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Abstract

Polynomial interpolation can be used to obtain closed formulas for topological indices

of infinite series of molecular graphs. The method is discussed and its advantages and

limitations are pointed out. This is illustrated on fullerenes C12k+4 and four topological in-

dices: the Wiener index, the edge Wiener index, the eccentric connectivity index, and the

reverse Wiener index. The results for the edge Wiener index correct earlier computations

from the literature. Related formulas are derived for cyclic phenylenes.

1 Introduction

Computations of topological indices and deriving related closed formulas lie in the very

center of chemical graph theory. Different methods and algorithms have been developed

for this sake. An optimal case is when a closed formula can be deduced, because in that

case the invariant in question can in principle be computed in constant time. A useful
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approach to obtain formulas is the so-called interpolation method [6, 7]. In the literature

it is typically used without proper mathematical background and the obtained formulas

are taken as granted despite the fact that they are eventually not rigorously proved. The

purpose of this paper is to point out how the method should be used and to provide its

further applications. Along the way we also point out an error from the literature and

correct it.

Topological indices are numerical parameters related to the molecular structure and

are used in the study of biological activities and physico-chemical properties of molecular

graphs. Numerous such indices are based on the distance function of a graph. The first

(distance based) topological index is the Wiener index [21]. It has found considerable

applications in QSPR and QSAR [9, 18, 20] and is still extensively investigated [4, 8, 10,

16, 22, 23].

The other three distance based topological indices we will consider are the reverse

Wiener index introduced by Balaban et al. [19], the eccentric connectivity index intro-

duced by Sharma et al. [3], and the edge Wiener index introduced in [14]. The study of

the latter index can be reduced to the study of the Wiener index of line graphs [8, 22].

The cut method [15] for the edge Wiener index was developed in [24]. The eccentric

connectivity index is very extensively studied in these years, [2, 11, 17] is just a sample

of recent investigations. For some more results on the reverse Wiener index see [5, 12].

The paper is organized as follows. In the rest of this section we recall definitions

of the four topological that are of interest here. Then, in the subsequent section, the

interpolation method is described and requirements that need to be fulfilled in order to

apply the method are emphasized. In Section 3, the method is applied to obtain closed

formulas for four topological indices of fullerenes C12k+4. We conclude the paper by giving

related formulas for cyclic phenylenes.

Let G be a connected graph, then the distance between vertices u and v is denoted

by d(u, v). The diameter of G is the maximum distance between its vertices and denoted

diam(G). The eccentricity ecc(u) of u is the maximum distance between u and any other

vertex of G. The distance between edges g = u1v1 and f = u2v2 is defined as

de(g, f) = min{d(u1, u2), d(u1, v2), d(v1, u2), d(v1, v2) + 1 .

Equivalently, this is the distance between the vertices g and f in the line graph of G [14].

The degree of u will be denoted deg(u).
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Let G be a connected graph on n vertices. Then the Wiener index W (G), the edge

Wiener index We(G), the reverse Wiener index RW (G), and the eccentric connectivity

index ξ(G), are respectively defined as follows:

W (G) =
∑

{u,v}∈(V (G)
2 )

d(u, v) ,

We(G) =
∑

{f,g}∈(E(G)
2 )

de(f, g) ,

RW (G) =
1

2
n(n− 1)diam(G)−W (G) ,

ξ(G) =
∑

u∈V (G)

ecc(u)deg(u) .

2 Interpolation method

Let {Gk}k≥1 be a series of graphs and let I be a topological index. Suppose that there

exists n0 ∈ N such that for any n ≥ n0, I(Gn) = p(n), where p is a polynomial of degree

r. Then p can be determined by interpolating the values I(Gn0), I(Gn0+1), . . . , I(Gn0+r).

We will say that p interpolates I on {Gk}k≥1. Consequently, for any i, I(Gi) can be

determined in constant time from the list of initial values I(Gk), 1 ≤ k < n0, and the

polynomial p.

To apply the interpolation method efficiently, it is important to give a bound on the

degree of the polynomial p. For this sake, the following observation is useful:

Lemma 2.1 Suppose that p interpolates I on {Gk}k≥1. If there exists a positive constant

α such that I(Gk) < αkr, then deg(p) ≤ r.

Proof. Suppose on the contrary that deg(p) > r. Then I(Gk)
p(k)

< αkr

p(k)
−−−→
k→∞

0. But this is

not possible because p interpolates I on {Gk}k≥1 and hence there exists n0 ∈ N such that

for any n ≥ n0, I(Gn) = p(n), and consequently I(Gk)
p(k)

−−−→
k→∞

1. �

In order to apply the interpolation method, the following requirements must be ful-

filled:

1. Initial deviations should be ruled out, that is, the smallest n0 has to be determined

such that the interpolation works for all n ≥ n0.

2. It has to be proved that I(Gn) is a fixed polynomial function, that is, there exists

a polynomial p such that I(Gn) = p(n) holds for any n ≥ n0.
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3. A constant upper bound on the degree of p must be given.

Out of these three conditions, the second one seems to be most difficult to fulfill and

we know of no example where it was done. Hence all the corresponding theorems stated

in the literature are only conditionally true! On the other hand, if an obtained formula

has been verified for large enough n ≥ n0, then the obtained formula can be safely used

in practice.

After the above three conditions are fulfilled, the interpolation is straightforward.

Suppose deg(p) ≤ r, then by interpolating the points (n0, I(Gn0)), (n1, I(Gn1)), . . . , (n0 +

r, I(Gn0+r)), a closed formula (a polynomial) is obtained. This follows from the well-

known fact that if f(x) and g(x) are polynomials of degrees m and n, m ≤ n, and have

more than n points in common, then f(x) = g(x).

3 Fullerenes C12k+4

In this section we demonstrate the use of the interpolation method on the fullerene graphs

C12k+4. These fullerenes, whose definition should be clear from Fig. 1, were studied for

instance in [1, 13].

Figure 1: C12k+4, k = 12

The paper [13] brings values for the (first and the second) edge Wiener index of these

fullerenes and interpolates it by polynomial of degree 12. However the reported results

appear to be wrong as it will be justified later. A particular motivation for the present
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paper is thus also to fill this gap. We begin with the Wiener index and first bound the

degree of a possible interpolation polynomial:

Lemma 3.1 Suppose p interpolates W on {C12k+4}k≥3. Then p is a cubic polynomial.

Proof. Clearly, if G is a connected graph on n vertices, thenW (G) ≤
(
n
2

)
diam(G). (More-

over, the equality holds here if and only if G is a complete graph.) Since diam(C12k+4) =

2k − 1 holds for k ≥ 7, it follows that W (C12k+4) ≤
(
12k−8

2

)
(2k − 1) = 144k3 − 276k2 +

174k − 36, k ≥ 7. The assertion now follows from Lemma 2.1. �

Using Lemma 3.1, the interpolation method is now applied by interpolating four con-

secutive points but having in mind that initial deviations should be ruled out. It turns

out that the values W (C12k+4), 3 ≤ k ≤ 6, are sporadic. The values were computed up

to k = 100, see Table 1, so that the exact statement is:

Theorem 3.2 W (C28) = 1198, W (C40) = 3004, W (C52) = 5894, W (C64) = 10092, and

for 7 ≤ k ≤ 100, W (C12k+4) = 48k3 − 962 + 908k − 2274.

Since the interpolation works for 7 ≤ k ≤ 100 it is very likely that if holds for all k

and hence the obtained formula can be therefore used for all practical purposes. However,

one would still need to prove that I(Gk) is a fixed polynomial function.

In Table 1 values for the other three indices of interest here are also given.

We continue with the edge Wiener index of C12k+4 which is equal to W (L(C12k+4)),

where L(G) denotes the line graph of G. Since |L(C12k+4)| = 18k − 12 and

diam(L(C12k+4)) ≤ diam(C12k+4) + 1 = 2k, we infer that an interpolation polynomial for

the edge Wiener index of C12k+4 is again cubic. In particular, We(C12k+4) ≤
(
18k−12

2

)
2k.

Since the computed numbers from [13] are larger than this estimate, the results obtained

there are not correct. The interpolation does not work for k ≤ 6, but for 7 ≤ k ≤ 100 we

have:

We(C12k+4) = 108k3 − 216k2 + 2199k − 5457 .

For the reverse Wiener index of C12k+4 we have for 7 ≤ k ≤ 100:

RW (C12k+4) = 96k3 − 180k2 − 734k + 2238 .

Finally, for the eccentric connectivity index an interpolation polynomial, if it exists, is

quadratic. Indeed, this follows because for each vertex v of C12k+4, we have deg(v) = 3
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k Wiener edge Wiener reverse Wiener ecc. connectivity

3 1198 2870 1070 468
4 3004 7067 3236 852
5 5894 13708 6040 1236
6 10092 23299 12084 1716
7 15842 36396 21208 2280
8 23422 53607 33998 2988
9 33114 75570 51036 3804
10 45206 102933 72898 4764
11 59986 136344 100160 5832
12 77742 176451 133398 7008
13 98762 223902 173188 8292
14 123334 279345 220106 9684
15 151746 343428 274728 11184
16 184286 416799 337630 12792
17 221242 500106 409388 14508
18 262902 593997 490578 16332
19 309554 699120 581776 18264
20 361486 816123 683558 20304
...

...
...

...
...

100 47128526 106054443 94128838 533424

Table 1: The topological indices of C12k+4 fullerene

and ecc(v) ≤ diam(C12k+4) = 2k − 1, k ≥ 7. On the other hand it interestingly turned

out that the interpolation starts working from k ≥ 9, so that for 9 ≤ k ≤ 100 we can

state:

ξ(C12k+4) = 54k2 − 66k + 24 .

4 Cyclic phenylenes

Cyclic phenylenes were studied among others in [7, 25]. The cyclic phenylene Rh is defined

for any h ≥ 3, its definition should be clear from the example of R5 depicted in Fig. 2.

In this case the interpolation method works for all the four indices for any h ≥ 3

except for the eccentric connectivity index for which h = 3 is an exception. The obtained

results for h ≤ 100 are:

W (Rh) = 9h3 + 36h2 − 36h ,

We(Rh) = 16h3 + 56h2 − 45h ,

RW (Rh) = 9h3 + 33h2 + 24h ,

ξ(Rh) =

{
270, h = 3;
16h2 + 46h, h ≥ 4.
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Figure 2: The cyclic phenylene R5

The expression for W (Rh) was earlier reported in [7].
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[7] G. Cash, S. Klavžar, M. Petkovšek, Three methods for calculation of the hyper–

Wiener index of molecular graphs, J. Chem. Inf. Comput. Sci. 42 (2002) 571–576.

[8] N. Cohen, D. Dimitrov, R. Krakovski, R. Škrekovski, V. Vukašinović, On Wiener
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