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Abstract

In this paper, we present an edge and vertex decomposition of the Wiener index
(W) that is related to the concept of betweenness centrality used in social networks
studies. Some classical methods to compute W could easily be derived from this
formulation and novel invariants may be defined by this mean. Another vertex
decomposition of W is the transmission. If transmission and centrality are both
vertex decompositions of W it seems that they are represent opposite concepts,
however the nature of this relation is not always so clear. Some properties obtained
with the AutoGraphiX software on betweenness, centrality and their relation to

transmission are presented and proved.

1 Introduction

In 1947 [1], H. Wiener proposed the now so called Wiener index, W. The Wiener index
is certainly one of the most studied in mathematical chemistry and graph theory. In its
original version, W was only defined for trees 7' = (V, E) as follows:

(i.4)eE

where n; is the number of vertices that are closer to ¢ than j and vice versa.
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If we note G = (V, E) a simple connected graph of order n = |V| and size m = |E|,
in which d;; is the distance between vertices ¢ and j (number of edges in a shortest path
between 7 and j),

i=1 j=1
As stressed by Dobrynin and Gutman |2], when applying equation 1 to a general graph,

one gets a value W* that may get larger than . Conditions to have W* = W are exposed
in [2]. The index W* was later called Szeged index (Sz) and has also been widely studied.
If shortest paths between pairs of vertices are unique, Sz = W and computing W could
be achieved by decomposition of W by edges. If it is not the case, choosing one of the
shortest paths at random will provide a way to compute W. This property is implicitly
used in the cuts decompositions of W. In the present paper, we are not interested in
finding a way to compute W but we propose to study a decomposition of W as a way to
define values associated to vertices or edges. For such a study, the contribution of each
edge or vertex must be unique and well defined. In a completely different field, Freeman
[3] proposed the concept of betweenness as an evaluation of the centrality for studying
social networks. In the original definition, betweenness centrality of a vertex v is defined
by the probabilistic number of shortest paths between pairs of vertices that uses vertex v.
In the present paper, we use a slightly different way to look at betweenness in the sense
that it is first defined for edges and later extended to vertices by summation. Each edge
(i,7) € E is thus associated the probabilistic number of shortest paths b;; in which it is

involved as follows: y

b= Y. % Y(i,5) € E. 3)

kleV,k<l
Where sf! is the number of shortest paths between vertices k and [ (k < [) that uses
the edge (i,7) and s* is the total number of shortest paths between k and [. From this

definition, a centrality measure for vertices may be defined as follows:
Cr= > byVieV (4)
JjeVi(ij)eE

This measure is very close, yet different to Freeman’s betweenness centrality C;.
Namely, we have C; = 2C; +n — 1. Given the relation between these two quantities,

C is called adjusted betweenness centrality.

It turns out that the summation of b;; over all edges of the graph equals 2W, as well

as the summation of Cj over all vertices, which makes b;; and C} ways to decompose
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W by edges and vertices. Another well known way to decompose W by vertices is the
transmission 7; which is defined as follows [4]:
T, = z dij. ()
jev
In this paper, we propose to study the edge and vertex decomposition of the Wiener

index, and identify some properties of the so found edge or vertex values.

2 Edge decomposition of W

There are various ways to assign weights to edges of a graph so that they sum up to W.
In order to make sense, it must respect some rules. The first is that for a given pair of
vertices ij, the sum of the weights of edges in shortest paths between i and j sums up to
the distance between 7 and j. A way is thus to choose randomly one shortest path and
assign it a weight of 1. This way involves a random choice that brings instability to the
values obtained. Another way consists in assigning an equal weight to each shortest path
between i and j as proposed by [5] and [6]. This last way to weight edges of G is much
better because it could be considered as an average weight if the probability to use any
shortest path is equal. This interpretation could stand for random connections between
pairs of vertices in the context of a telecommunication network, it could be considered as
a centrality indicator in the case of social networks and is certainly more accurate than

the other in the case of chemical graphs.

2.1 Weight of the edges of a cocycle

In this section, we consider partitions of the graph G = (V,E) into G4 = (Va, Ea)
and Gp = (Vp, E) such that G4 and Gp are connected. We denote Cyp the cocycle
E\(EAU Ep).

Property 1 Let G4, G be a partition of a graph G and denote by Cap the set of edges
between vertices of G4 and Gg.
D be > Vil |Vl (6)
e€Cap
and the inequality is strict if and only if there is at least a pair of vertices of G4 (or
Gp) having a shortest path going thru a vertex of Gp (or G 4 respectively). If the equality

holds, we say that we found a valid cocycle.
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Proof.
Any shortest path from a vertex a € V4 and a vertex b € Vg contains at least an edge in

Cap. 1t follows immediately that the number of shortest paths crossing Cyp is at least

Val - [Va-

Lemma 1 Let V4, Vg be a partition of the vertices V' of G and Cap the corresponding

cocycle. We have

D be=|Val- Vsl ™

ecCap

if and only if for any pair of vertices ay and ay of Vi and by, by of Vg such that ay is
adjacent to by and ay to by, eventually, by = by, the distances d, between ay and ay and d,
between by and by will not differ by more than 1. In this case, we say that Cyup is a valid

cut.

Proof.

We first note that the equality from equation 7 will hold if no shortest path containing an
edge of Cyp will join two vertices from the same subgraph because b;; is the summation
of non negative terms and cannot be lower than |Vy4| - |Vp| because this value is that of
the number of shortest paths from vertices of G4 to vertices of G only. Suppose now by
contradiction that d, > d,+2, then the path composed of the edge (aq, b;) followed by the
shortest path pj, between by and by and (bg, az) will have the length 1+dy,+1 = dy+2 < d,,,

in which case the cut C'4p contains some shortest paths between vertices of Vjy.

Corollary 1 For any edge (i,j) € Cap, no vertex of Vy is closer to j than i and vice

versa.

Corollary 2 If |Cap| is a valid cut, the subgraph G4 (Gp) induced by Va (Vi) is con-

nected.

We note that a partition of the edges of G in valid cocycles will provide the now
classical method to compute W for benzenoids [7, 8, 9, 10] and other classes of graphs

[11,12].
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2.2 Graphs with extremal values for b;;

Theorem 1 Let 0" = maxj)ep bij be the largest betweenness of G, then we have
n2
1< pmaz < \\ZJ . (8)

The lower bound is tight if and only if G is a complete graph and the upper bound is tight
if and only is G is composed of two subgraphs G o and G'g of respective order a and b such
that a = [ 5] and b= [%], joined by a single edge.

Proof.

The proof for the lower bound is obvious as the complete graph is the only graph for
which all edges have betweenness 1, which is the minimal value possible for betweenness.
Any graph which has at least two non adjacent vertices i and j has higher 0" because
the shortest path between ¢ and j will increase betweenness of some edges. The proof for
the upper bound is the following: For a given edge (¢, j), let V; be the set of vertices closer
to i than j and Vj the set of edges closer to j. If a vertex is at equal distance from 4 and
Jj, it may randomly be assigned to V; or V}. Let Cj; be the set of edges between vertices
of Vi and V.

By corollary 2, the subgraphs induced by V; and Vj are both connected, thus it is
possible to remove all edges of C; except (i, j). In this case b;; is increased to |V;] x |Vj].
If we set a = |Vj|, we have b;; = a x (n — a) that is maximized for a = |5]. O

An equivalent formula for the upper bound could be found in 13| but no formal proof

was provided.

Theorem 2 Let b™" = ming jyep bij be the smallest betweenness of G, then we have
1 S bmin S Ln2/4j .

The lower bound is reached for any edge of the complete graph and upper bound is reached
for any edge of the cycle.

Proof.

The lower bound is obvious. Let us prove the upper bound. Suppose to the contrary.
Let G be a graph such that b™" = ™" (G) > |n*/4]. If G has a pendant vertex, then
b™in = n — 1 and the claim holds since n — 1 < n?/4 and n — 1 is an integer. Hence, let

us suppose that G has no pendant vertices. Let us distinguish two cases:
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1. G is biconnected. Then, transmission of each vertex is at most |n?/4] as stated
by Plesnik [14] and the number of edges is larger than number of vertices, hence
b <[ n? /4.

2. G is not biconnected.

Note that there are at least two biconnected components (blocks) that are incident
to one cut vertex. Let us denote them by V; and V5 and corresponding cut vertices
by ¢; and ¢y. Let v; be the vertex in V; on the greatest distance from ¢; and (v;, w;)
an edge in V; incident to v;,7 = 1, 2. Further, let us denote by z; and x5 cardinalities

of these blocks where cut vertices are not taken into the consideration. It holds that

bojuwy < (n—a; — 1) + (zl),

where the first bracket corresponds to the shortest path connecting vertex v; with
some vertex outside V;\ {¢;} and the binomial coefficient corresponds to the shortest

paths connecting vertices within V;\ {¢;}. It holds

T; n?—1
(n—=x )+(2>_ 1

It implies that

xiz%<3+m) >~ (34 V2 -2)) zgn,

1

2
but then x1 + x5 > n which is a contradiction. O

3 Centrality and Transmission: vertex decompositions
of W

As stated before, the adjusted betweenness centrality C; of a vertex i is defined as follows:

;i = Z bij, (9)

i/(§)EE
and the transmission 7T; as follows:
T, = dy (10)
jev
where d;; is the distance between vertex i and j. If we have
D.Ci=) Ti=2W, (11)
=% =%

both quantities have different behaviors.
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3.1 Relation between T; and C;

Intuitively, central vertices tend to have lower transmission and larger centrality while
it is the opposite when a vertex gets to the border. A natural question is to know
wether centrality and transmission are correlated and wether they both indicates the
same central vertex, i.e. is it always true that the vertex minimizing transmission is the
one that maximizes centrality. Unfortunately, this relation does not hold, even for trees
as shows the following counter-example where vertex E minimizes transmission (17) while

the centrality is maximized by F (44).

(8,33) (22,26) (32.21) (38,18) (40,17) (44,18)

(Centrality. Transmission)

Figure 1: A tree for which the vertex maximizing centrality is not minimizing transmission.

3.2 New results on centrality

Based upon some known results, we determine some basic relations obtained with Auto-

GraphiX [15].

Theorem 3 Let C™* = max;ey C; denote the mazimum centrality of a graph G of order
n, then we have

n—1<Cm™* < (n—1)>% (12)

The lower bound is reached by any vertex of a complete graph and the upper bound for the

central vertez of a star.

The lower bound can easily be proved as the minimum value of C; is n — 1 and this is
also the maximum value for complete graphs. The upper bound can also easily be proved
because the star is the only configuration for which all shortest paths between pairs of

vertices involve a common vertex.
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Theorem 4 Let C™" = mingey C; denote the minimum centrality of a graph G of order

n, then we have
2

n
4
n?—1

‘ n even;
n . 1 < C'"LITL <

n odd.
The lower bound is reached by vertices whose neighbors are all adjacent and the upper
bound is reached by any vertex in a cycle.
Proof.
The proof of the lower bound is rather simple as each vertex is involved in at least n — 1
shortest paths, those from it to other vertices. To prove the upper bound, we will consider
two cases:
1. G is biconnected with respect to the vertices.
In this case, the transmission of each vertex is at most ["{J as stated by Plesnik
[14] moreover this bound is reached if and only if G is a cycle. From this relation,

we deduce that

7L2

T n even;
2
-1
n n odd.

In the case of a cycle, C; = \_"IZJ Vi. Thus the theorem is true for biconnected graphs
and the bound is tight for cycles.
2. G is not biconnected.

Let G be a graph with n > 5 vertices and at least one cut vertex. Then,

¥

- neven;

Omin <
- { "24’] n odd.

Suppose to the contrary. Let GG be a such graph. If G has a pendant vertex, then
C™n = n — 1 and the claim holds. Hence, let us suppose that G' has no pendant
vertices. Note that there are at least two bi-connected components (blocks) that
are incident to one cut vertex. Let us denote them by C} and Cy and corresponding
cut vertices by ¢; and c¢y. Let v; be the vertex in C; on the greatest distance from
¢;, i = 1,2. Further, let us denote by x; and x, cardinalities of these blocks where

cut vertex is not taken into the consideration. It holds that

oz o (77).
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where the expression in the first bracket is the sum of contributions to ¢(vy) of all
shortest paths starting in v;. Further, note that any other shortest path contributing
to ¢ (v1) has to have both end-vertices in C1\ {c1}, because vy is the vertex furthest
from ¢;. Since each set of paths between such two vertices can contribute 2 to edges

incident to vy, it follows that its total contribution is at most 2 - (21’1). Hence

(n—1)+ (2‘ (“2_1)) < "24_1.

It implies @7 > (n+ 1) /2. Completly analogously, it can be shown that z, >

(n+ 1) /2. But, then 1 + x5 > n, which is a contradiction.

Theorem 5 Let T = min,ey T} denote the minimum transmition, then we have C™» >

Tmin L"{J +n —1 and the equality is tight for paths.

Proof.

It can be easily checked that 7™ (B,) — C™ (P,) = {%J —n + 1. Hence, it is sufficent
to prove that 7™ (G) — C™Mn (@) < T™in (P,) — C™n (B,) for every connected graph G
with n vertices. Moreover, from Theorem 3, it follows that it is sufficient to prove that

Tmin (G) < T™n (P,) and this is proved in [16].
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