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Abstract 

An automatic computer code is developed to calculate the Zhang–Zhang (ZZ) polynomial 

(aka Clar covering polynomial) for benzenoid systems. The code can be routinely applied to 

dense pericondensed benzenoids containing up to 500 carbon atoms. For catacondensed and 

quasi-linear pericondensed benzenoid systems, the limiting number of atoms is much larger 

and may exceed 10000. A parallel implementation of the code is also presented, which allows 

one to surpass these limits with a large number of CPUs. The developed program is applied 

for finding the ZZ polynomials of various classes of benzenoid systems; general techniques 

and algorithms applicable in this context are reviewed and discussed. A survey of new results 

obtained in that way is presented in a sequel to this paper [C.-P. Chou, Y. Li, and H.A. Witek, 

MATCH Commun. Math. Comput. Chem., submitted].  
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1. Introduction 

Determination of topological invariants of chemical structures in many cases provides a 

basis for understanding difficult theoretical problems, particularly for system with a large 

number of atoms and with a dense network of bonds. The knowledge of topological 

descriptors is important for qualitative understanding of various molecular aspects in their 

chemistry and physics. In many cases, simple topological analysis can replace expensive 

quantum chemical calculations, yielding approximately equivalent information[1-21]. The 

analysis of molecular graphs for large aromatic molecules is sometimes the only source of 

chemical knowledge for systems exceedingly large for quantum chemical calculations. The 

knowledge of graph-theoretical invariants is particularly important in chemistry and physics 

of benzenoid molecules[6, 12, 22-29]. The number of useful topological descriptors 

characterizing such structures is abundant. Numerous theoretical studies employ these 

invariants for explication of benzenoid reactivity, geometric and electronic structure, and their 

various physicochemical properties[15, 17, 18, 30-34]. It is regrettable that in many cases the 

determination of many of such invariants (e.g., Kekulé number corresponding to a number of 

distributions of single and double bonds in an aromatic system or a Clar number 

corresponding to the maximal number of aromatic sextets in an aromatic system) still often 

provides such a painstaking problem.  

The present manuscript gives a partial solution to this problem by reporting a computer 

code for automatic generation of the Zhang–Zhang (ZZ) polynomial[35-40], a combinatorial 

polynomial that can be defined for an aromatic structure on the base of its molecular graph. A 

wide class of topological invariants can be readily extracted from the ZZ polynomial, usually 

as its various coefficients; for details see Section 2. The only input necessary for the 

determination of the ZZ polynomial is the molecular graph, usually provided in the form of 

Cartesian coordinates of a given structure. The reported here program can be routinely applied 

to structures containing up to 200 carbon atoms. For larger structures, it is necessary to 

provide an additional input file containing straightforward, graph-theoretical information 

about minimum cuts of a given molecular graph; details are given in Section 4. To illustrate 

the computational complexity associated with the determination of the Zhang–Zhang 

polynomial for larger structures, it is insightful to quote the number of Kekulé structures that 

can be written for the hexagonal D6h graphene flake containing 384 carbon atoms. This 
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number—directly corresponding to the zero-degree coefficient of the ZZ polynomial—is 

larger than 1022. Note that the coefficients in the ZZ polynomials tend to grow very fast with 

size for dense, two-dimensional benzenoid structures; it is reasonable to say that the 

computational time limitations set an upper limit of carbon atoms in our program for such 

structures to approximately 500. For linear and quasi-linear benzenoid systems, this limit is 

much larger and may exceed 10000 carbon atoms.  

The reported here automatic program for determination of the Zhang–Zhang polynomial 

can be used in a twofold way. The computer code provided in Auxiliary Materials can be 

downloaded and compiled (or directly installed) on any UNIX platform. Examples, given in 

Section 5, show how to use it. An alternative—and much simpler—way of computing the ZZ 

polynomial can be achieved via the homepage (http://qcl.ac.nctu.edu.tw/zzpolynomial) we 

have established and will maintain for this purpose. Everything one needs for computing the 

ZZ polynomial via the homepage is to copy-and-paste the molecular coordinates of a given 

aromatic system into the special form available in the homepage. For the convenience of the 

user, simple graphical builder can be also used for generating the required benzenoid structure. 

For smaller systems, the corresponding ZZ polynomial will be printed instantaneously, for 

larger ones, within seconds or minutes.  We hope that the automatic program presented here 

will be a useful tool for all scientists working in this field. 

The structure of the current manuscript is as follows. Section 2 introduces the concept of 

the ZZ polynomial and illustrates it on two simple examples enabling a novice in the field 

understanding its structure. Section 3 presents a compilation of recursive properties of the ZZ 

polynomial that can be used for its determination. These two sections present well-known 

facts about the ZZ polynomial, which are included here to make the current manuscript self-

contained. An additional motivation was the desire of further popularization of the ZZ 

polynomial as, in our opinion, its knowledge is not sufficiently spread among non-specialists. 

The algorithm used in our program is presented in Section 4 together with various important 

technical details concerning the presented program; their understanding will help in robust 

and skillful application of our program to real-life problems. Finally, Section 5 presents 

applications of the presented here program for solving various kind of combinatorial problems 

in the chemistry of benzenoids. This section is primarily meant to introduce various 

techniques that can be used for obtaining closed-form solutions for various classes of 
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benzenoid structures. Application of these techniques to general problems is presented in a 

sequel to the current manuscript[41] (hereafter referred to as II), which presents a derivation 

of Zhang–Zhang polynomials for various subclasses of benzenoid systems. The results 

presented in the current work are in general well-known, while the results presented in II are 

mostly new. 

2. Zhang–Zhang polynomial 

The combinatorial polynomial, known as the Zhang–Zhang polynomial or the ZZ 

polynomial, is a powerful and convenient tool for classifying resonance structures of a given 

aromatic system. The ZZ polynomial was introduced in 1996 in a series of papers[35-37, 39] 

by two Chinese mathematicians, Heping Zhang and Fuji Zhang, who were able to show that it 

possesses a number of very inviting recursive properties that can be used for its fast 

determination[35-37, 39]. As an example, they used these properties to calculate the ZZ 

polynomial for some small benzenoid systems and several series of catacondensed hexagonal 

systems. Zhang and Zhang proposed also a simple recursive algorithm for determination of 

the ZZ polynomial of any finite hexagonal system. Relatively high complexity and the graph-

theoretical language, in which the results of Zhang and Zhang were announced, made their 

results available only to experts in this field. An important step toward the popularization of 

the ZZ polynomial in chemical community was the publication of a review article by Gutman, 

Furtula, and Balaban[42], who in brilliantly clear and ingenious exposition explained the 

theoretical issues leading to the definition of the ZZ polynomial and presented an 

algorithmically refined version of its recursive determination given originally by Zhang and 

Zhang. The computer program reported in this manuscript was largely stimulated by this work. 

The basic idea necessary for understanding the importance of the ZZ polynomial is the 

concept of a Clar cover introduced by Zhang and Zhang. In general, a Clar cover of order k of 

a benzenoid system containing n carbon atoms is a permissible resonance structure containing 

exactly k aromatic Clar sextets and n/2−3k double bonds. The concept of Clar covers can be 

best understood on a simple example. In Figure 1 we show all the 13 conceivable Clar covers 

that can be written for a simple benzenoid molecule, pyrene; these resonance structures are 

constructed using either delocalized aromatic sextets of Clar or the localized double bonds of 

Kekulé. Structures 1–6 represent the well-known Kekulé formulas (Clar covers of order 0) of 
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pyrene. Structure 13 represents the only Clar formula (Clar cover of order 2) of pyrene. 

Structures 7–12 are non-standard and correspond to Clar covers of order 1. Zhang and Zhang 

suggested that the number of Clar covers of each type can be conveniently summarized in a 

form of a combinatorial polynomial ZZ(x) in a dummy variable x, which only function is to 

represent the order of Clar covers of a given type. The ZZ polynomial of pyrene is thus
2ZZ( ) 6 6x x x� � � , which should be interpreted as follows: pyrene possesses six Clar covers 

of order 0, six Clar covers of order 1, and a single Clar cover of order 2. The advantages of 

such a representation will become apparent later, when we discuss the recursive properties of 

the ZZ polynomial. Before proceeding to this point, let us discuss another, slightly more 

complicated example. Figure 2 shows all the 69 conceivable Clar covers that can be written 

for coronene. We see from Figure 2 that all these Clar covers can be grouped into four 

families: 20 Clar covers of order 0, 32 Clar covers of order 1, 15 Clar covers of order 2, and 

two Clar covers of order 3. Consequently, the ZZ polynomial of coronene is ZZ(x) = 20 + 32x 

+ 15x2 + 2x3.  

The knowledge of the ZZ polynomial yields immediately the most important topological 

descriptors. The free coefficient of the ZZ polynomial, equal to 6 for pyrene and 20 for 

coronene, determines the number of Kekulé formulas K. The highest degree of the ZZ 

polynomial, equal to 2 for pyrene and 3 for coronene, corresponds to the Clar number Cl. The 

coefficient accompanying the xCl term determines the number of Clar formulas C, which is 

Figure 1. All possible Clar covers of pyrene with zero (1–6), one (7–12), and two (13) aromatic rings. 
The number of Clar covers can be conveniently summarized in the form of a combinatorial Zhang–
Zhang polynomial ZZ(x) = 6 + 6x + x2. 

l possible Clar covers of pyrene with zero (1 6) one (7 12) and two (13) arom
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equal to 1 for pyrene and 2 for coronene. Finally, the sum of all coefficients in the ZZ 

polynomial gives the total number of conceivable resonance structures that can be written for 

a given aromatic system. 

 

Figure 2. All possible Clar covers of coronene with zero (1–20), one (21–52), two (53–67), and three 
(68 and 69) aromatic rings. The number of Clar covers can be conveniently summarized in the form of 
a combinatorial Zhang–Zhang polynomial ZZ(x) = 20 + 32x + 15x2 + 2x3. 

1) 2) 

3) 4) 

5) 6) 

7) 8) 

9) 10) 

11) 12) 

13) 14) 

15) 16) 

17) 18) 

19) 20) 

53) 54) 

55) 56) 

57) 58) 

59) 60) 

61) 62) 

63) 64) 

65) 66) 

67) 

68) 

69) 

2 332ZZ 20 15( ) 2x x x x� � � �

21) 22) 23) 24) 

25) 26) 27) 28) 

29) 30) 31) 32) 

33) 34) 35) 36) 

37) 38) 39) 40) 

41) 42) 43) 44) 

45) 46) 47) 48) 

49) 50) 51) 52) 
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3. Recursive properties of Zhang–Zhang polynomial 

The ZZ polynomial described in the previous Section possesses a number of properties, 

which enable its fast and convenient recursive determination. Proofs of these properties are 

elementary and can be found elsewhere[35-39, 42]. The properties are a simple consequence 

of the fact that in any π-aromatic system each carbon atom must participate either in a 

localized double bond or in a delocalized aromatic sextet.  

Let us choose arbitrarily a bond connecting two neighboring carbon atoms A and B in 

some π-aromatic system S. If both of these atoms have more than one carbon neighbor, we 

can distinguish three distinct situations: i) the bond AB belongs simultaneously to two distinct 

benzene rings a and b, ii) the bond AB belongs to only one benzene ring a, and iii) the bond 

AB does not belong to any benzene rings. Each of these cases leads to a specific recursive 

property of the ZZ polynomial.  

Property 1 The bond between the atoms A and B is either a localized single or double 

bond or belongs to a delocalized aromatic sextet centered on the ring a or on the ring b. In 

this case, the ZZ polynomial of S can be expressed as a sum of four simpler ZZ 

polynomials, corresponding to four subsystems of S: i) S1 with the AB bond removed, 

ii) S2 with the atoms A and B removed, iii) S3 with the benzene ring a removed, and iv) S4 

with the benzene ring b removed. 

� � � � � � � � � �1 2 3 4ZZ , ZZ , ZZ , ZZ , ZZ ,S x S x S x x S x x S x� � � � � �  (1) 

Property 2 The bond between the atoms A and B is either a localized single or double 

bond or belongs to a delocalized aromatic sextet centered on the ring a. In this case, the 

ZZ polynomial of S can be expressed as a sum of three simpler ZZ polynomials, 

corresponding to three subsystems of S: i) S1 with the AB bond removed, ii) S2 with the 

atoms A and B removed, and iii) S3 with the benzene ring a removed. 

� � � � � � � �1 2 3ZZ , ZZ , ZZ , ZZ ,S x S x S x x S x� � � �  (2) 

Property 3 The bond between the atoms A and B is either a localized single bond or a 

localized double bond. In this case, the ZZ polynomial of S can be expressed as a sum of 
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two simpler ZZ polynomials, corresponding to two subsystems of S: i) S1 with the AB 

bond removed and ii) S2 with the atoms A and B removed. 

� � � � � �1 2ZZ , ZZ , ZZ ,S x S x S x� �  (3) 

Note that the ZZ polynomials of the subgraphs S3 and S4 in Eqs. (1) and (2) must be 

multiplied by x to compensate for removing the aromatic Clar sextets a and b. 

If one of the atoms has only one neighbor (we call such an atom terminal), we obtain next 

recursive property of the ZZ polynomial. 

Property 4 If one of the atoms A and B has terminal character, then clearly the bond AB 

must have double character. In this case, the ZZ polynomial of S is equal to the ZZ 

polynomial of the subsystem S1 with the atoms A and B removed. 

� � � �1ZZ , ZZ ,S x S x�  (4) 

It may happen that removing a bond, ring, or atoms from the system S generates a 

subsystem that is disconnected, i.e., composed of m chemical fragments S1, S2, …, Sm not 

connected by chemical bonds. This situation generates next recursive property of the ZZ 

polynomial. 

Property 5 The ZZ polynomial of a disconnected system S is equal to the product of the 

ZZ polynomials of its all fragments S1, S2, …, Sm. 

� � � � � � � �1 2ZZ , ZZ , ZZ , ZZ ,mS x S x S x S x� � ���  (5) 

The listed above properties of the ZZ polynomial can be referred to as recursive in the 

following sense. For each of the listed properties, we express the ZZ polynomial of the 

molecular graph S as a sum or a product of the ZZ polynomials of its subgraph(s) with a 

smaller number of vertices or edges. Clearly, if one repeats such a procedure an appropriate 

number of times, the ZZ polynomial of S can be computed recursively in terms of the ZZ 

polynomials of some minimal subgraphs of S. This can be accomplished owing to the next 

two properties of the ZZ polynomial giving explicitly its values in two important cases. 
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Property 6 The ZZ polynomial of a system S consisting of an odd number of carbon 

atoms vanishes. 

� �ZZ , 0S x �  (6) 

Property 7 The ZZ polynomial of a system S consisting of zero atoms is equal to 1. (This 

fact signifies that there is only one way of writing “nothing” similarly like in mathematics 

only one empty set exists.) 

� �ZZ , 1S x �  (7) 

The presented here properties are sufficient to determine the ZZ polynomial of any 

π-aromatic structure consisting of carbon atoms. In next Section we discuss how these 

properties can be used for creating a general algorithm capable of determination of the ZZ 

polynomial for an arbitrary aromatic molecule. 

4. Automatic program for determination of the Zhang–Zhang 

polynomial 

The algorithm for determination of the ZZ polynomial was first proposed by Zhang and 

Zhang as a series of theorems that were subsequently used for computing the ZZ polynomial 

of a series of simple systems. The algorithm was given in more obvious form by Gutman, 

Furtula, and Balaban[42], who demonstrated an explicit sequence of operations that can be 

used for the determination of the ZZ polynomial for tetracene and benzo[a]pyrene. They 

noticed that every planar benzenoid system contains an edge bond belonging maximally to 

one benzene ring, which makes Property 1 obsolete. This observation is important from the 

computational point of view since using Property 1 results in higher-order branching of the 

algorithm and larger number of operations needed for determination of the ZZ polynomial. 

We note in passing that Property 1 is important for non-planar aromatic systems such as 

nanotubes, where bonds belonging only to a single hexagon may not exist.  

In the present manuscript we employ a slightly modified version of this algorithm to 

develop a computer program capable of computing the Zhang–Zhang polynomial in an 
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automatic fashion. The algorithm has a recursive character and therefore it is useful to define 

first a recursive function ZZ(S), which constitutes the heart of our program. The flow chart for 

this function is shown in Figure 3. The value of the function ZZ for the structure S is 

computed explicitly only in two cases, when S has no atoms (using Property 7) or when S has 

an odd number of atoms (using Property 6). In all other cases, the ZZ polynomial of S is 

computed recursively as a product or a sum of the ZZ polynomials of simpler substructures of 

S using Properties 2, 3, and 5. Before dividing S into substructures, an extensive use of 

Property 4 eliminates all terminal atoms from the structure S, seriously reducing the 

computational cost in the subsequent partition steps. The inset in Figure 3 presents the 

structure of the main program in form of a few lines of meta-code; it is clear that the main 

program acts only as a wrapper for the recursive function ZZ.  

Recursive procedure ZZ(S)

#atoms = 0

Terminal atoms in S?

#atoms = odd

S disconnected?

No

No

No

No

ZZ = 1

Use Property 4 to
eliminate terminal atom

Split S into
S1 and S2

AB belongs to any hexagon a?

Yes

Yes

Yes

Return

Decompose S into
S1 = S − AB
S2 = S − A − B
S3 = S − a

Decompose S into
S1 = S − AB
S2 = S − A − B

Yes

No

Use Property 5 to
compute ZZ(S)

Return

Return

Select an edge bond AB
between some atoms A and B

ZZ = 0 Return

Call ZZ(S1)

Call ZZ(S2)
Return

Call ZZ(S1)

Call ZZ(S2)

Call ZZ(S3)

Use Property 3 to
compute ZZ(S)

Call ZZ(S1)

Call ZZ(S2)

Use Property 2 to
compute ZZ(S)

Yes

program ZZ_polynomial
call read_input(xyz_file, geom)
call create_graph_structure(geom, S)
call ZZ(S)
call print_polynomial(S)

end program

 

Figure 3. The flowchart of the Zhang–Zhang polynomial calculator program. 

Our program is written in Fortran 95 and uses extensively many features of this 

programming language. Since the coefficients of the ZZ polynomial can attain very large 

values, it was necessary to implement in our code a new multi-precision integer type together 

with an appropriate interface allowing robust multiplication and addition of such large 
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numbers. At present the maximum number of digits for the multi-precision integer type is set 

to 1000, which allows for ZZ polynomials with coefficients up to 101000; it is highly unlikely 

that it will ever be achieved in practical calculations due to computational cost limitations. 

The computational cost grows very fast with the size of the system S; the scaling is highly 

non-linear. Therefore, in order to facilitate calculations of the ZZ polynomial for large 

structures, a parallel version of the program has been developed. We have used the OpenMP 

extension of the Fortran 95 compiler to achieve parallel execution. Since the formula for 

computing the ZZ polynomial has a recursive character, enabling the capability for parallel 

execution needs an automatic pretreatment performed by decomposing the initial structure S 

into a certain amount of its substructures (of the order of 2000), which are stored inside a 

temporary array T. Subsequently, the OpenMP library distributes the substructures between 

all the available processors, which compute the appropriate ZZ polynomial and return it to the 

array. After the ZZ polynomials are computed for all the generated substructures, the ZZ 

polynomial of the structure S is expressed in terms of the ZZ polynomials of the substructures. 

The initial pretreatment allows us also for reducing the computational cost associated with the 

computation of ZZ(S), because the initial steps of recursive decomposition of S often generate 

identical substructures, while the array T contains only unique substructures. The speed-up 

generated by this operation varies from system to system, ranging from 10% to 50%. 

Despite of the parallel execution feature and the speed-up recursive reduction 

pretreatment discussed above, the computational cost associated with determination of the ZZ 

polynomial for dense 2D benzenoid molecules can be very large. To overcome this obstacle, 

we have implemented another very important modification to the original algorithm. The 

modification is based on the observation that from the computational point of view, using 

Property 5 is much more robust in computing the ZZ polynomial than using the remaining 

properties. Therefore, it is always desirable to find a sequence of bond selections that leads to 

a decomposition of the structure S into disconnected fragments. Clearly, many such sequences 

exist, leading to various time savings during the ZZ polynomial calculations. The optimal 

partitioning of the structure S is achieved when it is decomposed into two segments having 

the same or similar size. The sequence of bond selections defining the optimal decomposition 

path can be specified by the user in an auxiliary input file bondlist. This particular feature is 

probably best explained on an example. In Figure 4 we show a benzenoid structure that can be 

conceived as a fusion of two hexagonal graphene flakes (supercoronenes). Computing the ZZ 
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polynomial in a traditional way with a random choice of the decomposition path requires 

rather long calculations taking as much as 126 seconds. However, if the user provides an 

auxiliary file called bondlist containing a list of two bonds, AB and CD (for details, see Figure 

4), then the computational time is reduced to 0.02 second. For larger structures, the speed-up 

ratio may be considerably larger. It is desirable that the auxiliary file bondlist contains not 

only the optimal cut of the structure S, but also optimal cuts for the resulting substructures. In 

the best case, the user can provide the full decomposition path containing as many as needed 

bipartitions of the molecular graph S and its substructures. If the file bondlist is not provided 

by the user, the program attempts to define the optimal bipartitioning in an automatic fashion 

using a spectral partitioning algorithm, proposed originally by Fiedler[43-45] and popularized 

by Pothen, Simon, and Liou[46].  

 

Figure 4. Starting the determination of the ZZ polynomial of two fused supercoronenes by selecting 
initially the bonds AB and CD speeds-up the computation process by a factor of 1000. For further 
discussion, see text. 

The input file for our program is a standard XYZ file containing the Cartesian 

coordinates of a structure S. The parser ignores all other atoms than carbons. The user should 

make sure that the structure given as the input consists only of the sp2 carbons by removing 

all the side alkyl chains containing the sp3 carbons from the structure. In addition to the main 

input file, the user can specify an auxiliary input file defining the optimal decomposition path; 

details have been discussed in the previous paragraph. The bondlist file contains m lines, each 

line specifying two atom indices corresponding to the numbering of atoms in the original 

XYZ input file. The program chooses an edge AB following the order given in the auxiliary 

input file; if the bond list is empty or all its entries has been exhausted, the selection of the 

bond AB is performed by the spectral partitioning algorithm. 
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The program source code is available as Auxiliary Materials accompanying this 

manuscript available from XXX. Alternatively, the program can be accessed via the ZZ 

polynomial calculator homepage http://qcl.ac.nctu.edu.tw/zzpolynomial, which provides a 

possibility of computing the ZZ polynomial for small and moderate size systems (the 

calculation time has been restricted to 1 minute). The homepage contains also a convenient 

graphical tool for constructing benzenoid structures, which may serve as the input for the ZZ 

polynomial calculator. The graphical interface can be also used for defining the optimal 

decomposition path of a given benzenoid system. Graphical representation of the ZZ 

polynomial calculator is given in Figure 5. 

 

Figure 5. Snapshot of the web-based Zhang–Zhang polynomial calculator application. 

 

5. Exemplary applications  

To demonstrate the capabilities of the program presented in this manuscript we have 

applied it for determination of the ZZ polynomials of a series of benzenoid systems. Most of 

the results presented in this Section are well-known, some are new. We treat the results shown 

Input Output
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in this Section mainly as an introduction of techniques that can be used for determination of 

general closed-form of the ZZ polynomial of more complex systems. An application of these 

techniques to more complex system is given in the subsequent paper referred to as II. 

a. Polyacenes 

 

Figure 6. Linear polyacene molecule containing m rings 

We start our exposition by discussing the ZZ polynomials of polyacenes, probably the 

simplest and best-studied benzenoid structures. Their Clar number is equal to 1 and their 

Kekulé number is equal to m + 1, where m denotes the number of benzene rings in a given 

polyacene L(m). The ZZ polynomials for this series of molecules have a remarkably simple 

structure (for details see Figure 6), which can be immediately generalized to any number of 

rings, giving  

 � �ZZ ( ), 1 (1 ),L m x m x� � �  (8) 

which agrees with the analogous result given by Zhang and Zhang[37]. Note that the number 

of Kekulé structure determined in this way, 1 + m, is consistent with the previous studies[47]. 

b. Single armchair chain 

 

Figure 7. Single armchair chain N(n) of length n. Note that N(0) corresponds to ethylene, N(1), to 
benzene, N(2), to naphthalene, and N(3), to phenanthrene. 

� �
� �
� �
� �
� �

� �

ZZ (1), ) 2
ZZ (2), ) 3 2
ZZ (3), ) 4 3
ZZ (4), ) 5 4 ZZ ( ), 1 (1 )
ZZ (5), ) 6 5

L x x
L x x
L x x
L x x L m x m x
L x x

� � �
	� � 	
	� �
	

� � 
 � � �	
	� � �
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The example given in the previous paragraph can be considered as a one-dimensional 

sequence of benzene rings selected from a graphene sheet along the zigzag direction. In this 

paragraph we consider a related system, in which the hexagons are selected from the graphene 

sheet along the armchair direction. The single armchair chain N(n) of length n obtained in that 

way is shown schematically in Figure 7. 

The ZZ polynomials for the shortest few structures, N(0)–N(11), are given by 

� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �

2 3

2 3

2

2

2 3 4

2 3 4

2 3 4 5

ZZ 0 , 1

ZZ 1 , 2

ZZ 2 , 3 2

ZZ 3 ,

ZZ 4 ,

ZZ 5 , 13 20 9

ZZ 6 , 21 38 22 4

ZZ 7 ,

ZZ 8 ,

5 5

8 10 3

34 71 51 14

55 130 111 40 5

89 235 233 105ZZ 9 ,

Z

2

0

0

41 1Z ,

N x

N x x

N x x

N x

N x

N x

x x

x x

x x x x

x x x x

x x x

x x x

N x x x x

N x

N x

N x

N

x

x

x

� �

� �

� � � �

� � � �

� � � � �

�

� �

� �

�

�

� � � �

� � � �

�

�

�

�

� �� �

2 3 4 5

2 3 4 5 6

4 420 474 256 65 6

233 744 942 594 190 2ZZ .711 ,

x x x x x

x x x xN x xx

�









�

� � � � �

� � �








� �� �



 �

 (9) 

An analysis of these formulas suggests that they are related by some kind of recurrence 

pattern, as, for example, the free coefficient of the ZZ polynomial of N(n) is equal to the sum 

of analogous coefficients for N(n−1) and N(n−2). To find this recurrence formula, we denote 

the unknown recurrence factors by a for N(n−1) and b + cx for N(n−2); their form is obvious 

from (9). (Note that multiplying the ZZ polynomial of N(2) by x would produce x3 for N(3), a 

term that is obviously obsolete.) It is easy to find the unknown factors (a = b = c = 1) by a 

simple analysis of the first two equations. Thus, we find that the ZZ polynomial of N(n) obeys 

a recursion relation 

ZZ( ( ), ) ZZ( ( 1), ) ( 1) ZZ( ( 2), ).N n x N n x x N n x� � � � � �  (10) 
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Its correctness has been verified for a large number of cases. This recursion relation is a 

second-order linear homogeneous recurrence relation with constant coefficients. Its solution, 

found using standard techniques for solving linear recurrence equations as implemented in the 

symbolic algebra package MAPLE[48], can be expressed in a closed form, giving the ZZ 

polynomial of N(n) as 

1 2 3 1 4 5ZZ( ( ), ) 1
2 24 5

1 2 3 1 4 51 .
2 24 5

n

n

x xN n x
x

x x
x

� �� � �� �� � � �� �� ��� �� �

� �� � �� �� � � �� �� ��� �� �

 (11) 

The recurrence equation (10) was derived before by Zhang and Zhang directly from a 

recursive decomposition of N(n)[37]. An expression equivalent to Eq. (11) was also given in 

[37]; however, the formula given here by Eq. (11) is more explicit and simpler than the 

expression given by Zhang and Zhang. Note that setting x = 0 reduces Eq. (11) to Eq. (4.12) 

in [49], which gives the number of Kekulé structures of a single armchair chain. It may be 

useful to notice that Eq. (11) can be also expressed in a simple additive form 

 � � � �
0

1
ZZ ( ), 1 ,

n
k

k

n k
N n x x

k�

� �� �
� �� �

� �
�  (12) 

which can be more useful for practical calculations. 

c. Parallelograms 

 

Figure 8. Parallelogram M(m,n) 
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Let us consider next a two-dimensional paralleloidal graphene flake as shown in Figure 8, 

which we will denote by M(m,n). The derivation of a general form of the ZZ polynomial for 

this type of structures may proceed as follows. First, we consider a narrower family of 

structures by fixing the value of m to 2. The first eight ZZ polynomials for the M(2,n) family 

are given by 

� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �
� �� �

2

2

2

2

2

2

2

ZZ 2,1 , 3 2

ZZ 2,2 , 6 6

ZZ 2,3 ,

ZZ

10 12 3

15 20 62,4 ,

ZZ 2,5 ,

ZZ 2,6 ,

ZZ 2,7

21 30 10

28 42 15

36 56 21

45 7

,

ZZ 2, , 2 288 .

x x

x x

x

M x x

M x x x

M x

M x

M x

M x

M x

x

x x

x x

x xM x

� � �


� � �

� �

� �

� �


 �
 �
� �
 �
 �
 ��

� �

� �

� �

  (13) 

First thing that could be noticed is that the Clar number Cl for M(2,n) is never larger than 

2, suggesting that the general form of the ZZ polynomial can be given by A + Bx + Cx2, where 

A, B, and C are some functions of n. These coefficients are easily found by inspection of the 

integer sequences appearing in the subsequent ZZ polynomials. Before giving their closed 

form, let us first discuss general techniques used for their identification. We use two principal 

tools for finding the closed form of integer sequences appearing in our work. The first tool is 

the On-Line Encyclopedia of Integer Sequences (OEIS)[50], which requires specifying the 

first few terms of a given sequence in order to recognize it. In general, the recognition is not 

unique as many sequences share the same initial terms. A specification of larger number of 

entries obviously helps, in many cases yielding the unique solution. For each of the 

recognized sequences, a discussion of its properties is given along with methods of its 

reproducing, either by a direct equation, or by recurrence, or by means of a generating 

function. The second tool used here is the Wolfram|Alpha (Wα)[51] environment, which often 

is able to provide us with a simple closed form of a function generating given sequence. The 

sequence (1, 3, 6, 10, 15, 21, 28, …) corresponding in (13) to the function A is readily 

identified by both tools as 
1 ( 2)( 1)
2

n n� �  which can be written more compactly as the 
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binomial coefficient 
2

2
n �� �

� �
� �

. Similarly, the functions B and C are identified from the 

corresponding sequences as 
1

( 1) 2
2

n
n n

�� �
� � � �

� �
 and 

1 ( 1)
22
n

n n � �
� � � �

� �
, respectively.  Therefore, 

the general form of the ZZ polynomial formula for M(2,n) is given by 

 � �� � 22 1
ZZ 2, , 2 .

2 2 2
n n n

M n x x x
� �� � � � � �

� � �� � � � � �
� � � � � �

 (14) 

Similar analysis applied to the M(3,n), M(4,n) and M(5,n) families of structures gives the 

following series of closed-form ZZ polynomials 

 
� �� � 2 33 2 1

ZZ 3, , 3 3 ,
3 3 3 3

n n n n
M n x x x x

� � �� � � � � � � �
� � � �� � � � � � � �
� � � � � � � �

 (15) 

 
� �� � 2 3 44 3 2 1

ZZ 4, , 4 6 4 ,
4 4 4 4 4

n n n n n
M n x x x x x

� � � �� � � � � � � � � �
� � � � �� � � � � � � � � �
� � � � � � � � � �

 (16) 

� �� � 2 3 4 55 4 3 2 +1
ZZ 5, , 5 10 10 5 + .

5 5 5 5 5 5
n n n n n n

M n x x x x x x
� � � �� � � � � � � � � � � �

� � � � �� � � � � � � � � � � �
� � � � � � � � � � � �

  (17) 

The numerical factors appearing in (14)–(17), i.e., the sequences (1, 2, 1), (1, 3, 3, 1), (1, 

4, 6, 4, 1), and (1, 5, 10, 10, 5, 1) are easily identified by OEIS as another set of binomial 

coefficients 
m
i

� �
� �
� �

 with i = 0, …, m. Combining (14)–(17), the general formula of the ZZ 

polynomial for M(m,n) is 

 � �� �
0

ZZ , , .
m

i

i

m n m i
M m n x x

i m�

� � � �� �� �
� �� �� �� �

� �� �� �
�  (18) 

This formula has been given previously by Gutman and Borovićanin, who derived it directly 

from the recursive properties of the ZZ polynomials of M(m,n)[52]. Note that the number of 

Kekulé structure of M(m,n) obtained by setting x =  0 also agrees with the previously reported 

formula[47]. Eq. (18) is certainly correct but it does not emphasize the permutational 
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invariance n m� of the ZZ polynomial of the parallelogram M(m,n). From Figure 8 it is 

clear that a mirror inversion of M(m,n) produces M(n,m) with all Clar covers of one structure 

being mirror images of the second one. Obviously, the ZZ polynomials are equal, which 

should be also obvious from the form of the ZZ polynomial. Therefore, we prefer to represent 

Eq. (18) in an equivalent permutationally invariant form given by 

 � �
min( , ) min( , )

0 0

( )!ZZ ( , ), .
( )!( )! !

m n m n
i i

i i

m n m n
m i im n iM m n x x x

m nm i n i i
i

� �

�� �� �� �
� �� �� �� � � �� �� �� �

�� � � �
� �
� �

� �  (19) 

d. Polyphenylenes 

 

 

Figure 9. Linear polyphenylene P(n) of length n. 

The linear chain of n phenyl rings is usually referred to as n-polyphenylene; we 

abbreviate it here as P(n). In close analogy to linear polyacenes, the ZZ polynomials for this 

series of molecules have a remarkably simple structure (for details see Figure 9), which can 

be immediately generalized to any number of rings, giving 

 � �� �ZZ , (2 ) .nP n x x� �  (20) 

The number of Kekulé structures can be easily obtained by setting x = 0; the result 2n agrees 

with the previously reported formulae[24, 53]. 
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Figure 10. Armchair-type coronoids for different n, m, and l, 

The next family of systems considered by us here are cyclic polyphenylenes consisting of 

six consecutive linear polyphenylene segments of length n, m, l, n, m, and l, respectively. We 

refer to these structures as armchair coronoids and abbreviate them as AC(n,m,l). The ZZ 

polynomials computed for the smallest few structures are given by 
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� �
 � �
 � ��
 � �
 � �
 � ��

 (21) 

It is immediately clear that the ZZ polynomials of AC(n,m,l) do not depend on the 

particular values of the indices n, m, l but only on their sum n + m + l. The closed form of the 

Zhang–Zhang polynomial of armchair–type coronoids is then given by 

 � � � �2 3ZZ ( , , ), ( 2) .n m lAC n m l x x � � � �� �  (22) 

This formula is in fact identical to Eq. (20) obtained for linear polyphenylenes, as 

2n + 2m + 2l − 6 simply denotes the number of phenyl rings in a given structure.  
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Note that in the case of linear polyacenes adding an additional benzene ring to the 

structure was introducing an extra additive factor 1 + x; here, adding an additional benzene 

ring introduces an extra multiplicative factor 2 + x.  

e. The S(n) series of structures 

 

Figure 11. The S(n) structure 

The next system studied here is shown in Figure 11. It was first studied by Randić, who 

derived a recurrence formula for the number of Kekulé structure of the S(n). The ZZ 

polynomial of the shortest few S(n) are given by 
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 (23) 

The recurrence relation for this series can be found easily as a generalization of the Randić, 

Ohkami, and Hosoya[8, 29] results. It has the following form 

 
� � � � � �

� �2

ZZ ( ), (2 ) ZZ ( 1), (1 ) ZZ ( 2),

(1 ) ZZ ( 3), .

S n x x S n x x S n x

x S n x

� � � � � �

� � �
 (24) 

One can use this formula to obtain the ZZ polynomial for any number of this series. A 

closed-form formula can be found by solving recurrence given by Eq. (24); however, due to 

its third-order characteristic polynomial with complex roots, the recursion formula is too 
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complicated for practical use. It is much more convenient to find a generating function F(z) 

instead, by 

 
2

2 3 2

1 ( 1) .
( 1) ( 1)

(
( ) 1

)
2

x z
x z x z x z

F z � �
� � � � �

�
�

 (25) 

For those not familiar with this technique, we briefly explain that the ZZ polynomial for 

the S(n) structures can be obtained as the nth coefficient in the Taylor expansion of this 

function at z = 0, which can be written explicitly as 

 � �
0

1ZZ ( ), ( ) .
! n

z

dS n x F z
n dz �

�  (26) 

f. Hexagonal graphene flakes 

The structures considered until now were relatively small. We want to show now that the 

ZZ polynomials of simple benzenoid structures can grow very fast and their coefficients can 

attain very large numerical values, but nevertheless our program is still capable of finding the 

results. In Figure 12, we present the ZZ polynomials of a series of hexagonal graphene flakes 

(HGF), which can be considered as a continuation of the series: benzene, coronene, 

supercoronene, etc. We refer to these structures as (n, 0), which signifies two important 

properties of these structures. First, the studied here graphene flakes have a zigzag-like edges, 

which resembles the structure of (n, 0) carbon nanotubes. Second, the index n denotes the 

number of benzene ring layers encircling the central benzene ring. For benzene, it is equal to 

0 resulting in the (0, 0) notation and for coronene, it is equal to 1 giving the notation of (1, 0). 

It is immediately clear that the ZZ polynomial grows very fast with n in quite irregular way. It 

is not obvious if a closed formula for the ZZ polynomial exists; if it does, the form must be 

quite complex. Usually it is easier to find a recurrence formula relating the structures in a 

given families of molecules. The complexity of the presented formulas suggests that even this 

task cannot be easily achieved for the (n, 0) hexagonal graphene flakes. 
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Figure 12. The ZZ polynomials of HGF(n,0), for n = 0 – 6 

2 + x

0,0)
1,0)

980 + 3308 x + 4458 x2 + 3065 x3 + 1140 x4 + 225x5 + 22 x6 + x7 

2,0)

232848 + 1355752 x + 3482400 x2 + 5198238 x3 + 5001260 x4  
+ 3252588 x5+ 1459605 x6 + 453642 x7 + 96753 x8 + 13860 x9  
+ 1285 x10 + 72 x11 + 2 x12 

3,0)

1478619421136 + 18835962222792 x + 113502367269363 x2 + 430406607871422 x3 

+ 1152730173710147 x4 + 2319914012257350 x5 + 3644622407987298 x6 

+ 4583836619765976 x7 + 4696633262157480 x8 + 3969094738902436 x9 

+ 2790959972900013 x10 + 1642978817231934 x11 + 813008069630257 x12 

+ 338995895507832 x13 + 119230520041974 x14 + 35368873172180 x15 

+ 8838861613895 x16 + 1856994372570 x17 + 327026608622 x18 + 48088847758 x19 

+ 5875613928 x20 + 592578430 x21 + 48855223 x22 + 3240318 x23 + 167933x24 

+ 6430 x25 + 162 x26 + 2 x27 

5,0)

267227532 + 2389804604 x + 9865265424 x2 + 24946185302 x3 

+ 43244524658 x4 + 54500920980 x5 + 51684194860 x6 + 37663193263 x7 

+ 21358371744 x8 + 9490314264 x9 + 3312396458 x10 + 907310265 x11 

+ 194327374 x12 + 32357890 x13 + 4158672 x14 + 408889 x15 + 30314 x16 

+ 1635 x17 + 58 x18 + x19 

4,0)

39405996318420160 + 678244022703985296 x + 5603836250880131466 x2 
+ 29599517118877783236 x3 + 112304127214378195316 x4 + 326046771447660421002 x5 

+ 753476142205657213552 x6 + 1423546831882100497662 x7 + 2241204903639039695772 x8 

+ 2982247058489132226339 x9 + 3390168622666633228088 x10 + 3319774667249056597278 x11 

+ 2818366334515471566982 x12 + 2084771043734258896273 x13  
+ 1348860499155345619560 x14+ 765588249292439646709 x15 + 382013118322745767186 x16 
+ 167828541944588976642 x17 + 64977350064301487814 x18 + 22179798756859285180 x19  
+ 6675097505741049492 x20 + 1770540600115722070 x21 + 413626748743836894 x22 
+ 85027057142421642 x23 + 15362049506580008 x24 + 2436147310614634 x25  
+ 338577307537590 x26 + 41164773295262x27 + 4367930475858 x28 + 403064458752 x29  
+ 32160857490 x30 + 2197642843 x31 + 126580890 x32 + 5991030 x33 + 223802 x34 + 6180 x35  
+112 x36 + x37 

6,0)

20 + 32 x + 15 x2 + 2 x3 
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6. Conclusion 

We have developed a computer program for automatic determination of the Zhang–

Zhang (ZZ) polynomial for an arbitrary benzenoid system. The program can be downloaded 

from the Auxiliary Materials accompanying this manuscript or it can be directly accessed on-

line at http://qcl.ac.nctu.edu.tw/zzpolynomial together with a handy graphical interface 

allowing for fast and convenient definition of the studied system. The program can be 

routinely used for determination of the ZZ polynomial for systems containing up to 200 

carbon atoms. For larger benzenoids, in order to speed up the computational process, the user 

may choose to provide an additional input file containing straightforward information about 

optimal bi-partitioning of the molecular graph. Optimal bipartitioning allows one to reduce 

seriously the computational time and to extend an upper limit of carbon atoms in the studied 

structures to approximately 500 for dense pericondensed hexagonal systems. For 

catacondensed and quasi-linear pericondensed systems, this limit is much larger and may 

exceed 10000 carbon atoms. Further extension to even larger structures can be achieved in 

parallel mode execution. Numerous examples show how to apply the presented program to 

combinatorial problems in the theory of benzenoid systems. A survey of new results obtained 

in that way is presented in the subsequent manuscript[41]. We truly hope that this code will 

prove helpful for anyone who is interested in fast and straightforward determination of the 

Zhang–Zhang polynomial for any class of benzenoid systems. 
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