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Abstract

The Zhang-Zhang(ZZ) polynomials (aka Clar covering polynomial) for several
subclasses of catacondensed and pericondensed benzenoid systems have been computed using
an automatic computer code developed in our group and described in [C.-P. Chou and H.A.
Witek, MATCH Commun. Math. Comput. Chem., submitted]. General closed-form
expressions for several series of catacondensed benzenoids and for the prolate rectangular
pericondensed benzenoids have been obtained. The presented results suggest that general
closed-form expressions for the ZZ polynomials of many classes of pericondensed benzenoid
systems can be discovered by analysis of structural similarities between the ZZ polynomials

of their subclasses. Methods and techniques of finding such similarities are outlined.
1. Introduction

In the preceding paper[1] (hereafter referred to as I) we have reported a computer
program developed in our group to determine the Zhang—Zhang (ZZ) polynomials of

benzenoid systems. The ZZ polynomial[2-14] is a combinatorial polynomial representing in a
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very convenient way all the conceivable resonance structures that can be written for a given
aromatic system. It has a finite order equal to the Clar number CJ, i.e., the maximal number of
aromatic Clar sextets that can be accommodated inside a given benzenoid structure. The ZZ
polynomial of some benzenoid system B can be expressed as

Cl

ZZ(B,x) = ZCkxk,
k=0
where x is a dummy variable used to differentiate between various classes of resonance
structures and ¢, denotes the number of Clar covers in a given class possessing exactly k
aromatic Clar sextets[15]. The term Clar cover of order k& was first introduced by Zhang and
Zhang[2-5] to denote a permissible resonance structure of some benzenoid system B built of
sp*-hybridized carbon atoms, which is characterized by k aromatic Clar sextets and n/2—3k
localized double bonds. The knowledge of the ZZ polynomial yields immediately a number of
important topological invariants characterizing the structure B; ¢y is equal to the number of its
Kekulé structures and c¢; is equal to the number of its Clar structures. The importance of the
ZZ polynomial representations stems from the possibility of its fast evaluation owing to
convenient recursive properties it obeys (for details see I). Our program is capable to evaluate
the ZZ polynomials for dense, pericondensed benzenoids containing up to 500 carbon atoms.
For catacondensed and quasi-linear pericondensed benzenoids, the limiting number of carbon
atoms is much larger and may exceed 10000. For even larger structures, one needs to execute
our program in parallel mode, which makes the maximal number of atoms in the system under

consideration dependent on the number of employed processors.

The theory of ZZ polynomials was reviewed in the preceding publication I together with
simple examples enabling a novice in the field deeper understanding of the main underlying
concepts. We have also discussed the recursive properties of ZZ polynomials, which were
extensively used to develop our program. We concluded the preceding publication I by
reviewing a number of general combinatorial techniques, which can be used for finding the
ZZ polynomials for various classes of benzenoid structures. In this study, we apply the
developed techniques for finding the explicit, closed-form of the ZZ polynomial for certain
subfamilies of benzenoid structures. Our main aim is to show that the developed program can

be a useful theoretical tool for this purpose. Our study closely follows the thorough and



-33-

monumental account of benzenoid structures given by Cyvin and Gutman[16]. We show that
our approach is capable of finding closed-form expressions for the ZZ polynomials for many
benzenoid systems in analogy to the closed-form expressions for the numbers of Kekulé
structures compiled by Cyvin and Gutman[16]. We do not attempt to make the current study
complete; the given here ZZ polynomials are computed only for certain subclasses of
benzenoids systems obtained by fixing some of the indices. Only in few cases, we are able to
give most general formulas. More complete studies focusing on each family of benzenoids
and giving the most general forms of the ZZ polynomial will be published subsequently. Note
that the compact form of the presented here results strongly indicates that this goal can be

achieved, even if its realization may require considerable effort.

2. Catacondensed benzenoid systems

a. Multiple segment linear hexagonal chain L(m,n), m >3

n segments

Figure 1. Multiple segment linear hexagonal chain L(m,n)

We attempt to find the ZZ polynomial of multiple segment linear hexagonal chains
L(m,n), shown in Figure 1, by fixing first the value of m and generalizing later the resulting
family of ZZ polynomials to some non-fixed value of m. The simplest structure in this family,
with m = 2, has been already discussed in I. Note that the case m = 2 reduces to a single

armchair chain N(n) of length » obeying the recurrence relation

ZZ(N(n),x)=ZZ(N(n—1),x)+(x+1)- ZZ(N(n—2),x) (1)

and having the ZZ polynomial given explicitly by
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ZZ(N(n),x) = ZZ(L(2,n~1), x)—f( 2x+3 j[““”s]

Jax+5 2 n o
(1_ 2x+3 ](1—@} .
Jax+5 2
When m = 3, the ZZ polynomials of the shortest few L(3,n) structures are given by

(L(30,x) 2+x

( ),x) 4+43x
ZZ(L(3,2),x)=10+13x+4x
ZZ(L(3,3),x) =24+43x+24x" +4x’ )
ZZ(L(3.4),x)=58+133x+108x" +36x" +4x*
ZZ(L(3,5),x) =140+391x+416x" +208x’ + 48x" +4x°.

From Eq. (3), it is clear that the ZZ polynomials of the L(3,n) series obey a recurrence relation

given by
ZZ(L(33,n),x)=(x+2)-ZZ(L3,n—1),x)+(x+1)- ZZ(L(3,n—2), x). “4)

The recurrence can be easily solved using MAPLE[17], giving the following closed-form
formula for the ZZ polynomial of L(3,n)

ZZ(L(3,n),x) =;[x+2+ (72 +2x+4)][<x+z)+Jsz +8x+8]n
X’ +8x+8
)

\/x +8x+8

+;[x+2_( . +2x+4)j[(x+2)\/x +8x+8 J

When m = 4, the ZZ polynomial for the shortest few L(4,n) are given by

) )=5+4x

).x)=17+25x+9x

).x)=56+118x+81x* +18x’ (6)
),x)=185+508x+513x” +225x +36x*

),X) = 611+2068x +2754x" +1800x" +576x" +72x".
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The corresponding recurrence relation is found to be
ZZ(L(4,n),x) = (2x+3)-ZZ(L(4,n—1),x) +(x+1)- ZZ(L(4,n—2), x). (7)

By solving the recurrence relation, one gets the closed form of the ZZ polynomial for the

L(4,n) series that can be written as

ZZ(L(4’n),x)_;[x+2+ (<27 +x+4) ][(2x+3)+\/4x2+16x+13]n

J4x* +16x+13 2
) (8)
92 ae i 16xi13
+1[x+2— (2x"+x+4) J (2x+3)—+/4x" +16x+13 .
2 J4x? +16x +13 2

An analysis of the recursion formulas for the L(m,n) series shows that in the general case

the recurrence relation for the ZZ polynomials of L(m,n) can be expressed as
Z7Z(L(m,n),x) = [(m —2)x+(m— 1)] -ZZ(L(myn—1),x)+(x+1)-ZZ(L(m,n—-2),x).  (9)

Using standard techniques for solving recurrence formula as described in I with initial

conditions
ZZ(L(m,l),x):1+m(1+x) (10)
ZZ(L(m,2),x) =(A+m*)+(1-2m~+2m*)x+(m—1)*x* (11)

yields the closed formula of the Zhang—Zhang polynomial for L(m,n) in the following form

Z7Z(L(m,n),x) :%[(x+2)+ 2-m)x® J:/S—m)x+4j[(m—1)+(mz—2)x+\/z]

)_(Zm)x2+(5m)x+4] (m-1)+(m-2)x—Jk |
Jk 2 |

(12)

+1((x+2
2

where k = (x+1)*m* — 2(x+1)(2x+1)m + 4x*+ 8x + 5. This formula can be also obtained by

extrapolating the series given by the Egs. (2), (5), and (8), but probably a large number of
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terms would be required to discover all the underlying regularities. Note that by setting x = 0,

Eq. (12) reduces to the formula for calculating number of Kekulé structure reported in [18].

b. Hammer H(n)

Figure 2. Hammer-like benzenoid H(n)

The hammer-like H(n) structures, shown in Figure 2 and at page 100 of [16], can be
obtained by terminating the ends of a linear polyacene of length » with two pyrene fragments.
In principle, H(n) is not a catacondensed benzenoid due to the presence of pericondensed
terminal groups, but we treat it in this section as the varying fragment is catacondensed. The

77 polynomials of the shortest ten structures of this type are given by

ZZ(H(0),x)=35+70x+47x* +12x" +x*

ZZ(H(1),x)=60+145x+132x7 + 57x* +12x* + x°
ZZ(H(2),x)=85+220x+217x" +102x° + 23x" + 2x°

ZZ(H(S),x) =110+295x+302x> +147x° + 34x* +3x°
ZZ(H(4),x)=135+370x+387x" +192x’ +45x" + 4x° a3
ZZ(H(5),x)=160+445x+472x” + 237x* + 56x" + 5x°

ZZ(H(6),x) =185+ 520x+557x" + 282x" + 67x" + 6x°
ZZ(H(7),x)=210+595x +642x” +327x" + 78x* + 7x°
ZZ(H(8),x)=235+670x+727x" +372x +89x" + 8x°
ZZ(H(9),x)=260+745x+812x" +417x* +100x" +9x°.

This series has a constant order and can be expressed in a closed-form as

ZZ(H(n),x) =5(5n+7)+5(15n +14)x + (850 +47)x> +3(15n+ 4)x* + (1 1n+x* +nc’

=1+ +n)(1+x)+(17+6n)1+x)" +@+11n)(1+x)" +(1+6m)(1+x)* (14)
+n(l+x)’.
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The first term, 25n + 35, agrees with the number of Kekulé formulas given by Cyvin and
Gutman[ 16]. Furthermore, using the obvious, natural decomposition of this structure into the
pyrene and polyacene fragments, as suggested by Zhang and Zhang[2], yields the same ZZ

polynomial in somewhat more natural form given by
ZZ(H(n),x)=(x* +5x+5)*(1+n(l+x)) + 2(x + 1)(x* +5x+5), (15)

where x* +5x+5 is easily identified as the ZZ polynomial of phenantrene.

c.  Starphenes St(n,m,l)

Figure 3. Starphene St(n,m,[) structure

A starphene S#(n,m,[), shown in Figure 3, can be considered as a structure obtained by
fusing three linear polyacenes of length n, m, and /, respectively. It is easy to see that an
application of Property 2 of I to the central hexagon immediately yields the ZZ polynomial
of St(n,m,[) given by

2Z(St(n,m,1),x) = ZZ(L(n—1),x)-ZZ(L(m~1),x)- ZZ(L( ~1),x) + 1+ x

with ZZ(L(k),x) given by Eq. (10). In starphenes, the first decomposition step leading to this

nice recursive form is clear, but for many other structures, mostly of pericondensed nature, the
first step (or steps) is not immediately obvious. Therefore, we re-derive this formula using an
alternative approach similar in spirit to those discussed in I. We believe that this analysis can
be helpful for more complicated systems, even if here it may look here like overcomplicating

a simple issue. The ZZ polynomials for the smallest few S#(n,m,/) structures are given by
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ZZ(81(2,2,2),x) =9 +13x+6x> +x°
ZZ(81(2,2,3),x) =13+ 21x+11x% +2x°
ZZ(51(2,3,3),x) =19+ 34x +20x* + 4x°
Z7(5t(3,3,3),x) = 28+ 55x +36x° +8x°
ZZ(St(2,2,4),x) =17 +29x +16x” +3x°
ZZ(St(2,3,4),x) = 25+47x +29x% + 6x°
ZZ(St(3,3,4),x) =37+ 76x +52x" +12x°
ZZ(St(2,4,4),x) =33+ 65x + 42x* +9x°
ZZ(S1(3,4,4),x) =49 +105x + 75x> +18x°
Z7(5t(4,4,4),x) = 65 +145x +108x” +27x°

(16)

Obviously, the ZZ polynomials of starphenes have the order not greater than 3 and can be

expressed in the following form
3
ZZ(St(n,m,1),x) =" f,(n,m,D)x" (17)
k=0

with the yet unknown functions f,(n,m,l) . A better insight in the unknown functions
Jfi(n,m,l) can be obtained from the analysis of the ZZ polynomials for starphenes with two

indices fixed. It is easy to find that the ZZ polynomials for the S#(2,2,/) series have a closed

form given by
ZZ(S1(2,2,1),x) =1+41 +(8] =3)x + (5] —-4)x* + (I - )x’, (18)

which suggest that the unknown function f, (n,m,/)are functions of indices », m, and / of
degree 0 or 1. The associated multinomial basis {I,7}x{l,m}x{l,/} consists of eight terms.

Clear permutational symmetry of the unknown functions
Snm, D)= fi(n.l,m) = fi(m,n.0) = fi(m,1,n) = fi(lm,n) = f,.(I,n,m)

allows one to reduce the size of the basis to only four fully-symmetric terms { 1,/ + m + n, Im
+ In + mn, Imn} corresponding to the fully-symmetric irreducible representation of the

symmetric group Ss, casting Eq. (17) in the following matrix form
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T

1 o000 o100 Di1o  Yorit 1
X o00  Dhioo Giio I+m+n
ZZ(St(n,m,l),x)= | |, u u u It . (19)
X 000 00 %o G || IMt+in+mn
3
X D000 Dioo Diio G Imn

Substituting the ZZ polynomials listed in Eq. (16) into this linear equations and solving
the (possibly overdetermined) linear problem gives the general formula for the ZZ polynomial

of St(n,m,l) as

1 1 0 0 1 1
X 1 0 -1 3 l+m+n

Z2(Stmm D)= 1 0 1 3 s it | 20)
X -1 1 -1 1 Imn

Using slightly different bases for solving the linear problem simplifies Eq. (20) even
further giving the following general formula of ZZ polynomials of starphenes

T

1 1 000 1
ZZ(St(nml)x): 1+x 1 100 L+M+N @)
e A+x)? |10 0 1 O||LM+LN+MN|
(1+xy) 0 0 0 1 LMN

where N=n—1, M=m— 1, and L =/— 1, which can be expressed readily in the familiar form
7Z(St(n,m,1),x) =1+x+(N(1+x)+1)(M1A+x)+1)(LA+x)+1) (22)

given earlier by Zhang and Zhang[2]. By setting x = 0 in Eq. (22), one obtains the number of
Kekulé structures reported previously[19, 20]. Note that the regularity observed here is general;
the basis constructed from the powers of 1 + x gives usually much shorter expansions then the
basis of monomials x* and solves the set of linear equations giving smaller numerical coefficients.
Similar observation is true for the basis of indices, where a homogeneous shift by an integer may

lead to great simplification of the final formulas.



d. Tripod T(n,m,l)

Figure 4. Tripod structure 7(n,m,l)

The next system is a tripod-like system 7" with three indices n, m, [. Again, this system is
pericondensed rather than catacondensed, but we study it here as the varying fragments are
catacondensed. When » or / = 1, tripod is non-Kekuléan and the ZZ polynomial vanishes.
When n=1= 1, tripod reduces to a linear polyacene L(m). When m = 1, the ZZ polynomial is

given by a simple formula
ZZ(T(n,1,0),x) = (x+1)+ ZZ(L(n—1),x) ZZ(L(I -1),x). (23)
The ZZ polynomials of 7(n,m,/l) for n, m, [ = 2 and 3 are given by

77(T(2,2,2),x) =6+6x +x’
Z7(T(2,2,3),x) =9 +11x +3x°
ZZ(T(2,3,2),x) =11+16x+7x" +x°
ZZ(T(2,3,3),x) =16 +26x +13x” + 2x°
ZZ(T(3,2,2),x) =9 +11x +3x°
Z7(T(3,2,3),x) =14 +21x+9x* +x°
ZZ(T(3,3,2),x) =16+ 26x +13x% +2x°
ZZ(T(3,3,3),x) = 24+ 44x + 26x” + 5x°

(24)

The technique used for finding the formula for starphene can be applied here after some
modification. The coefficients of the ZZ polynomial of this system are found to be maximally
linear functions of the indices n, m, and / in close analogy to starphene. However, instead of
having 3 interchangeable indecies like in starphene, only two indices, » and /, are related by

permutational symmetry. Thus, eight terms in the {1,7}x{1,m}x{1,/} basis reduce to six terms
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{1, m, | + n, Im + mn, In, Imn}. After solving the linear equations, one gets the formula for

tripod T(n, m, [) as

1
1Yo 1 -1 0 0 1) m
22(Tmmiy ) =] 2 2 =3 -1 -1 3| I+n , 05)
X 52 =2 =2 =2 3||lm+mn
X 21 0 -1 -1 1 nl
Imn
or alternatively in the (1+x) basis as
1
1 Y(1 0 0 0 0 0 m
22(Tmym 1) %) = ey |2 1 1 0 0 of l+n | 26)

A+ -1 =1 =2 1 1 0| Im+mn
(+x) 2 1 0 -1 -1 1 nl

Imn

Decomposition of this system in a conventional way gives the formula of tripod 7(rn,m,/) as

ZZ(T(n,m,1),x) = (ZZ(L(m-2),x)- ZZ(L(n=1),x)- ZZ(L( - 1),x))
+(1+x)(ZZ(L(m—2),x) + ZZ(L(n - 2),x)- ZZ(L( - 2),x))

s

@7

where L(n) is a linear polyacene with length n.
e. Zigzag-edge coronoids ZC(n, m, )

The zigzag-edge coronoids ZC(n,m,[), shown in Figure 5, can be considered as a structure
obtained by fusing six segments of linear polyacenes into a closed loop. To find a closed form
of the ZZ polynomial for this family of benzenoid structures, we first consider its certain
subfamily obtained by fixing n = m = 3. The ZZ polynomials of the smallest few ZC(3,3./)

structures are given by
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200+ 594x +699x> +408x” +123x* +18x° +x°
77(ZC(3,3,4),x) =365+1184x +1537x* +1008x° +349x* + 60x” +4x°

77(7C(3,3,3),x) =
)

77(ZC(3,3,5),x) = 580 +1974x+2695x" +1868x + 687x" +126x° +9x°
)
)=1

(
(
(
7Z(ZC(3,3,6),x) = 845+ 2964x + 4173x> +2988x +1137x* +216x° +16x°
7Z(ZC(3,3,7),x) = 1160 +4154x +5971x +4368x" +1699x" +330x° +25x°

(

(

(

(28)

77(ZC(3,3,8), x): 525+5544x+8089x” +6008x” +2373x* +468x" +36x°
77(ZC(3,3,9),x )= 940+ 7134x +10527x" +7908x> +3159x* +630x° +49x°
77(2C@3,3 lO),x)=2405+8924x+13285x +10068x° +4057x* +816x° +64x°.

Figure 5. Zigzag-edge coronoid ZC(n,m,l)

It is easy to find that this constant-order series can be written in a closed form as

2Z(ZC(3,3,1),x) = 5(51° =20 +1) +2(5] - 4)(10/ - 3)x
+(1607> — 2821 +105)x + 2(651> — 1551 +84)x’ (29)
+(567 =1661 +117)x* +6(1 —2)(21 = 3)x" + (1 —2)*x".

Eq. (29) suggests that the coefficients of the ZZ polynomial for ZC(m,n,/) are maximally
quadratic functions of the indices. The full index basis contains 27 functions: {l,n,n"} x
{I,m,m*} x {1,1,I*} ,but permutational symmetry allows for reducing it to only 10 their fully-

symmetric linear combinations. Following the same train of arguments as for starphenes in
the previous section, the general formula of the ZZ polynomial for zigzag-edge coronoids

ZC(m,n,l) can be expressed in the symmetry-adapted basis of multinomials as



27(ZC(n,m,1),x)=
1

r L+M+N
1 1I+2. 0 0 0 0 0 0 0 0 O
LM + LN + MN
x+1 6 2 0 0 0O0O0O0O0O0 LMV
X+
1)’ 9 8 4 0 1 00000 o,
5 L'+M"+N (30)
(x+1) 2 610 8 220000}, 5 5 s
B L'(M+N)+ M (L+N)+N(L+M)
(x+1) 0 0 2 121 2 4100
5 LMN(L+M+N)
(x+1) 0 0 0 0 002020 s s I
p LM"+LN +M"N
(x+1) 0 0 0 0 00 O0O0O0 1
LMN(LM + LN + MN)
L'M’N?

where N=(n—2), M=(m—2),and L = (/- 2).

The sparse matrix representation of Eq. (30) is quite robust for actual calculations, but
it may be advantageous to cast Eq. (30) in a simpler form. It is quite straightforward to
identify that the blue, green, and red entries in Eq. (30) define the expansion of the following

simple three functions in our basis

(Ns+1)*(Ms +1)*(Ls +1)*,
25(Ns +1)(Ms +1)(Ls +1)[(Ns +1) +(Ms +1) + (Ls +1)], €2))
s [(Ns+1)+(Ms +1) + (Ls + D],

where s =x + 1. This identification helps to cast Eq. (30) in much simpler form

ZZ(ZC(n, m,l), x) = [(Ns +D)(Ms+1)(Ls+1)+(Ns+ s+ (Ms+1)s +(Ls + l)s]2

(32)
+25° +2,

where N=(n—-2), M=(m-2),L=(—-2),ands=x+ 1.

Note that the ZC(n, m, ) system is a cyclo-polyphenacene with number of segments
t = 6. The formula of the ZZ polynomial for cyclo-polyphenacenes has been reported by Guo,
Deng, and Chen[21] with number of segments 7> 2; however, no closed-form formula was
provided. Besides, the formula provided in [21] is erroneous; its corrected version is given in

[22].



f.  Fenestrene F(n,m)

hd
m
Figure 6. Fenestrene structure F(r,m)

The next system studied here is the fenestrene structure abbreviated as F(n,m) and
shown in Figure 6. We consider here only the structures with the index m odd. From the
analysis of the ZZ polynomials of F(n,m) with n=3,4,5,6,7,8, and 9 and m = 5,7,9,11, and 13,
we find that the general formula are given by

ZZ(F(n,m),x)=((L,,~2)N,_,+2N, )2 +2N,N, ,—2N, *+2, (33)

m-1

where L,=ZZ(L(n), x) = 1+(1+x)n and N,= ZZ(N(n),x) =

" (n+1-k
k

j(l + x)k, are the ZZ

k=0

polynomials of the zigzag and armchair single chains, respectively.

3. Pericondensed benzenoid systems

a. Hexagons O(m,k,n) withm=1,2, and 3

The hexagonal-shaped graphene flakes O(m,k,n), aka hexagons, fully characterized by
giving a set of 3 indices (m,k,n), constitute one of the most important classes of benzenoid

structures.
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Figure 7. Hexagon O(m,k,n)

Here, we will analyze a subfamily of these structures obtained by first setting m = k and
then fixing the value of m to 1, 2, and 3. When m = 1, the O(m,m,n) subfamily reduces to
linear polyacenes L(n) of length n with the ZZ polynomial given by Eq. (10). When m = 2, the

7.7 polynomials for the shortest few O(2,2,n) structures are given by

77(0(2,2,1),x )—6+6x+x2

77(0(2,2,2),x) = 20+32x+15x% +2x°

ZZ(O(2 2,3), x) 50+100x +66x> +16x° +x*

ZZ(O(Z 2,4), x) 105+240x +190x” + 60x” + 6x*

ZZ(O(Z 2,5), x)=196+490x+435x +160x” +20x* (34)
ZZ(O(Z 2,6), x):336+896x+861x +350x° +50x*

77(0(2,2,7),x )=540+1512x+1540x2 +672x° +105x*

77(0(2,2,8), x):825+2400x+2556x +1176x° +196x*

77(0(2,2,9),x) =1 210+3630x +4005x” +1920x° +336x".

This series has a constant order. It is easy to find a closed formula for it given by

ZZ(O(2, 2,n), x) =1+4n(l+x)+ % n(7n=5)(1+ x)*

2n n—1 1 ; I(n\(n-1 1 . (35)
+ ) | (+x)+§2 ) (1+x)".

When m = 3, the ZZ polynomial for the few shortest O(3,3,n) are given by
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ZZ(0(3,3,1),x) =20+30x +12x" +x°

2220(3 3,2),x) =175+ 4503 +425x° +180x° +33x" +2x°

77(0(3.3.3),x) = 980+ 3308x + 4458x" +3065x" +1140x* +225x° +22x° + '

ZZ(0(3,3,4),x) = 4116 +16468x +27293x +24262x" +12521x" +3796x° +653x° + 58x” +2x*

77(0(3.3,5).x) = 14112+ 63522+ 120848x° +126518x" + 79506x° + 3068 1x° +7132x° +933x” +58x" + " (36)

77(0(3.3,6).x) = 41580 + 204180x +429030x" + 503664x" +361690x* +163380x° +45885x" +7588x" +648x"
+20x°

77(0(3.3.7).x) = 108900 + 571890 +1295700x" +1656270x" +1310568x" +661962x° +211820x° +40950x" +4260x"
+175x°

ZZ(0(3,3,8),x) = 259545 +1437876x +3456486x" + 4719660x" +4021290x" + 2208360x° +777630x" +168084x”
+20010x" +980x°

77(0(3.3,9),x) = 572572+ 33135963 +8355996x" +12027279x" +10863732x* + 6367482x° +2412816x° + 56712637
17448425 + 41165,

Again this series has constant order. A closed formula for it can be found as

77(0(3,3,n),x) =1+9n(1+x) +%(5n ~3)n(l+x)’

+é(149(n—1)2 +49(n=1)+6)n(1+x)’ +%[:J(n—l)(86n—103)(1 +x)*

L) =1y (28(n—2)" +23(n—2) +6) (14 x)°
315 | (1D (2801=2)" 42301 -2)+6) (14 )

[ j(316(n 2) +432(n-2)" +137(n-2)+15)(x +1)°

Lo ] (236(n—2)" +104(n~2)* ~119(n~2)* +79(n~2) +120)(x +1)’

%( j 105(n—2)4 +2(n—=2) -81(n-2)* +94(n—2)+120)(x+1)s
n—

e (Y O
40 3 37)
Note that the formulas for calculating the number of Kekulé structure derived from Egs. (35)

1(n+2\(n+3 1 (n+3\(n+4\(n+5 .
and (37) can be found as — and — , respectively,
30 2 2 40\ 3 3 3

which agree with the formula given previously[16, 23-25].

We believe that further analysis of the presented here ZZ polynomials for the O(m,m,n)
series of hexagon structures may cast them in a simpler form that will be easy to generalize

for any value of m. We further expect that a more extensive study of the ZZ polynomial series
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for the hexagon benzenoid structures will yield a closed-form expression for the ZZ
polynomial of any O(m,k,n) benzenoid structure in close analogy to the corresponding
formula for the number of Kekulé structures. We are planning to perform such a study
devoted to thorough analysis of the ZZ polynomials of the O(m,k,n) structures in near future.
The results presented here are a mere indication that this task can be accomplished, though
relative complexity of the ZZ polynomials for the O(2,2,n) and O(3,3,n) subfamilies of
structures suggests rather high degree of difficulties to be encountered in such a study unless

serious simplifications of presented here formulas can be discovered.

b. Chevron Ch(k,m,n)

3

Figure 8. Chevron Ch(k,m,n)

The next important class of regular benzenoid structures are chevron-shaped structures
(aka chevrons) defined by a set of three indices as Ch(k,m,n), shown in Figure 8. Here, we
analyze a subfamily of these structures obtained by setting k£ = m and further fixing the value
of kto 1, 2, and 3. When k = 1, the Ch(1,1,n) structures reduce to linear polyacenes with the
ZZ polynomial given by Eq. (10). When k = 2, the ZZ polynomials for the shortest few

Ch(2,2,n) structures are given by
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ZZ(Ch(2 2,1), x)—5+5x+1x2
ZZ(Ch(2 2,2), x)—14+21x+9x +1x°
ZZ(Ch(2 2,3), x):30+54x+30x +5x°
ZZ(Ch(Z 2,4),x ) 55+110x +70x +14x°
ZZ(Ch(Z 2,5), x) 91+195x+135x* +30x°
ZZ(Ch(2 2,6), x) 140+315x +231x% +55x°

(

(

(

(

(38)

ZZ(Ch(2,2,7),x) = 204+ 476x+364x" +91x*
ZZ(Ch(2,2,8),x) = 285+ 684x + 540x° +140x"
ZZ(Ch(2,2,9), x) = 385+ 945x +765x" + 204x’
7Z(Ch(2,2,10),x) = 506 +1265x +1045x" +285x".

A closed-form formula of for this constant-order series can be found as

1(n+2 n+l
ZZ(Ch(2,2,n),x):§( 5 J(2n+3)+[ 5 J(2n+3)x

"+ o 21
+2(n)x+3 (n)x

This formula can be further simplified by factorizing the powers of x+1 giving

(39

ZZ(Ch(2,2,n),x)=1+3n(l+x)+( J(H X4 [ ](1+ x)’. (40)

For k=m =3, the ZZ polynomial of the shortest few Ch(3,3,n) are given by

ZZ(Ch(3,3,1),x)=1 0+13x+4x*
77(Ch(3,3,2),x ) 46 +94x + 64x* +16x7 +1x*
77(Ch(3,3,3),x) =146 +370x +340x" +136x" +22x" + 1x°
ZZ(Ch(3,3,4), x) 371+1070x +1160x +580x° +130x" +10x°
ZZ(Ch(3,3,5), x) 812 +2555x+3080x> +1760x° + 470x" + 46x°
)=1
)=
)=7

(

(

(

( @1
(

ZZ(Ch(3 3,6),x 596+ 5348x + 6944x> + 4340x° +1295x* +146x°

(

(

(

(

Z7(Ch(3,3,7),x) = 2892 +10164x +13944x> +9296x" +2996x" +371x°
77(Ch(3,3,8),x) = 4917 +17940x + 25680x" +17976x° + 6132x* + 812x°
77(Ch(3,3,9),x) = 7942 +29865x + 44220x" +32160x" +11460x* +1596x°
ZZ(Ch(3,3, 10),x) =12298 +47410x + 72160x +54120x° +19965x" +2892x".

Again, a closed-form formula of the ZZ polynomial for Ch(3,3,n) is easy to be found as
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1 (n+3 5 1(n+2 5
ZZ(Ch(3,3,n),x):— GBn” +12n+10)+— (Bn” +12n+11)x
100 3 20 3
n+2 ) , [n+1 R 5
+ 3 Bn™+3n-2)x" + 3 (Bn +3n-2)x (42)

+1
+l " (3n276n+2)x4+i " B —6n+1)x’.
2 3 10(3

Similar factorization like for Ch(2,2,n) yields more compact formula given by

7Z(Ch(3,3,n),x) =14 5n(1+x) + n(Tn-3)(1 + x)* %(Zja In—4)1+x)°
(43)

X o <17+ ay 140+ " |G —6n+ 11+
sla n n (1+x) Tols n n x).

Note that the first term in Eq. (42), the formula for calculating the number of Kekulé

structure, agrees the formula for reported previously[23, 26].

The presented here ZZ polynomials for chevron structures have simpler structure than
those for the studied here hegagons and in principle it should be easier to find a general, three-
index closed-form formula for the ZZ polynomials of Ch(k,m,n). We are planning to study

this class of structures in one of our subsequent papers.

c.  Multiple zigzag chains Z(m,n)

hd
n
Figure 9. Multiple zigzag chains Z(m,n)

Multiple zigzag chains Z(m,n), shown in Figure 9, constitute next basic class of

pericondensed benzenoid structures. This family of structures is fully characterized by giving



-50-

two indices, n corresponding to the length of the zigzag-like edge and m giving the length of
the armchair-like edge. When m = 1, the Z(1,n) class reduces to linear polyacenes with the ZZ
polynomials given by Eq. (10). When m = 2, the Z(2,n) class reduces to parallelograms M(2,n)
with the ZZ polynomials given by Eq. (14) of 1. When m = 3, the Z(3,n) class reduces to
chevron structures Ch(2,2,n) with the ZZ polynomials given by Eq. (40). The ZZ polynomials
of the shortest few Z(4,n), Z(5,n), and Z(6,n) structures are given in Table L. It is immediately
clear that the order of these polynomials is equal to 7. Closed-form formulas for these series

can be easily found as

77(Z(4,n),x) = 1+4n(1+x)+§n(3n—1)(1+x)2 +%(n—l)n(5n—1)(l+x)3

(44)
+$(n —Dn(5n* =5n+2)(1+x)*,
27(Z(5,n), x) =1+5n(1+x)+2n(@dn-1)1+x)" + %n(l 07" —=9n+1)(1+x)’
+é(n ~Dn2n-1)dn-1)(1+x)* (45)
+$ (n—DnQ2n-1)2n" —2n+1)(1+x)’,
ZZ(Z(6, n),x) =1+6n(1+x) +%n(5n ~(1+x)* +§n(17n2 ~12n+1)(1+x)’
+l(n -Dn@Brn-1)(13n-2)(1+x)*
| (46)

+%(n ~D)n(61n° =791 +36n—4)(1+x)°
+72L0(n—1)n(61n4 —1221° +113n° = 52n+12)(1+ x)°.
Note that the formulas for calculating the number of Kekulé structure obtained by

transforming Eqgs. (44), (45), and (46) to the x basis agree with the formulas reported
previously[ 16, 24, 25, 27].

Low-order coefficients of these series have simple form that can be readily generalized

for any value of m. The free coefficient is always equal to 1, the coefficient multiplying
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-1
(x+1) is equal to mn, and the coefficient multiplying (x +1)* is equal to [n(mz )j . However,

coefficients accompanying higher-order terms have more complicated structure that cannot be
easily generalized for any value of m. Work along this line is in progress in our group and we
hope to be able to present a closed-form ZZ polynomial for multiple zigzag chain Z(m,n) in

one of our next studies.

Another possible path of finding a closed-form expression for the ZZ polynomials of the
multiple zigzag chain Z(m,n) structures can be pursued by fixing the value of » and obtaining
a general one-dimensional formulas as functions of the index m. When n = 1, the Z(m,1)
structures reduce to a single armchair chain system N(m) with 2 hexagons in each segment.
The closed-form of the ZZ polynomial for this system was given in Egs. (11) and (12) of I.
When n = 2, the ZZ polynomials for the shortest few Z(m,2) structures are given by

77(2(0,2),x) =
77(Z(1,2),x)=3+2x
Z7(Z(2,2),x)=6+6x+x’
ZZ(Z(3 2), x)—14+21x+9x +x°
77(Z(4,2),x)= 31+60x+39x* +10x° + x*
77(Z(5,2), x)=70+168x+149x +61x° +12x* +x°
( ) =157 +448x +500x" +280x° +85x* +14x° + x°
( )=

353+1169x+1575x” +1122x° +463x*

77(7(6,2),x
77(2(7,2),x
+114x° +16x° +x7
ZZ(Z(S, 2), x) =793+2988x+4712x” +4072x’ +2130x*
+704x° +147x° +18x" +x*
ZZ(Z(9, 2),x) =1782+7529x +13603x” +13825x" +8772x*
+3651x° +1014x° +184x" +20x" + x°
ZZ(Z(]O, 2),x) = 4004 +18746x +38169x” +44596x" +33289x*
+16746x° +5823x° +1400x7 +225x" +22x° +x"°. (47)

The order of the ZZ polynomials in this series shows constant linear progression
suggesting that the members of the series may be connected via some recursion formula in
analogy to the recurrence formula of the Z(m,1) structures, which was given by Eq. (10) of L.

It is indeed quite easy to find such a recurrence given by
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27(Z(m,2),x)=(2+x)ZZ(Z(m—-1,2),x)+(1+x) ZZ(Z(m—2,2),x) “8)
—(1+x)*ZZ(Z(m-3,2),x),

This recurrence relation is a third-order linear homogeneous recurrence relation with constant
coefficients, which can be readily used for computing the ZZ polynomial of the Z(m,2)
structures in a recursive fashion taking the following initial values as a starting point:
77(Z(0,2),x) =1, ZZ(Z(-1,2),x) =1, and ZZ(Z(-2,2),x)=0. In principle, it is possible to
solve this recurrence using MAPLE, however the resulting explicit formula involves
summation over quite complicated roots of the characteristic polynomial, which in practice is

more cumbersome than using the recurrence relation.

Similar analysis performed for the Z(m,3), Z(m,4), and Z(m,5) subfamilies (See Table II)
reveals that also these families can be generated recursively by the following recurrence

relations

22(Z(m,3),x)=(x+2)ZZ(Z(m—-1,3),x)+(x+3)(x+1) ZZ(Z(m-2,3),x) 49
—(x+1*Z2Z(Z(m-3,3),x)—(x+1)’ ZZ(Z(m -4,3),x), “9)

ZZ(Z(m,4),x)=(2x+3)ZZ(Z(m-1,4),x)+ (x +3)(x +1) ZZ(Z(m -2,4),x)
—(x+4)(x+1)* ZZ(Z(m -3, 4),x) —(x+1)° ZZ(Z(m -4,4), x) (50)
+x+1D)?* ZZ(Z(m—5,4),x),

ZZ(Z(m,5),x) = (2x+3)ZZ(Z(m—-1,5),x)+(3x+6)(x +1) ZZ(Z(m—2,5),x)
—(x+4)(x+1) ZZ(Z(m -3,5), x) —(x+5)(x+1)° ZZ(Z(m —-4.,5), x) 5D
+x+ D) ZZ(Z(m=5,5),x)+ (x+1)' ZZ(Z(m-6,5),x),

with appropriate number of initial terms equal to 4, 5, and 6, respectively. An analysis of
these formulas yields a general recurrence relation formula for the Z(m,n) structures that can

be expressed as
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B FJ \‘kﬁ-nJ \‘k-l-nJ
ZZ(Z(m,n),x) =Y (D x+D | (x+D| | 2 J|+|L 2 || ZZ(Z(m—k—-1n),x), (52)
= k+1 k

where LrJ denotes the floor function. Note that by setting x =0 in Eq. (52), it reduces to the

general recursion relation formula for calculating the number of Kekulé structure, which has
been reported in several publications[27-29]. Formula (52) can be used to generate the ZZ
polynomial for the structure Z(m,n) provided that the ZZ polynomials for the initial n + 1
members of this subfamily are known: ZZ(Z(-2,n),x), ZZ(Z(-1,n),x) ,..., ZZ(Z(n—1,n),x),
where the following values can be assumed for the first few artificial members of this series:
722(Z(0,n),x)=1, ZZ(Z(-1,n),x)=1, and ZZ(Z(-2,n),x)=0 . Note that for practical
calculations with large » this recurrence formula is not very useful, because the determination
of the ZZ polynomial for the first » + 1 members of this family may constitute a considerable
computational problem. In our opinion the first of the presented here possible paths of finding
the closed-form expression for the ZZ polynomials of the Z(m,n) structures, with the fixed

value of m rather than with the fixed value of », is more promising for accomplishing this task.

d. Ribbon Rb(m,m,n) withn=2,m>n

e

\ﬁr—)

m

Figure 10. Ribbon Rb(k,m,n)

The next important class of benzenoids is the family of ribbon-like structures Rb(k,m,n)
defined in Figure 10. Here, we restrict our attention to a subclass of these structures obtained
by setting k= m and further restricting » to 2 and 3. The ZZ polynomials of the shortest few

Rb(m,m,2) structures are given by
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ZZ(Rb(2,2,2),x) = 6+6x +x"

ZZ(Rb(3,3,2),x) =19+ 29x +12x" + x°

ZZ(Rb(4,4,2),x) = 53+106x +69x” +16x° + x*
ZZ(Rb(5,5,2),x) =126+ 297 x + 244x” +81x° + 9x*
ZZ(Rb(6,6,2), x) = 262 + 686x + 645x* + 256x° + 36x*
ZZ(Rb(7,7,2),x) = 491+1381x +1416x" + 625x° +100x"
ZZ(Rb(8,8,2),x) = 849 + 2514x + 2737x” +1296x° + 225x"
ZZ(Rb(9,9,2),x) =1378 +4241x + 4824x" +2401x° + 44 1x*
ZZ(Rb(10,10,2),x) = 2126+ 6742x + 7929x” + 4096x° + 784x*.

(53)

Since the order of the ZZ polynomials in this series is constant, a closed formula of the

77 polynomial for it can be found by

ZZ(Rb(m, m,2), x) =1+2(m=2)(1+x)+(5m* =1Tm+15)(1+ x)

m-2Y ,; (m=2 : B (54)
+ ! 2m=5)1+x)" + 5 (1+x)".

For n =3, the ZZ polynomials of the shortest few Rb(m,m,3) structures are given by

Z7Z(Rb(3,3,3),x) = 20 +30x +12x% + x°

ZZ(Rb(4,4,3),x) = 69 +139x +90x> +20x” + x*

ZZ(Rb(5,5,3),x) =226 +573x +520x" +201x” +30x* + x°

Z7Z(Rb(6,6,3),x) = 662 +1986x +2265x” +1220x° +312x* +33x" +x° (55)
ZZ(Rb(7,7,3),x) =1716+5806x + 7716x> +5085x +1720x" +276x° +16x°

Z7Z(Rb(8,8,3),x) = 3985 +14715x +21742x> +16336x° +6525x" +1300x" +100x°

ZZ(Rb(9,9,3), x) = 8434 +33249x + 53040x” +43645x° +19446x" +4425x° +400x°
ZZ(Rb(10,10,3),x) =16526 +68518x +115785x +101816x° +49000x* +12201x" +1225x°.

Again, the order of the ZZ polynomials in this series is constant and a closed-form for the

series can be expressed as

ZZ(Rb(m,m,3),x)=1+3(2m=3)(1+x)+3(4m* —=19m+24)(1+ x)

+1(28m3 —246m* +731m—"732)(1+x)’
3 (56)

1(m=3 : > 4

2l (13m* —96m +180)(1+ x)

+m7322 -9)(1+ 54—”’7321+ ¢
) (2m=9)(1+x) 5 (1+x)".
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Note that the formula for calculating the number of Kekulé structure agrees with the

formula given previously[16, 30].

The resulting formulas display quite high degree of internal symmetry suggesting that
extending this study to other, more general ribbon structures can yield a general formula
applicable to computing the ZZ polynomial of any Rb(k,m,n) ribbon-like benzenoid structure.

Needless to say, we are planning to perform this task in the near future.

e. Oblate rectangle Or(m,n)

Figure 11. Oblate rectangle Or(m,n)

Next important family of pericondensed benzenoid structures is the class of oblate
rectangular benzenoids Or(m,n) shown in Figure 11. This case with m = 1 was studied
previously by Gutman, Furtula, and Balaban[7], who offered a closed form solution obtained
as a solution to the discovered recurrence relation. When » = 0, this class reduces again to
polyacenes L(m) with the ZZ polynomials given by Eq. (10) and when » = 1, it reduces to the
hexagon O(2, 2, m) structures with the ZZ polynomials given by Eq. (35). When n =2, the ZZ

polynomials of the shortest few Or(m,2) structures are given by
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ZZ(0r(1,2),x) =18+ 28x +12x* + x°
Z7(0r(2,2),x) = 136 + 354x + 344x” +154x° +31x* +2x°
Z7(0r(3,2),x) = 650 + 2166x + 2894x> +1990x* + 754x* +158x° +18x° + x
Z7(0r(4,2),x) = 2331+ 9002x +14334x” +12170x" +5950x* +1686x° +262x° +18x
ZZ(0r(5,2),x) = 6860 + 29232 + 52066x> +50225x° +28370x"
+9424x° +1722x° +136x7
Z7(0r(6,2),x) = 17472 +79884x +153832x” +161756x" +100415x*
+36904x° +7476x° + 650x7
Z7(0r(7,2),x) = 39852 +192108x +391860x” +438564x" +291116x*
+114828x” +25004x" +2331x7
Z7(0r(8,2), x) = 83325 + 418572x + 892428x% +1047180x" +730884x*
+303828x” +69804x° + 6860x
ZZ(0r(9,2),x) = 162382 +843084x +1861728x +2267265x° +1645500x*
+712392x° +170604x° +17472x7
Z7(0r(10,2),x) = 298584 +1592734x +3618912x> +4541350x° +3400815x* (57)
+1520838x° +376464x° +39852x

This series has a constant order and it is possible to find its closed-form formula, which is
given by

22(0r(m,2),x) = 1+7m(1+x)+3[’fj(5m—2)(1+x)2

1 m 2 3

+§[1j(41m —5Im+13)(1+x)
L(m 2 4

+g(2j(75m —103m+32)(1+x)

(58)

1 m 3 2 5

+— (89m” —=251m™ +214m—76)(1+ x)

30 2

+L(’”J Gm—4)(Tm* —8m+5)(1+ x)°
2013
+i(mj(m—1)z(m2 “2m+2)(1+x).
2013

Again, similarly to other pericondensed structures studied earlier, this closed-form

expression has a familiar form with the free coefficient equal to 1 and with the coefficient

multiplying the (1+x)* term being a polynomial in # of degree k. Note that the formula for
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calculating the number of Kekulé structures obtained from Eq. (58) by setting x=0 is

identical to the formula reported previously[23].

f.  Prolate rectangle Pr(m,n)

%(—J

m

Figure 12. Prolate rectangle Pr(m,n)

The next class of benzenoids studied here comprises the prolate rectangular structures
Pr(m,n) shown in Figure 12. This class of structures is quite special as it has an essentially
disconnected character and can be treated as a parallel arrangement of » linear polyacenes of
length m. Consequently, we are able to find the ZZ polynomials of this class of structures for
a general case. To do so, we proceed as follows. When m = 1, the studied family of structures

reduces to poly-phenylenes of length » and the ZZ polynomial given by
ZZ(Pr(Ln),x)=2+x)". (59)

When m = 2, the ZZ polynomials of the shortest few Pr(2,n) structures have the obvious

closed form given by

ZZ(Pr(2,1),x) = (3+2x)

ZZ(Pr(2,2),x) = (3+2x)*

ZZ(Pr(2,3),x) = (3+2x)’ t = ZZ(Pr(2,n),x) = (3+2x)". (60)
ZZ(Pr(2,4),x) = (3+2x)*

ZZ(Pr(2,5),x) = (3+2x)’
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Similarly for m = 3, the ZZ polynomials of the shortest few Pr(3,n) structures are given
by
ZZ(Pr(3,1),x) =(4+3x)
ZZ(Pr(3,2),x) = (4+3x)’
ZZ(Pr(3,3),x) = (4+3x)° t = ZZ(Pr(3,n),x) = (4+3x)". (61)
ZZ(Pr(3,4),x) = (4+3x)*
ZZ(Pr(3,5),x) = (4+3x)’

It is immediately clear that the general form of the ZZ polynomial for the Pr(m,n)
structure is given by

ZZ(Pr(m,n),x) =1+m(1+x))" (62)

Note that the formula of calculating the number of Kekulé structures given by Yen[31]
for Pr(m,n) can be recovered by simply setting x = 0 in Eq. (62). In addition, Eq. (62) can be
further extended to a general prolate rectangle-like structure, in which the length of each
polyacene chain is not the same. Assuming that such a structure is given by parallel

arrangement of m polyacenes of length m, ma, ..., m, respectively, the corresponding ZZ

polynomial is given by

n

ZZ(Pr([ml,mz,...,m"],n),x)= (1+mk(x+1)). (63)

This formula is probably the most important single result obtained in this study.

g. Zigzag-edge coronoid fused with starphene ZCS(n,m,l)

Figure 13. Zigzag-edge coronoid fused with starphene ZCS(n,m,l)
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The last system considered in this work is a composite benzenoid obtained by fusing a
zigzag-edge coronoid ZC(n,m,l) with a starphene S#(n,m,/). This system, abbreviated as
ZCS(n,m,l), is shown in Figure 13. The ZZ polynomials for n, m, [ = 4 and 5 are given by

ZZ(ZCS(4,4,4),x) = 21574 +113245x + 263802x" +356338x” +306449.x*
+173571x° +64679x° +15295x7 +2085x" +125x’
ZZ(ZCS(4,4,5),x) = 49533+ 279405x + 698997x” +1014780x" +939847 x*
+574906x° +232060x" + 59588x7 +8833x" +576x
ZZ(ZCS(4,5,5),x) =114980+691009x +1842394x" + 285459 1x° + 2828177 x*
+1856201x° +806597x" +223725x” +35941x° +2548x
ZZ(ZCS(5.5,5),x) = 268916 +1709693x +4826193x" +7929355x° +8348930.x"
+5838936x" +2711559x" +80621 1x” +139260x" +10648x".

(64)

The resulting ZZ polynomials have a constant order equal to 9. Moreover, from the
analysis of the ZZ polynomials for the ZCS(4,4,/) series, it is possible to find that the ZZ
polynomial coefficients depend on the index / up to the third power. The same technique,
which was used earlier for the starphene, coronoid, and tripod systems, can be applied here
again with the basis {I,n,n>, 7’} x{l,m,m*,m’}x{1,1,I*,’} . The resulting 64-dimensional
basis can be seriously reduced by the permutational symmetry adaptation, giving a fully-
symmetric basis with only 20 functions. Thus, the resulting coefficient matrix has the

dimension 10 by 20. The ZZ polynomial of ZCS(n,m,/) can be thus expressed as

@

36 30 5 8 36 —42 21 -6

1

0 19 34 2 27 27 20 -27 11 -2 N+M+L
0 0 27 41 -13 -57 54 -1 -10 3 LM +LN +MN
0 0 0 47 74 48 -82 84 18 1 NML
0 0 7 15 -9 -16 12 5 -5 1 N+ M+
Ylo 0o 0 13 23 18 21 17 -2 -l N*(L+M)+M*(L+N)+L*(N+M)
s{{o 0o 0 0 31 50 47 21 22 -4 NML(N +M +L)
ssffo 0o 0 0 9 15 -15 -3 3 0 IM*+I’N*+ M*N*
sS110 0 0 0 0 27 32 -3 0 3 NML(NM + ML+ LN)
s'ffo o 0 0o o o 27 19 -21 3 NMI?
Z2(ZCS 01 x) = sSPlo o 0 2 3 -1 2 1 10 N+ M+
1o 0 0 0 4 4 -3 2 1 0 N(L+M)+ M (L+N)+L(N+M)
s[fo o0 0o o 10 8 -7 -2 1 NML(N* + M* + L")
sS11o 0 0 0 o0 3 2 2 0 0 N L+ M)+ ML +N*)+L(N* +M*)
sJ{o 0 0 0 0 0 9 4 -4 0|NMLIN*(L+M)+M*(L+N)+L(N+M))
00 0 0 0 0 0 9 2 -2 N*MPI*(N+M+L) (65)
00 0 0 0 0 1 0 0 0 LM+ N+ M°N?
00 0 0 0 0 0 3 0 0 NML(EM? + N*L + M*N?)
00 0 0 0 0 0 0 3 0 N’M’L*(NM + ML+LN)
00 0 0 0 0 0 0 0 1 N'MLC
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where s=(1+x), N=n — 2, M=m — 2, and L=/ — 2. Any attempts to cast this matrix
equations into a simple functional form, as successfully performed for zigzag-edge coronene

ZC(n,m,l), fail; the simplest expression we could obtain reads

Z7(ZCS(n,m,1),x) :(W+(5752)V)2 (s+W)+W?3s*(s—1)
WV (1-25—5"+7s" —45° + V)
WV (5+65+65” +25° +35* +35° +45°)
+? ((s +5)(1+V) =35 +5° +25* =35 + s7) (66)
+Vs(=1+10s+ 5> — 45 +5* =25 +35° - 257)
VUs2+5+25° +5" + )+ WU (-2-25" +5")
+U(1+35+55 +25° =5 +5° —s° +57)
+(55+95> +65° + 55" +35° —s° +57),

where W= (Ns+1)(Ms+1)(Ls+1), V= (Nst+1)+(Ms+1)+(Lst1), and U =(Nst1)(Ms+1)+
(Ms+1)(Ls+1) + (Ns+1)(Ls+1). Relatively high degree of complexity of this equation
motivated us to look for the ZZ polynomial by recursive decomposition of the ZCS(n,m,l)

structure, which yielded even more complicated equation containing 39 addends.
4. Conclusion

We illustrate the capabilities of the developed automatic computer program for
determination of the Zhang—Zhang (ZZ) polynomials by computing of the ZZ polynomials for
several subclasses of catacondensed and pericondensed benzenoid systems. For all the studied
here catacondensed benzenoids and for one class of pericondensed benzenoids—prolate
rectangular structures Pr(m,n)—we were able to obtain closed-form expressions applicable to
any member of a given class. For the remaining pericondensed benzenoid systems, we are
able to determine the ZZ polynomials only for certain subfamilies of a given class. From the
presented results, it is clear how to generalize our results to the remaining subfamilies. We
notice after Zhang and Zhang that the ZZ polynomials for most of the pericondensed
structures have very similar form, provided that the ZZ polynomial is expressed as a sum of
powers of (1+x). The results presented in this manuscript suggest that general closed-form
expressions for the ZZ polynomials of many classes of pericondensed benzenoid systems can
be discovered by a somewhat tedious analysis of structural similarities between the ZZ

polynomials of their subclasses. Methods and techniques of finding such similarities are
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outlined. We plan to investigate these similarities in a series of subsequent papers, which

hopefully will reveal a general closed-form expression of the ZZ polynomial for each class.

It is important to stress here that the results presented in this manuscript are not sensu
stricto proofs of these properties, but should be rather treated as conjectures. However, the
resulting formulas have been verified against a large number of ZZ polynomials for structures
not comprised in the search sets, confirming their transferability. We believe that these tests
guarantee that the expressions for the ZZ polynomials given here are valid in general. For
those interested in strict demonstration of the presented here formulas, we stress that the
presented formulas usually suggest a certain way of decomposing the original structures using
the recursive properties of the ZZ polynomials described in I, which can be used for a regular

proof.

Acknowledgment National Science Council of Taiwan (grant NSC 99-2113-M-009-011-
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