)

nu(e|G)nv(e|G) +
d−1∑
i=2

∑
e∈E(Gi)

nu(e|G)nv(e|G) +
∑

e∈E(Gd)

nu(e|G)nv(e|G).

If e ∈ Mw1(G1), then each vertex in ∪d
j=2V (Gj) is equidistant from the ends of the

edge e, and so nu(e|G)nv(e|G) = nu(e|G1)nv(e|G1). Suppose that e ∈ E(G1) \Mw1(G1).
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Then each vertex in ∪d
j=2V (Gj) is not equidistant from the ends of the edge e. In this

case, we further obtain that if e ∈ Lw1 then nu(e|G)nv(e|G) = (nu(e|G1) + β1)nv(e|G1),

and if e ∈ Rw1 then nu(e|G)nv(e|G) = nu(e|G1)(nv(e|G1) + β1). Thus we have∑
e∈E(G1)

nu(e|G)nv(e|G) =
∑

e∈Mw1 (G1)

nu(e|G1)nv(e|G1) +
∑

e∈Lw1

(nu(e|G1) + β1)nv(e|G1)

+
∑

e∈Rw1

nu(e|G1)(nv(e|G1) + β1)

= Sz(G1) + β1(
∑

e∈Lw1

nv(e|G1) +
∑

e∈Rw1

nu(e|G1)).

Similarly, we also have∑
e∈E(Gd)

nu(e|G)nv(e|G) = Sz(Gd) + αd(
∑
e∈Lvd

nv(e|Gd) +
∑
e∈Rvd

nu(e|Gd)).

For e ∈ E(Gi) (2 � i � d− 1), we distinguish the following four cases:

Case 1. If e ∈ Mvi(Gi) ∩Mwi
(Gi), then all vertices in V (G) \ V (Gi) are equidistant

from the ends of the edge e, and so nu(e|G)nv(e|G) = nu(e|Gi)nv(e|Gi).

Case 2. If e ∈ Mvi(Gi) \ Mwi
(Gi), then all vertices in ∪i−1

j=1V (Gj) are equidistant

from the ends of the edge e, but all vertices in ∪d
j=i+1V (Gj) are not equidistant from

the ends of the edge e. Thus we further know that if e ∈ Lwi
then nu(e|G)nv(e|G) =

(nu(e|Gi) + βi)nv(e|Gi), and if e ∈ Rwi
then nu(e|G)nv(e|G) = nu(e|Gi)(nv(e|Gi) + βi).

Hence we have∑
e∈Mvi (Gi)\Mwi (Gi)

nu(e|G)nv(e|G)

=
∑

e∈Mvi (Gi)\Mwi (Gi)

nu(e|Gi)nv(e|Gi) +
∑

e∈Mvi (Gi)∩Lwi

βinv(e|Gi) +
∑

e∈Mvi (Gi)∩Rwi

βinu(e|Gi).

Case 3. If e ∈ Mwi
(Gi) \Mvi(Gi), then, as above, we can obtain∑

e∈Mvi (Gi)\Mwi (Gi)

nu(e|G)nv(e|G)

=
∑

e∈Mwi (Gi)\Mvi (Gi)

nu(e|Gi)nv(e|Gi) +
∑

e∈Mwi (Gi)∩Lvi

αinv(e|Gi) +
∑

e∈Mwi (Gi)∩Rvi

αinu(e|Gi).

Case 4. If e ∈ E(Gi) \ (Mvi(Gi)∪Mwi
(Gi)), then all vertices in V (G) \V (Gi) are not

equidistant from the ends of the edge e. We can further observe that if e ∈ Lvi ∩Lwi
then

nu(e|G)nv(e|G) = (nu(e|Gi)+αi+βi)nv(e|Gi), and if e ∈ Lvi∩Rwi
then nu(e|G)nv(e|G) =

(nu(e|Gi)+αi)(nv(e|Gi)+βi), and if e ∈ Rvi∩Rwi
then nu(e|G)nv(e|G) = nu(e|Gi)(nv(e|Gi)
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+ αi + βi), and if e ∈ Rvi ∩ Lwi
then nu(e|G)nv(e|G) = (nu(e|Gi) + αi)(nv(e|Gi) + βi).

Thus we have ∑
e∈E(Gi)\(Mvi (Gi)∪Mwi (Gi))

nu(e|G)nv(e|G)

=
∑

e∈E(Gi)\(Mvi (Gi)∪Mwi (Gi))

nu(e|Gi)nv(e|Gi) + βi

∑
e∈Rwi∩(E(Gi)\Mvi (Gi))

nu(e|Gi)

+ βi

∑
e∈Lwi∩(E(Gi)\Mvi (Gi))

nv(e|Gi) + αi

∑
e∈Lvi∩(E(Gi)\Mwi (Gi))

nv(e|Gi)

+ αi

∑
e∈Rvi∩(E(Gi)\Mwi (Gi))

nu(e|Gi) + (|Lvi ∩Rwi
|+ |Rvi ∩ Lwi

|)αiβi.

Combining the above arguments we obtain∑
e∈E(Gi)

nu(e|G)nv(e|G) = Sz(Gi) + βi(
∑
e∈Lwi

nv(e|Gi) +
∑
e∈Rwi

nu(e|Gi)) + αi(
∑
e∈Lvi

nv(e|Gi)

+
∑
e∈Rvi

nu(e|Gi)) + (|Lvi ∩Rwi
|+ |Rvi ∩ Lwi

|)αiβi.

Eventually, we obtain the assertion. �

Suppose that v and w are two vertices of a graph H, and let Gi = H and vi = v, wi = w

for all i = 1, 2, · · · , d. Then, by a simple calculation, we can easily obtain the following

result.

Corollary 4. The Szeged index of the chain graph G = C(H,H, · · · , H; v, w, v, w, · · · ,
v, w) (d times) is given by

Sz(G) = dSz(H)+

(
d

2

)
(
∑

e∈Rv∪Rw

nu(e|H)+
∑

e∈Lv∪Lw

nv(e|H))+

(
d

3

)
(|Lv∩Rw|+ |Rv∩Lw|).

Fig.2

Example 1. The spiro chain of hexagons G = C(C6, C6, · · · , C6; v, w, v, w, · · · , v, w)
containing the cycle C6 d times is given in Fig. 2. Since PIv(C6) = 36, |Mv(C6)| =

|Mw(C6)| = 0, by Corollary 2 the vertex PI index of the chain is PIv(G) = 36d+12
(
d
2

)
=

6d2 + 30d. Similarly, using Sz(C6) = 54, Rv ∪ Rw = Lv ∪ Lw = E(C6), |Lv ∩ Rw| = |Rv ∩
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Lw| = 3, by Corollary 4 the Szeged index of the chain is Sz(G) = 54d+
(
d
2

)
PIv(C6)+6

(
d
3

)
=

d3 + 15d2 + 38d.
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