
On Augmented Eccentric Connectivity
Index of Graphs and Trees

Jelena Sedlar

University of Split, Faculty of civil engeneering, architecture and geodesy,
Matice hrvatske 15, 21000 Split, Croatia

e-mail: jsedlar@gradst.hr

(Received July 14, 2011)

Abstract

In this paper we establish all extremal graphs with respect to augmented ec-
centric connectivity index among all (simple connected) graphs, among trees and
among trees with perfect matching. For graphs that turn out to be extremal explicit
formulas for the value of augmented eccentric connectivity index are derived.

1 Introduction

Several topological indices based on graph theoretical notion of eccentricity have been

recently proposed and/or used in QSAR and QSPR studies. Namely, eccentric connec-

tivity index ( [16]), eccentric distance sum ( [9]), adjacent eccentric distance sum ( [15])

and augmented and super augmented eccentric connectivity index ( [3], [2], [7] and [8]).

These indices have been shown to be very useful (predicting pharmaceutical properties),

therefore their mathematical properties have been studied too. The most extensive study

has been conducted for eccentric connectivity index, for which extremal graphs and trees

have been established ( [6], [18], [11]). Furthermore, the eccentric connectivity index of

some special kinds of graphs was studied such as unicyclic graphs and different kinds of

hexagonal systems ( [1], [4]). For a detailed survey on these and other results concerning
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eccentric connectivity index we refer the reader to [10]. Recently, mathematical proper-

ties of eccentric distance sum started to be investigated too. There are some results on

eccentric distance sum of trees and unicyclic graphs ( [17]) and of general graphs ( [12]).

As for the augmented eccentric connectivity index, there are some results with explicit

formulas for several classes of graphs, in particular for some open and closed unbranched

polymers and nanostructures ( [5]). Otherwise, augmented eccentric connectivity index

was not very much studied.

In this paper we present the results concerning extremal graphs and values of aug-

mented eccentric connectivity index on class of simple connected graphs, on trees and on

trees with perfect matching. The main results are the results for trees from which follow

the results on general graphs. It turns out that path Pn is minimal tree with respect to

augmented eccentric connectivity index, as was perhaps to be expected since paths are

minimal trees with respect to other eccentricity based indices too. But, interestingly, it

turns out that star Sn is not maximal tree (except for some small n) as was the case with

other indices. Rather, maximal trees turn out to be special kind of trees of diameter 4.

The paper is organized as follows. In the second section ’Preliminaries’ some basic

notions and also the notation are introduced. Also, explicit formulas for the value of

augmented eccentric connectivity index for some specific graphs (such as paths, stars,

etc.) which will later be proved as extremal are derived. Third section is named ’Extremal

trees’. In it we establish all minimal and maximal trees with respect to augmented

eccentric connectivity index. In fourth section we establish extremal trees among trees

with perfectmatching. In fifth section we use the results for trees to establish the extremal

graphs in class of general simple connected graphs. And finally, in the last section we

summarize the results and provide directions for future work.

2 Preliminaries

In this paper we consider only simple connected graphs. We will use the following notation:

G for graph, V (G) or just V for its set of vertices, E(G) or just E for its set of edges.

With n we will denote number of vertices in graph G. For two vertices u, v ∈ V we define

distance d(u, v) of u and v as the length of shortest path connecting u and v. Given the

notion of distance we can define several other notions based on distance. First, for a vertex

u ∈ V we define eccentricity ε(u) as the maximum of d(u, v) over all v ∈ V. Furthermore,

we define diameter D of graph G as the maximum of d(u, v) over all pairs of vertices
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u, v ∈ V. A path P in G connecting vertices u and v is called diametric if d(u, v) = D.

Therefore, diametric path P must be the shortest path between u and v. The set of all

vertices with minimum eccentricity in G is called center of G and such vertices are called

central. For a vertex u ∈ V a degree deg(u) is defined as number of vertices from V

adjacent to u. Now, we can define augmented eccentric connectivity index of a graph G

as

ξac(G) =
∑
u∈V

M(u)

ε(u)

where M(u) is product of degrees of all neighbors of u and ε(u) is eccentricity of u.

Sometimes, for brevity sake, this index will be called ’augmented ECI’.

Let us now define some special kinds of graphs. First, Kn will denote a complete graph

on n vertices. Special class of graphs which will be of interest are trees. A tree is a graph

with no cycles. It is easily seen that tree has only one central vertex if D is even, and

two central vertices if D is odd. We say that a vertex in tree T is a leaf if its degree is 1,

otherwise we say that a vertex is non-leaf. Also, we say that a vertex in a tree is branching

if its degree is greater than or equal to 3. We say that a tree T is spanning tree of graph

G if V (T ) = V (G) and E(T ) ⊆ E(G). Now, Pn will denote a path on n vertices and Sn

will denote a star on n vertices. We will also specially consider trees of diameter 4. Let

us therefore introduce some interesting classes of graphs with diameter 4. We say that a

tree T is degree balanced if its diameter is 4 and all neighbors of (the only) central vertex

differ in degree by at most one. With TBn,k we will denote degree balanced tree on n

vertices with degree of central vertex being k. Note that there is only one such tree up

to isomorphism. Now, from definition follows that neighbors of central vertex in degree

balanced tree T can have only two degrees, say p− 1 and p. Note that p is determined by

k and holds

p =

⌈
n− 1

k

⌉
.

But, on the other hand k is not determined by p. We have

n− 1

p
≤ k <

n− 1

p− 1
.

Having this in mind, we define (almost) perfect degree balance in a tree. Namely, we

say that a degree balance is perfect if all neighbors of central vertex have the degree p, we

say that balance is maximum if maximum possible number of neighbors of central vertex

have the degree p. Note that degree balanced tree is in (almost) perfect balance if and
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only if

k =

⌈
n− 1

p

⌉
.

An example of tree with degree balance, maximum degree balance and perfect degree

balance is shown in Figure 1.

Figure 1: Trees: TB12,5 with degree balance, TB14,5 with maximum degree balance and
TB16,5 with perfect degree balance.

Now, we will establish exact values of augmented ECI for some of these graphs, which

will later be proved as extremal for some class of graphs. Let us denote Hn =
∑n

i=1
1
i
. By

direct calculation we obtain the following proposition.

Proposition 1 For paths Pn on n ≥ 5 vertices, stars Sn on n ≥ 4 vertices, degree

balanced trees TBn,	n−1
3 
 on n ≥ 8 vertices, degree balanced graphs TBn,n

2
on n ≥ 6

vertices where n is even, complete bipartite graphs Km,n with m,n ≥ 2 and complete

graphs Kn on n ≥ 2 vertices holds:

1. ξac(Pn) =

{
8(Hn−1 −Hn−2

2
)− ( 4

n−1
+ 4

n−2
) for n even ,

8(Hn−1 −Hn−3
2
)− ( 12

n−1
+ 4

n−2
) for n odd ,

2. ξac(Sn) = 1 + (n−1)2

2
,

3. ξac(TBn,	n−1
3 
) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3k

2
+ k2

3
+ 3k

2
, for n = 3k + 1 ,

3k−1 + k2

3
+ 3k

2
− 1 for n = 3k ,

2 · 3k−2 + k2

3
+ 3k

2
− 1

2
for n = 3k − 1 ,

4. ξac(TBn,n
2
) = 2

n
2
−2 + 1

12
(n2 + 3n− 6) ,

5. ξac(Km,n) =
1
2
(mn+1 + nm+1) ,

6. ξac(Kn) = n · (n− 1)n−1 .

Some of these formulas (for path and complete graph) were already derived in [5].

To conclude, we still need the notion ofmatching. Amatching in a graphG is collection

of edges M from G such that no vertex from G is incident to two edges from M. The size
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of matching is number of edges it contains. We say that matching M is perfect if every

vertex from G is incident to one edge from M. Obviously, only graphs with even number

of vertices can have perfect matching.

3 Extremal trees

In this section we want to establish trees withminimum andmaximum value of augmented

eccentric connectivity index. First, we will do the minimum. For that purpose we need

the following theorem which gives the transformation of tree which increases diameter,

but decreases the value of augmented ECI.

Theorem 2 Let T �= Pn be a tree on n vertices and let P = v0v1 . . . vD be a diametric

path in T chosen so that the first branching vertex is furthest possible from v0. Let vi be

the first branching vertex on P. If D > 2 and i = 1 and deg(vi+1) > 2 then let u = vi+1,

else let u = vi. Let w1, . . . , wk be k neighbors of u outside of P (1 ≤ k ≤ deg(u)− 2). For

tree T ′ obtained from T by deleting edges uw1, . . . uwk and adding edges v0w1, . . . , v0wk

holds

ξac(T ) > ξαc(T ′) .

Proof. Note that this transformation does not decrease eccentricity of any vertex. On

the other hand, the only vertex whose degree increases is v0. Let us denote mi = deg(vi)

and mwi
= deg(wi). Cases when D ≤ 3 are easily verified, therefore we distinguish three

remaining cases when D > 3. Tree transformations from these cases are illustrated with

Figure 2.

Case 1: D > 3 and u = v1 .

Note that in this case m2 = 2 and mwi
= 1 for every iṪherefore, the only vertex for

which M(v) increases from T to T ′ is v1 . We have

ξac(T )− ξαc(T ′) ≥ M(v1)

ε(v1)
− M ′(v1)

ε′(v1)
+

M(v2)

ε(v2)
− M ′(v2)

ε′(v2)
+

k∑
i=1

(
M(wi)

ε(wi)
− M ′(wi)

ε′(wi)

)

≥ 2

D − 1
− 2(k + 1)

D − 1
+

m1 ·m3

D − 2
− (m1 − k) ·m3

D − 2
+ k

(
m1

D
− k + 1

D

)

=
−2k

D − 1
+

m3 · k
D − 2

+
k · (m1 − k − 1)

D
> 0

Case 2: D > 3 and u = v2 .
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The only vertices for which M(v) possibly increases are v0 and v1. We will neutralize

increase in M(v0) by decrease in M(v2), and also neutralize increase in M(v1) by decrease

in M(v3),M(w1), . . . ,M(wk). Let mw = mw1 · . . . ·mwk
and c2 = M(v2)/(mw ·m1). Note

that c2 ≥ 2 because of m3 ≥ 2 (which follows from D > 3). We have

Δ1 =
M(v0)

ε(v0)
− M ′(v0)

ε′(v0)
+

M(v2)

ε(v2)
− M ′(v2)

ε′(v2)
≥ m1

D
− m1 ·mw

D
+

m1 ·mw · c2
D − 2

− m1 · c2
D − 2

= −m1(mw − 1)

D
+

m1 · c2 · (mw − 1)

D − 2
≥ 0.

Now, let c3 = M(v3)/m2. Note that all neighbors of wi except u = v2 are of degree 1 and

therefore M(wi) = m2 for every i . We have

Δ2 =
M(v1)

ε(v1)
− M ′(v1)

ε′(v1)
+

M(v3)

ε(v3)
− M ′(v3)

ε′(v3)
+

k∑
i=1

(
M(wi)

ε(wi)
− M ′(wi)

ε′(wi)

)

≥ m2

D − 1
− (m2 − k) (k + 1)

D − 1
+

m2 · c3
ε(v3)

− (m2 − k) · c3
ε(v3)

+
k∑

i=1

(
m2

D − 1
− k + 1

D − 1

)

= −k (m2 − k − 1)

D − 1
+

k · c3
ε(v3)

+
k (m2 − k − 1)

D − 1
> 0

Therefore,

ξac(T )− ξαc(T ′) ≥ Δ1 +Δ2 > 0 .

Case 3: D > 3 and u = vi (i ≥ 3) .

The only vertices for which M(v) possibly increases are v0 and v1. We will neutralize

increase in M(v0) by decrease in M(vi), and also neutralize increase in M(v1) by decrease

in M(vi−1). Let mw = mw1 · . . . ·mwk
and let ci = M(vi)/ (mi−1 ·mw). We have

Δ1 =
M(v0)

ε(v0)
− M ′(v0)

ε′(v0)
+

M(vi)

ε(vi)
− M ′(vi)

ε′(vi)
≥ 2

D
− 2 ·mw

D
+

mi−1 ·mw · ci
ε(vi)

− mi−1 · ci
ε(vi)

= −2 (mw − 1)

D
+

mi−1 · ci · (mw − 1)

ε(vi)
≥ [mi−1 = 2] ≥ 0 .

Also, from i ≥ 3 we know that v1 �= vi, so we have

Δ2 =
M(v1)

ε(v1)
− M ′(v1)

ε′(v1)
+

M(vi−1)

ε(vi−1)
− M ′(vi−1)

ε′(vi−1)

≥ 2

D − 1
− 2(k + 1)

D − 1
+

2 ·mi

ε(vi−1)
− 2 (mi − k)

ε(vi−1)

= − 2k

D − 1
+

2k

ε(vi−1)
> [ε(vi−1) < D − 1] > 0
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Therefore, we conclude

ξac(T )− ξαc(T ′) ≥ Δ1 +Δ2 > 0 .

Figure 2: Tree transformations from Cases 1, 2 and 3 of Theorem 2.

Corollary 3 Let T �= Pn be a tree on n vertices. Then

ξac(T ) > ξac(Pn) .

Proof. Note that transformation of tree from Theorem 2 increases diameter of the tree.

Therefore, applying that transformation consecutively on T we obtain in the end path Pn

which by that theorem has smaller value of ξac then T.

Now that we found a tree with minimum value of augmented ECI, we want to find a

tree withmaximum value of augmented ECI. One could expect a star Sn to havemaximum

value of augmented ECI, as that was the case of other eccentricity based indices. But,

comparing the value of S16 and TB16,5 we obtain

ξac(S16) = 1 + 15 · 15
2

=
227

2
= 113.5 ,

ξac(TB16,5) =
35

2
+ 5 · 5

3
+ 10 · 3

4
=

412

3
= 137.33 ,

which clearly indicates that Sn is not maximal tree with respect to value of augmented

ECI. Now, we want to establish which trees are maximal. For that purpose, we need the

following theorem.
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Theorem 4 Let T be a tree on n vertices with diameter D ≥ 5 and let P = v0v1 . . . vD

be a diametric path such that M(v2)/ deg(v1) ≤ M(vD−2)/ deg(vD−1). Let w1, . . . , vk be

all pendent vertices of v1. For a tree T ′ obtained from T by deleting edges v1w1, . . . , v1wk

and adding vertices vD−1w1, . . . , vD−1wk holds

ξac(T ) < ξac(T ′) .

Proof. Note that by this transformation eccentricities of vertices do not increase. The

only vertex for which M(v) decreases is v2. We will neutralize this decrease by increase

for vD−1. For the simplicity sake, let mi = deg(vi) for vi ∈ P. Taking into account that

ε(v) ≥ ε′(v) for every v ∈ T we have

ξac(T )− ξac(T ′) ≤ M(v2)

ε(v2)
− M ′(v2)

ε′(v2)
+

M(vD−2)

ε(vD−2)
− M ′(vD−2)

ε′(vD−2)

≤ (m1 − 1) ·M(v2)/m1

ε′(v2)
+

(mD−1 −mD−1 −m1 + 1) ·M(vD−1)/mD−1

ε′(vD−2)

=
(m1 − 1) ·M(v2)/m1

ε′(v2)
− (m1 − 1) ·M(vD−1)/mD−1

ε′(vD−2)

Since ε′(v2) ≥ ε′(vD−2) by construction and since

M(v2)/m1 ≤ M(vD−1)/mD−1

by assumption of the theorem, we conclude ξac(T )− ξac(T ′) ≤ 0. Since also obviously

M(v0)

ε(v0)
− M ′(v0)

ε′(v0)
< 0

we obtain ξac(T )− ξac(T ′) < 0 .

Note that in every tree T there must exist a diametric path which satisfies conditions

of Theorem 4, for either the condition holds for diametric path P or for the same path

with vertices labeled in reverse order. Applying this transformation repeatedly on a tree

with diameter greater than 5, we will finally obtain a tree of diameter 4 with greater value

of augmented ECI.

Therefore, a tree with maximum value of augmented ECI lies among trees with D ≤ 4.

Let us now consider such trees.

Lemma 5 Let T �= Sn be a tree on n vertices with diameter D ≤ 4 such that central

vertices have at most two non-leaf neighbors. Then ξac(T ) < ξac(Sn) .
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Proof. This lemma is corollary of Theorem 2, since every tree T satisfying conditions of

this lemma can be obtained from Sn by applying once (if D = 3) or twice (if D = 4) the

transformation of tree from that theorem.

As a consequence of this lemma, we can conclude that the ”problem” are trees with

diameter 4 and at least three non-leaf neighbors of central vertex. Let us now consider

such trees. Before we proceed, let us note that tree transformations from some of the

following Lemmas are illustrated in Figure 3.

Figure 3: Tree transformations from Lemmas 6, 7 and 8 respectively.

Lemma 6 Let T be a tree on n vertices with diameter D = 4 such that central vertex

u has at least three non-leaf neighbors. Let v1, . . . vk be all neighbors of u labeled so that

deg(v1) ≤ . . . ≤ deg(vk). If deg(vk) − deg(v1) ≥ 2 then for a tree T ′ obtained from T by

deleting a pendent vertex of vk and adding pendent vertex to v1 holds

ξac(T ) < ξac(T ′) .

Proof. Note that eccentricities of vertices remain the same after this transformation.

The only vertex whose degree decreases is vk, therefore M(v) decreases possibly for u and

pending vertices of vk. Let us denote mi = deg vi and c = M(u)/ (m1 ·mk) . Note that

c ≥ 2 because central vertex has at least three non-leaf neighbors. Considering vertex u
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and pending vertices of v1 and vk we obtain

ξ(T )− ξ(T ′) =
m1 · c ·mk

2
− (m1 + 1) · c · (mk − 1)

2
+ (m1 − 1)

(
m1

4
− m1 + 1

4

)

+ (mk − 2)

(
mk

4
− mk − 1

4

)
+

(
mk

4
− m1 + 1

4

)

=
1

2
(c− 1) (m1 −mk + 1) ≤ 1

2
(c− 1) (−2 + 1) < 0 .

Note that Lemma 6 holds even for trees with only two non-pendant neighbors of central

vertex. But then we do not necessarily have strict inequality (constant c from proof can be

1). Lemma 6 can be applied repeatedly until we obtain degree balanced tree. Therefore,

we conclude that among trees on n vertices with D = 4 and central vertex u with given

degree deg(u) = k degree balanced tree TBn,k has maximum value of ξac. Now, we can

obtain the increase in ξac by changing the degree of central vertex. For that purpose we

need following lemma.

Lemma 7 Let T be a tree on n vertices with diameter D = 4 such that central vertex

u has at least three non-leaf neighbors. Let v1, . . . vk be all neighbors of u labeled so that

deg(v1) ≤ . . . ≤ deg(vk). If deg(vk) − deg(v1) ≤ 1 and deg(vk) ≥ 4 than for a tree T ′

obtained from T by deleting two pendant vertices of vk and adding pendant path of length

2 to u holds

ξac(T ) < ξac(T ′) .

Proof. Let us denote k = deg(u), mi = deg(vi) and c = M(u)/mk. Considering

u, v1, . . . , vk and pendant vertices of vk we obtain

ξ(T )− ξ(T ′) =
c ·mk

2
− 2 · c · (mk − 2)

2
+ k

(
k

3
− k + 1

3

)

+ (mk − 3)

(
mk

4
− mk − 2

4

)
+

(
2 · mk

4
−
(
k + 1

3
+

2

4

))

= − c

2
(mk − 4)− 2

3
k +mk −

7

3
≤ [c ≥ 6]

≤ 29

3
− 2mk −

2

3
k ≤ [mk ≥ 4, k ≥ 3] ≤ −1

3
< 0

which concludes the proof.
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By combining Lemmas 6 and 7, we can conclude that our search for trees with extremal

ξac is restricted to Sn or degree balanced trees TBn,k with

p =

⌈
n− 1

k

⌉
≤ 3 .

Now we will consider separately cases when p = 2 and p = 3. First we will consider case

when p = 3. For that purpose we need the following lemma.

Lemma 8 Let T be a tree on n vertices with diameter D = 4 such that central vertex u

has at least three non-leaf neighbors. If T = TBn,k where p =
⌈
n−1
k

⌉
= 3 then

ξac(T ) ≤ ξac
(
TBn,	n−1

3 

)

with equality if and only if k =
⌈
n−1
3

⌉
.

Proof. From p = 3 follows that all neighbors of u are of degree 3 and possibly 2. Suppose

p �=
⌈
n−1
3

⌉
. That means there are at least three neighbors of u of degree 2. Let us denote

all neighbors of u with v1, . . . , vk so that m1 ≤ m2 ≤ . . . ≤ mk where mi denotes deg(vi).

Let w1 be a pendant vertex of v1. Now, let T ′ be a tree obtained from T by deleting

edges uv1, v1w1 and adding edges v2v1, v3w1. We will show that ξac has increased by this

transformation. For that purpose let c = M(u)/8. Considering vertices u, v1, . . . , vk and

pendant vertices of v1, v2 and v3 we obtain

ξac(T )− ξac(T ′) ≤
(
c · 8
2

− c · 9
2

)
+ (k − 1)

(
k

3
− k − 1

3

)
+

(
k

3
− 3

4

)
+ 3

(
2

4
− 3

4

)

=
2

3
k − 1

2
c− 11

6
≤ [c ≥ 2k−3]

≤ 2

3
k − 2k−4 − 11

6
≤ 2

3
3− 23−4 − 11

6
= −1

3
< 0 .

Repeating this transformation, we obtain TBn,	n−1
3 
 which proves the lemma.

Now, we want to address trees TBn,k with p =
⌈
n−1
k

⌉
= 2.

Lemma 9 Let T be a tree on n vertices with diameter D = 4 such that central vertex u

has at least three non-leaf neighbors. If T = TBn,k where p =
⌈
n−1
k

⌉
= 2. Then

ξac(T ) < ξac(Sn) or ξαc(T ) < ξac
(
TBn,	n−1

3 

)
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Proof. Note that it has to be n ≥ 7 for a tree T to be able to satisfy conditions of lemma.

From p =
⌈
n−1
k

⌉
= 2 follows that neighbors of central vertex have degree 1 or 2. Let u be

a central vertex in T and let t neighbors of u have degree 2. First note that 2 ≤ t ≤ n−1
2
.

Also, note that

n = 1 + 2t+ (k − t) = 1 + t+ k ,

k = n− t− 1 .

Now we have

ξαc(TBn,k) =
2t

2
+ k · k

3
+ t · 2

4
= 2t−1 +

(n− t− 1)2

3
+

t

2
= f(t) .

Let us analyze obtained function f(t). We have

f ′(t) = 2t−1 · ln 2 + 2

3
t+

7

6
− 2

3
n

This is obviously increasing function in k, therefore from

f ′(2) = 22−1 · ln 2 + 2

3
· 2 + 7

6
− 2

3
n < 0 for n ≥ 7 .

f ′(
n− 1

2
) = 2

n−1
2

−1 · ln 2 + 2

3
· n− 1

2
+

7

6
− 2

3
n > 0 for n ≥ 7 ,

we conclude that maximum of f(t) = ξαc(TBn,k) is obtained for t = 2 or t =
⌊
n−1
2

⌋
. If

t = 2 then by Lemma 5 we conclude that ξαc(T ) < ξac(Sn). If t =
⌊
n−1
2

⌋
and n is odd

then by Lemma 5 we conclude that ξαc(T ) < ξac(TMn,3). If t =
⌊
n−1
2

⌋
and n is even, then

before we can apply Lemma 5, we have to prove that tree T with t =
⌊
n−1
2

⌋
has smaller

ξac than tree T ′ obtained from it by deleting last pending vertex of central vertex and

adding one pending vertex to one neighbor of central vertex. We have

ξac(T )− ξac(T ′) =
(
2t

2
+

(t+ 1)2

3
+

t

2

)
−
(
3 · 2t−1

2
+

t2

3
+

t− 1

2
+ 2 · 3

4

)

=
2

3
t− 1

4
2t − 2

3
≤ −1

3
< 0

which completes the proof.

Therefore, a tree with extremal value of augmented ECImust be either Sn or TBn,	n−1
3 
.

To decide which is it, we need following lemma.

Lemma 10 Holds

ξac(TBn,	n−1
3 
) > ξac(Sn) .

if and only if n ≥ 16 .
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Proof. Let T = TBn,	n−1
3 
 and let k =

⌈
n−1
3

⌉
be the degree of central vertex in T. From

the value of k follows that neighbors of central vertex have degrees 3 or 3 and 2. Let k2

be number of neighbors of central vertex with degree 2 and let k3 be number of neighbors

of central vertex with degree 3. Obviously k2 ≤ 2 and k2 + k3 = k. We have

n = 1 + k2 + k3 + k2 + 2k3 = 1 + 3k − k2 .

Now, given the exact formula from Proposition 1, we can analyze when the difference

ξac(T )−ξac(Sn) is positive distinguishing three cases with respect to the value of k2. Thus

we obtain the claimed.

Now, we can summarize our results in the following theorem.

Theorem 11 Let T be a tree on n vertices. Then

ξac(T ) ≤

⎧⎨
⎩

ξac(Sn) if n ≤ 15 ,

ξac
(
TBn,	n−1

3 

)

if n ≥ 16 ,

with equality holding id and only if T = Sn for n ≤ 15 and T = ξac(TBn,	n−1
3 
) for

n ≥ 16 .

4 Extremal trees with perfect matching

In this section we assume n to be even since only trees with even n can have perfect

matching. Also, tree with a perfect matching can obviously have at most one pendant

vertex on every vertex in it. Furthermore, if P = v0v1 . . . vD is diametric path in a tree

with a perfect matching then v1 and vD−1 must be of degree 2 since they already have

one pendent vertex and can’t have more.

Path Pn on n vertices obviously has perfect matching, therefore the problem of finding

a tree with perfect matching and minimum ξac is trivial - it is Pn. But star Sn and degree

balanced tree TBn,	n−1
3 
 do not have a perfect matching. Therefore finding a tree with

perfect matching and maximum ξac is a nontrivial one. In order to find such tree, we

will introduce transformation of a tree which preserves existence of perfect matching and

increases ξac. But before that, note that for every integer m ≥ 2 the following inequalities

hold

m ≤ 2m−1 , (1)

2m−2 −m+ 1 ≥ 0. (2)
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Also, for every integer m ≥ 4 holds

m ≤ 2m−2 . (3)

Now, we can state the following theorem.

Theorem 12 Let T be a tree on n vertices with a perfect matching and D ≥ 5. Let P =

v0v1 . . . vD be a diametric path in T and let w1, . . . , wk be all vertices from V \ {v3} adjacent

to v2 and of degree 2. Let T ′ be a tree obtained from T by deleting edges v2w1, . . . , v2wk and

adding edges v3w1, . . . , v3wk. Then T ′ is a tree on n vertices which has perfect matching

and

ξac(T ) < ξac(T ′) .

Proof. First note that k ≥ 1 since at least v1 is included among w1, . . . , wk. Let mi

denote a degree of vi ∈ P. Note that m2 − 2 ≤ k ≤ m2 − 1 since all neighbors of v2 are of

degree 2 except possibly v3 (which is not counted in k by construction) and one pendant

vertex. Now, eccentricities of all vertices do not increase by this transformation. The

only vertices whose M(v) possibly decreases are v2, v3 and a pendent vertex of v2 (if such

exists). We distinguish three cases.

Case 1. v2 has one pendent vertex and v3 has one pendent vertex.

Let us denote with u2 and u3 pendant vertices of v2 and v3 respectively. In this case

k = m2 − 2. We have

Δ1 =
M(v2)

ε(v2)
− M ′(v2)

ε′(v2)
+

M(v3)

ε(v3)
− M ′(v3)

ε′(v3)

≤ 2m2−2 ·m3

ε′(v2)
− m3 +m2 − 2

ε′(v2)
+

m2 · 2m3−3 ·m4

ε′(v3)
− 2 · 2m3−3 · 2m2−2 ·m4

ε′(v3)

Since ε′(v2) > ε′(v3) and m4 ≥ 2, in order to prove that Δ1 > 0 it is sufficient to prove

that

m3 · (2m2−2 − 1)−m2 + 2 ≤ 2m3−3 · 2 ·
(
2 · 2m2−2 −m2

)
.

If m3 = 3, then this inequality becomes 2m2−2 −m2 + 1 ≥ 0 which is actually inequality

(2) for m2 ≥ 2 and therefore holds. If m3 ≥ 4, then since m2 − 2 ≥ 0, it is sufficient to

prove

m3 · (2m2−2 − 1) ≤ 2m3−3 · 2 ·
(
2 · 2m2−2 −m2

)
which follows from (3) for m3 ≥ 4 and (2) for m2 ≥ 2. Also, from ε′(u2) > ε′(u3) follows

that

Δ2 =
M(u2)

ε(u2)
−M ′(u2)

ε′(u2)
+
M(u3)

ε(u3)
−M ′(u3)

ε′(u3)
≤ m2

ε′(u2)
− 2

ε′(u2)
+

m3

ε′(u3)
−m3 +m2 − 2

ε′(u3)
< 0 .
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Now
ξac(T )− ξac(T ′) ≤ Δ1 +Δ2 < 0 .

Case 2. v2 has one pendent vertex and v3 has no pendant vertices.

Let us denote with u2 pendant vertex of v2. In this case k = m2 − 2. We have

ξac(T )− ξac(T ′) ≤ M(v2)

ε(v2)
− M ′(v2)

ε′(v2)
+

M(v3)

ε(v3)
− M ′(v3)

ε′(v3)
+

M(u2)

ε(u2)
− M ′(u2)

ε′(u2)

≤ m3 · (2m2−2 − 1)

ε′(v2)
− m2 − 2

ε′(v2)
− 2m3−2 ·m4 · (2 · 2m2−2 −m2)

ε′(v3)
+

m2 − 2

ε′(u2)

Since ε′(u2) > ε′(v2) > ε′(v3) and m4 ≥ 2, it is sufficient to prove that

m3 ·
(
2m2−2 − 1

)
≤ 2m3−2 · 2 ·

(
2 · 2m2−2 −m2

)
.

But this follows from inequality (1) for m3 ≥ 2 and (2) for m2 ≥ 2 .

Case 3. v2 has no pendent vertices.

Note that in this case edge v2v3 must be included in a perfect matching, therefore v3

cannot have pendent vertices. In this case k = m2−1. Note that ε′(wi) = ε′(v2). We have

ξac(T )− ξac(T ′) ≤ M(v2)

ε(v2)
− M ′(v2)

ε′(v2)
+

M(v3)

ε(v3)
− M ′(v3)

ε′(v3)
+

k∑
i=1

(
M(wi)

ε(wi)
− M ′(wi)

ε′(wi)

)

≤ m3 · (2m2−1 − 1)−m2 + 1

ε′(v2)
− 2m3−2 ·m4 · (2 · 2m2−1 −m2)

ε′(v3)

+
(m2 − 1) (1−m3)

ε′(v2)

Since ε′(v2) > ε′(v3) and m4 ≥ 2 it is sufficient to prove that

m3 ·
(
2m2−1 − 1

)
−m2 + 1 + (m2 − 1) (1−m3) ≤ 2m3−2 · 2 ·

(
2 · 2m2−1 −m2

)
,

which is equivalent to

m3 ·
(
2m2−1 −m2

)
≤ 2m3−1

(
2 · 2m2−1 −m2

)
and follows from (1) for m3 ≥ 2.

Now, as a corollary to this theorem we obtain the only extremal tree with respect to

augmented ECI among trees with perfect matching.

Corollary 13 Let T �= TBn,n
2
be a tree on n vertices with perfect matching. Then

ξac(T ) < ξac(TBn,n
2
) .
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Proof. We apply the transformation from Theorem 12 on T. Note that each transforma-

tion decreases diameter by 1 until finally we obtain the tree of diameter 4. The only tree

of diameter 4 which has perfect matching is TBn,n
2
.

5 Extremal graphs

Let us now establish extremal graphs among all simple connected graphs. Those results

will follow easily from results for threes. First, the following proposition obviously holds,

since contribution of every vertex to ξac in complete graph Kn is maximum possible.

Proposition 14 For a graph G �= Kn on n vertices holds

ξac(G) < ξac(Kn) .

Therefore, we have established only maximal graphs with respect to the value of

augmented ECI. In the following proposition we establish minimal graphs.

Proposition 15 For a graph G �= Pn on n vertices holds

ξac(G) > ξac(Pn) .

Proof. Let T be spanning tree of G. From definition of spanning tree follows that T

is obtained from G by deleting some edges. Note that deleting edges does not decrease

eccentricities of vertices. If G is already a tree, then the result follows from Corollary 3.

If G is not a tree, then we have to delete at least one edge. Note that by deleting edges

degrees of vertices (and therefore values M(v)) do not increase. Since we deleted at least

one edge, that means that the degree of at least one vertex decreased and we have

ξac(G) > ξac(T ) ≥ ξac(Pn)

which concludes the proof.

6 Conclusion

In this paper we studied augmented eccentric connectivity index on graphs and trees. We

established that minimal trees with respect to augmented ECI are paths Pn (Corollary 3),

while maximal trees are either stars Sn for n ≤ 15 either degree balanced trees TBn,	n−1
3 


for n ≥ 16 (Theorem 11). Using similar techniques we proved that in the class of trees
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with perfect matching minimal trees are again paths Pn, while maximal trees are TBn,n
2

(Corollary 13). In the class of general simple connected graphs on n vertices, maximal

graphs with respect to augmented ECI are complete graphs Kn (Proposition 14), while

minimal graphs are paths Pn (Proposition 15). The explicit formulas for the values of

augmented ECI of all these graphs which turned out to be extremal are derived and

presented in Proposition 1.

There are many open questions for further study. In this paper we only initiated

studying extremal trees with given parameter (trees with perfect matching). One could

try to establish extremal trees with given diameter, radius, number of pendant vertices,

maximum degree (chemical trees), etc. Also, one could try to establish extremal unicyclic

graphs with respect to augmented ECI. Deriving exact formulas for the value of augmented

ECI on some special kinds of graphs would also be interesting, just as studying of how

augmented ECI behaves with respect to graph operations.

Finally, there is also super augmented ECI, which is similar to augmented ECI, and

is defined with

ξsac(G) =
∑
u∈V

M(u)

ε2(u)
.

It would be interesting to derive all those results for that index too. As for the results

from this paper, we mostly relied on order of ε(v) between pairs of vertices. Since the

same order holds for ε2(v) then the results for ξsac(G) should be perfectly analogous.
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[17] G. Yu, L. Feng, A. Ilić, On the eccentric distance sum of trees and unicyclic graphs,

J. Math. Anal. Appl. 375 (2011) 934–944.

[18] B. Zhou, Z. Du, On eccentric connectivity index, MATCH Commun. Math. Comput.

Chem. 63 (2010) 181–198.

-342-




