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Abstract

Let G be a finite connected graph of order n. The Gutman index Gut(G) of G
is defined as

∑
{x,y}⊆V (G) degG(x)degG(y)dG(x, y), where degG(x) is the degree of

vertex x in G and dG(x, y) is the distance between vertices x and y in G. We prove

that Gut(G) ≤ 24

55
n5 + O(n4). Our bound improves on a bound by Dankelmann,

Gutman, Mukwembi and Swart [The edge-Wiener index of a graph, Discr. Math.
309 (2009) 3452–3457].

1 Introduction

LetG = (V,E) be a finite, connected, simple graph. We denote the order ofG by n, the de-

gree of a vertex v in G by degG(v), and for two vertices u, v in G, dG(u, v) denotes the usual

distance between u and v in G, i. e., the minimum number of edges on a path from u to v.

The Gutman index Gut(G) of G is defined as Gut(G) =
∑

{x,y}⊆V degG(x)degG(y)dG(x, y).

The Gutman index, a Schultz-type molecular topological index and a variant of the well-

known and much studied Wiener Index, was introduced in 1994 by Gutman [5] as a kind

of a vertex-valency-weighted sum of the distances between all pairs of vertices in a graph.

Gutman revealed that in the case of acyclic structures, the index is closely related to the

Wiener Index and reflects precisely the same structural features of a molecular as the
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Wiener Index does. A question, on whether theoretical investigations on the Gutman

index focusing on the more difficult case of polycyclic molecules can be done, was posed.

Since then, several authors [1, 2, 4, 5, 6] have studied the index and its relationship

with other graph parameters. Recently, Dankelmann, Gutman, Mukwembi and Swart [3]

presented an upper bound on the Gutman index of a graph in terms of its order. We

state their result below.

Theorem 1 [3] Let G be a connected graph of order n. Then

Gut(G) ≤ 24

55
n5 +O(n9/2)

and the coefficient of n5 is best possible.

The purpose of this note is to show that the O(n9/2) in the bound can be replaced by

an O(n4) term and prove that Gut(G) ≤ 24

55
n5 + O(n4). This improved bound turns out

to be quite challenging and the methods used in [3] seem inadequate to establish the

bound. To prove this bound, we will carefully engineer an intricate analysis which can

adequately account for the contribution made by pairs of vertices with at least one vertex

on a diametral path.

The notation that we use is as follows: The diameter of G, i. e., max{dG(u, v) : u, v ∈
V }, is denoted by d. For a vertex v, N [v] denotes the closed neighbourhood of v in G, i.

e., N [v] = {x ∈ V : dG(x, v) ≤ 1}. Throughout this note, we will assume that {x, y} is

a pair, i. e., x �= y.

The following observation is folklore and will be required later.

Fact 1 Let G be a connected graph of order n and diameter d. Then:

(i) For each vertex x in G, degG(x) ≤ n− d+ 1.

(ii) For each x, y in G with dG(x, y) ≥ 3, degG(x) + degG(y) ≤ n− d+ 3.

2 Results

Theorem 2 Let G be a connected graph of order n. Then

Gut(G) ≤ 24

55
n5 +O(n4),

and the bound is best possible.
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Proof: Let d be the diameter of G, P = u0, u1, u2, . . . , ud a diametral path and denote

{u1, u2, . . . , ud−1} by Q. Let V = {{x, y} : x, y ∈ V }. We partition V as follows:

V = P ∪ A ∪ B where P := {{x, y} : x ∈ Q}}, A := {{x, y} ∈ V − P : dG(x, y) ≥ 3}
and B := {{x, y} ∈ V − P : dG(x, y) ≤ 2}. Setting |A| = a, |B| = b, we have

a+ b =

(
n− d+ 1

2

)
. (1)

Claim 1
∑

{x,y}∈P
degG(x)degG(y)dG(x, y) ≤ d(n− 1)(n− d+ 1)(3n− d+ 1).

Proof of Claim 1: Partition Q as Q = V1 ∪ V2 ∪ V3, where

V1 = {u1, u4, u7, . . .}, V2 = {u2, u5, u8, . . .} and V3 = {u3, u6, u9, . . .}.
Since P is a shortest path, for x, y ∈ Vi, i = 1, 2, 3, we have N [x] ∩N [y] = ∅. Thus

∑
x∈Vi

degG(x) ≤ n− |Vi| for each i = 1, 2, 3 . (2)

For each vertex x ∈ Q let s(x) :=
∑

y∈V−{x} degG(x)degG(y)dG(x, y). Thus from Fact 1,

we have

s(x) = degG(x)

⎛
⎝ ∑

y∈V−{x}
degG(y)dG(x, y)

⎞
⎠

≤ degG(x)

⎛
⎝ ∑

y∈V−{x}
(n− d+ 1)d

⎞
⎠

≤ degG(x) [d(n− 1)(n− d+ 1)] .

This, in conjunction with (2), yields that for each i = 1, 2, 3,∑
x∈Vi

s(x) ≤
∑
x∈Vi

(degG(x) [d(n− 1)(n− d+ 1)])

= [d(n− 1)(n− d+ 1)]
∑
x∈Vi

degG(x)

≤ [d(n− 1)(n− d+ 1)] (n− |Vi|).

Therefore,

∑
{x,y}∈P

degG(x)degG(y)dG(x, y) ≤
∑
x∈Q

s(x) =
∑
x∈V1

s(x) +
∑
x∈V2

s(x) +
∑
x∈V3

s(x)

≤ [d(n− 1)(n− d+ 1)] (n− |V1|)

+ [d(n− 1)(n− d+ 1)] (n− |V2|)

+ [d(n− 1)(n− d+ 1)] (n− |V3|)

= d(n− 1)(n− d+ 1)(3n− d+ 1),
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as claimed.

Claim 2
∑

{x,y}∈B
degG(x)degG(y)dG(x, y) ≤ (n− d)(n− d+ 1)3.

Proof of Claim 2: Since dG(x, y) ≤ 2 for all {x, y} ∈ B, from Fact 1, we have

∑
{x,y}∈B

degG(x)degG(y)dG(x, y) ≤
∑

{x,y}∈B
2(n− d+ 1)2

= 2b(n− d+ 1)2.

This, together with (1), yields

∑
{x,y}∈B

degG(x)degG(y)dG(x, y) ≤ (n− d)(n− d+ 1)3,

as claimed.

Claim 3

∑
{x,y}∈A

degG(x)degG(y)dG(x, y) ≤ 1

16
d(n− d)4 +

3

4
d(n− d)3 +

21

8
d(n− d)2

+
9

4
d(n− d)− 27

16
d.

Proof of Claim 3: Let {w, z} be a pair in A such that degG(w) + degG(z) is maximum.

Denote degG(w) + degG(z) by t. Thus since

degG(x)degG(y) ≤
1

4
(degG(x) + degG(y))

2 ,

we have

degG(x)degG(y) ≤
1

4
t2. (3)

We first find an upper bound on a, the cardinality of A. Note that from (1),

a =

(
n− d+ 1

2

)
− b. (4)

Note that all pairs {x, y}, x, y ∈ N [w]−Q and all pairs {x, y}, x, y ∈ N [z]−Q are in B.
Since w and z can be adjacent to at most 3 vertices in Q, it follows that

b ≥
(
degG(w) + 1− 3

2

)
+

(
degG(z) + 1− 3

2

)

=
1

2

(
[degG(w)]

2 + [degG(z)]
2
)
− 5

2
(degG(w) + degG(z)) + 6

≥ 1

4
t2 − 5

2
t+ 6.
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Hence from (4), we get

a ≤
(
n− d+ 1

2

)
− 1

4
t2 +

5

2
t− 6.

Thus, from (3), we now have∑
{x,y}∈A

degG(x)degG(y)dG(x, y) ≤
∑

{x,y}∈A

1

4
t2d

≤ 1

4
t2d

[(
n− d+ 1

2

)
− 1

4
t2 +

5

2
t− 6

]
.

By Fact 1, t ≤ n − d + 3. Subject to this condition, a simple differentiation shows that

the function 1
4
t2d

[(
n−d+1

2

)
− 1

4
t2 + 5

2
t− 6

]
is maximized for t = n− d+ 3 to give

∑
{x,y}∈A

degG(x)degG(y)dG(x, y) ≤ 1

16
d(n− d)4 +

3

4
d(n− d)3 +

21

8
d(n− d)2

+
9

4
d(n− d)− 27

16
d

as claimed.

Combining Claim 1, 2 and 3, we get

Gut(G) =
∑

{x,y}∈A
degG(x)degG(y)dG(x, y) +

∑
{x,y}∈B

degG(x)degG(y)dG(x, y)

+
∑

{x,y}∈P
degG(x)degG(y)dG(x, y)

≤ 1

16
d(n− d)4 +

3

4
d(n− d)3 +

21

8
d(n− d)2 +

9

4
d(n− d)− 27

16
d

+ (n− d)(n− d+ 1)3 + d(n− 1)(n− d+ 1)(3n− d+ 1)

=
1

16
d(n− d)4 +O(n4) .

The term 1
16
d(n− d)4 is maximized for d = 1

5
n to give

Gut(G) ≤ 24

55
n5 +O(n4)

as desired.

The graph Gn constructed in [3] shows that the bound is sharp. Precisely for n a

multiple of 5, Gn is obtained from a path with n
5
vertices and two vertex disjoint cliques

of order 2n
5

by adding two edges, each joining an end vertex of the path to a vertex in a

clique. �
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