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Abstract

The extremal questions of maximizing or minimizing various distance-based
graph invariants among trees with a given degree sequence have been vigorously
studied. In many cases, the so-called greedy tree and the caterpillar are found to
be extremal. In this note, we show a “universal property” of the greedy tree with a
given degree sequence, namely that the number of pairs of vertices whose distance
is at most k is maximized by the greedy tree for all k. This rather strong assertion
immediately implies, and is equivalent to, the minimality of the greedy trees with
respect to graph invariants of the form Wf (T ) =

∑
{u,v}⊆V (T ) f(d(u, v)) for any

nonnegative, nondecreasing function f . With different choices of f , one directly
solves the minimization problems of distance-based graph invariants including the
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classical Wiener index, the Hyper-Wiener index and the generalized Wiener index.
We also consider the maximization of some of such invariants among trees with a
given degree sequence. These problems turned out to be more complicated. Anal-
ogous to the known case of the Wiener index, we show that Wf (T ) is maximized
by a caterpillar for any increasing and convex function f . This result also leads to
a partial characterization of the structure of the extremal caterpillars. Through a
similar approach, the maximization problem of the terminal Wiener index is also
addressed.

1 Introduction

In organic chemistry, to develop a quantitative structure-activity relationship (QSAR)

and to establish the mathematical basis for connections between molecular structures

and physico-chemical properties, chemists and mathematicians are increasingly using a

class of graph invariants, known as topological indices, as powerful tools that relate a

chemical compound’s molecular graph with its characteristics. Among these topological

indices, a number of distance-based graph invariants received great attention.

One of the most classic and well-studied distance-based graph invariants is the Wiener

index, which was introduced by and named after Wiener [25]. The Wiener index of a graph

G is the sum of the distances between all pairs of vertices, denoted by

W (G) =
∑

{v,w}⊆V (G)

d(v, w),

where d(v, w) is the distance between two vertices v, w ∈ V (G).

Trees are typically one of the first special classes of graphs to be studied—see [7] for

a survey on the Wiener index of trees. In this paper, we are interested in trees with pre-

scribed degree sequence and graph invariants like the Wiener index and its generalization

Wα(G) =
∑

{v,w}⊆V (G)

d(v, w)α

as well as the hyper-Wiener index, which is defined as follows:

Let v and w be vertices in a tree and denote by n(v, w) the number of vertices u

(including v itself) for which the unique path from u to w passes through v. Then the

hyper-Wiener index is defined as

WW (G) =
∑

{v,w}⊆V (G)

n(v, w)n(w, v),
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which can easily be proven to be equal to

WW (G) =
∑

{v,w}⊆V (G)

(
d(v, w) + 1

2

)
, (1)

an expression that makes sense for arbitrary graphs [13].

The terminal Wiener index [9] is defined in an analogous way to the Wiener index,

but the vertices v and w in the sum have to be leaves.

There are several other similar graph invariants, see for instance [10, 11, 15] for further

examples.

In the past, the extremal graphs/trees that maximize or minimize a certain distance-

based graph invariant have been studied for various categories of graphs including general

graphs/trees, graphs/trees with prescribed maximum degree, diameter, matching and

independence numbers, etc. [6, 8, 9, 11, 12, 14, 15, 17, 24, 26].

Due to the restrictions on the degrees of the vertices in a molecular graph, which

correspond to the valences of the atoms in a compound, and to the fact that a large

amount of chemical compounds have acyclic structures, it is of natural interest to consider

trees with degree restrictions (see for instance [8, 16, 19, 22, 23, 27, 28]), in particular

trees with prescribed degree sequence.

In regard to maximizing or minimizing the above mentioned distance-based invariants

over all trees with prescribed degree sequence, it has been proven that the minimum is

obtained for the “greedy tree” in the cases of the Wiener [22, 23, 28] and terminal Wiener

index [20]. On the other hand, it was shown that the greedy tree maximizes the spectral

radius [1]. For completeness, we present a formal definition of the greedy tree:

Definition 1 (Greedy trees). With given vertex degrees, the greedy tree is achieved through

the following “greedy algorithm”:

i) Label the vertex with the largest degree as v (the root);

ii) Label the neighbors of v as v1, v2, . . ., assign the largest degrees available to them

such that deg(v1) ≥ deg(v2) ≥ · · · ;
iii) Label the neighbors of v1 (except v) as v11, v12, . . . such that they take all the

largest degrees available and that deg(v11) ≥ deg(v12) ≥ · · · , then do the same for v2, v3,

. . .;

iv) Repeat (iii) for all the newly labeled vertices, always start with the neighbors of

the labeled vertex with largest degree whose neighbors are not labeled yet.

For example, Figure 1 displays a greedy tree with degree sequence

(4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1, . . . , 1).

The extremality of the greedy tree was proven through rather different approaches,

sometimes even for the same graph invariant (i.e. in the case of the Wiener index). How-
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v

v1 v2 v3 v4

v11 v12 v13 v21 v22 v23 v31 v32 v41 v42

Figure 1: A greedy tree.

ever, from the “greedy” construction of a greedy tree, it is natural to ask for a universal

property that may shed some light on these observations. We will show that the number

of pairs of vertices whose distance is at most k is maximized by the greedy tree for all k.

This property turns out to be equivalent to the minimality of the greedy tree with respect

to general graph invariants of the form

Wf (T ) =
∑

{u,v}⊆V (T )

f(d(u, v))

for any nonnegative and nondecreasing function f . As some special cases, solutions to the

minimization problems of the Wiener index, its generalized form, and the hyper-Wiener

index follow immediately. The results regarding the generalized Wiener index and the

hyper-Wiener index are, to the best of our knowledge, not in the literature. We will also

present some discussions on the consequences from considering small values of k.

The maximization problem is somewhat more complicated. In the special case of

the Wiener index, it has been proven that the problem can be reduced to the study of

caterpillars [19].

Definition 2 (Caterpillars). A caterpillar is a tree with the property that a path re-

mains if all leaves are deleted. E.g. Figure 2 shows a caterpillar with degree sequence

(6, 5, 4, 4, 2, 1, 1, . . . , 1). We call the path that is formed by the non-leaves the backbone

of the caterpillar.

Figure 2: A caterpillar.

We will see in this note that a general conclusion can be drawn in this regards as

well: Wf (T ) is maximized by a caterpillar for any increasing and convex function f .
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Furthermore, a partial characterization of the trees that maximizes Wf (T ) follows from

these results.

However, a complete characterization of the extremal trees seems impossible. For the

Wiener index, Zhang et. al. [27] first pointed out the complexity of the question and

studied cases for trees with few internal vertices. An efficient algorithm was recently

provided in [4].

Through similar approaches as for Wf (T ), we also discuss the maximization of the

terminal Wiener index. As a result, the same algorithm as in [4] can be used to find a

solution.

The “universal property” of the greedy tree and its consequences will be discussed in

Section 2. For the maximization problems and caterpillar, we study Wf (T ) in Section 3

and the terminal Wiener index in Section 4.

2 Greedy trees

We show that the greedy tree defined in Definition 1 is indeed greedy with respect to the

distances in the following sense.

Theorem 2.1. Let d1 ≥ d2 ≥ · · · ≥ dn be positive integers such that
∑

i di = 2(n − 1),

and let k be another arbitrary positive integer. Among all trees with degree sequence

(d1, d2, . . . , dn), the greedy tree has the largest number pk(T ) of pairs (u, v) of vertices

such that d(u, v) ≤ k.

Before we come to a proof of this result, let us state the following important conse-

quence.

Corollary 2.2. Let f(x) be any nonnegative, nondecreasing function of x. Then the

graph invariant

Wf (T ) =
∑

{u,v}⊆V (T )

f(d(u, v))

is minimized by the greedy tree among all trees with given degree sequence.

Proof. Simply note that

Wf (T ) =
∑
k≥0

(f(k + 1)− f(k)) |{{u, v} ⊆ V (T ) : d(u, v) > k}| ,

and that f(k)− f(k − 1) is nonnegative for all k (we set f(0) = 0). �

Remark 1. The above corollary includes, in addition to the classical Wiener index (f(x) =

x), the hyper-Wiener index (f(x) = x(x+1)
2

) and the generalized Wiener index with f(x) =

xα.
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Remark 2. Corollary 2.2 does not only follow from Theorem 2.1, it is actually equivalent,

as can be seen by considering the function

fk(x) =

⎧⎨
⎩0 x ≤ k,

1 x > k.

Then it is easy to show that

Wfk(T ) =

(
n

2

)
− pk(T )

for any tree T of order n, so that pk is maximized if Wfk(T ) is minimized and vice versa.

The proof of Theorem 2.1 is obtained in two steps: first we prove that subtrees of

optimal trees (that maximize pk) can be assumed to be greedy in a certain sense. This is

applied to prove the so-called semi-regularity property from [20], from which the theorem

follows. Let us start with two lemmas regarding rooted and edge-rooted trees. We fix

the outdegrees on each level and only allow “reshuffling” on each level. It turns out that

we can always obtain an optimal tree that satisfies the “level-greedy” property stated in

Definition 3 below with respect to any root by means of this reshuffling operation. Finally

we will see that optimal trees with this “level-greedy” property (with the restriction of

outdegrees at each level) are indeed greedy trees defined in Definition 1.

Definition 3 (Level-greedy trees). For i = 0, 1, . . ., H, let multisets {ai1, ai2, . . . , ai�i} of

nonnegative numbers be given such that �0 = 1 and

�i+1 =

�i∑
j=1

aij.

Assume that the elements of each multiset are sorted, i.e. ai1 ≥ ai2 ≥ · · · ≥ ai�i . The

level-greedy tree (with height H) corresponding to this sequence of multisets is the rooted

tree whose j-th vertex at level i has outdegree aij.

Likewise, if sorted multisets {ai1, ai2, . . . , ai�i} of nonnegative numbers are given for

i = 0, 1, . . ., H such that �0 = 2 and

�i+1 =

�i∑
j=1

aij,

then the level-greedy tree corresponding to this sequence of multisets is the edge-rooted

tree (i.e. there are two vertices at level 0, connected by an edge) whose j-th vertex at level

i has outdegree aij.

Every greedy tree is clearly also level-greedy (with respect to any root vertex), but the
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converse is not true (i.e. a tree can be level-greedy with respect to a certain root without

being a greedy tree). For example, Figure 3 shows a level-greedy tree corresponding to the

following sequence of multisets: {a01 = 3}, {a11 = 4, a12 = 2, a13 = 1}, {2, 2, 2, 1, 1, 0, 0},
{1, 1, 0, 0, 0, 0, 0, 0} and {0, 0}.

v

v1 v2 v3

v11 v12 v13 v14 v21 v22 v31

Figure 3: A level-greedy tree.

Lemma 2.3. Consider the set of all rooted trees whose outdegrees at each level i are given

by a multiset {ai1, ai2, . . . , ai�i} as in Definition 3. Among all such trees, the level-greedy

tree maximizes the value of pk(T ).

Proof. For fixed i and j, consider the number of pairs of vertices (u, v) with d(u, v) ≤ k

such that u is at level i and v is at level j. If i + j ≤ k, then all possible pairs satisfy

the distance condition. Otherwise, a vertex u at level i and a vertex v at level j satisfy

d(u, v) ≤ k if and only if they have the same ancestor at level 	(i + j − k)/2
. Let us

therefore count the number of pairs (u, v) of vertices such that u is at level i, v is at level

j with a common ancestor at level r = 	(i + j − k)/2
. To this end, we denote by w1,

w2, . . ., wm the vertices at level r, and by x1, x2, . . ., xm and y1, y2, . . ., ym the number

of their respective successors at level i and level j. Then the number of pairs we have to

count is

x1y1 + x2y2 + · · ·+ xmym

if i �= j, and otherwise (
x1

2

)
+

(
x2

2

)
+ · · ·+

(
xm

2

)
.

In the latter case, however, since the sum x1+x2+ · · ·+xm is constant under reshuffling,

maximizing this sum is equivalent to maximizing

x2
1 + x2

2 + · · ·+ x2
m = x1y1 + x2y2 + · · ·+ xmym,

so the case i = j can be treated along the same lines. Under all possible “reshuffled” trees,
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it is clear that the level-greedy tree maximizes x1 + x2 + · · · + xh and y1 + y2 + · · · + yh

for all 1 ≤ h ≤ m. Hence the result will follow as a consequence of the following simple

lemma, whose proof is given for completeness:

Lemma 2.4. Suppose that the sequences (x1, x2, . . . , xm), (y1, y2, . . . , ym), (x
′
1, x

′
2, . . . , x

′
m)

and (y′1, y
′
2, . . . , y

′
m) of nonnegative real numbers satisfy

h∑
j=1

xj ≥
h∑

j=1

x′
σ(j) and

h∑
j=1

yj ≥
h∑

j=1

y′σ(j) (2)

for all 1 ≤ h ≤ m and all permutations σ of {1, 2, . . . ,m}. Then

x1y1 + x2y2 + · · ·+ xmym ≥ x′
1y

′
1 + x′

2y
′
2 + · · ·+ x′

my
′
m. (3)

Proof of Lemma 2.4. Suppose that x′
1, x

′
2, . . ., x

′
m and y′1, y

′
2, . . ., y

′
m are such that the

sum

x′
1y

′
1 + x′

2y
′
2 + · · ·+ x′

my
′
m

is a maximum under the given restrictions (since the inequalities define a compact set, this

is possible). By the rearrangement inequality, we may assume that x′
1 ≥ x′

2 ≥ · · · ≥ x′
m

and y′1 ≥ y′2 ≥ · · · ≥ y′m. Let h be the smallest index such that

x1 + x2 + · · ·+ xh > x′
1 + x′

2 + · · ·+ x′
h,

and let ε > 0 be the difference between the two sides of the inequality. Replacing x′
h

by x′
h + ε and x′

h+1 by x′
h+1 − ε, we obtain a new (2m)-tuple of numbers satisfying the

requirements, while the sum

x′
1y

′
1 + x′

2y
′
2 + · · ·+ x′

my
′
m

changes by ε(y′h − y′h+1) ≥ 0. We can repeat this argument until we end up with x1 = x′
1,

x2 = x′
2, . . ., xm = x′

m, y1 = y′1, y2 = y′2, . . ., ym = y′m. This proves the lemma. �

Returning to the proof of Lemma 2.3, let the nondecreasing sequences (x1, . . . , xm),

(y1, . . . , ym) be the number of successors at level i and j as described before in a level-

greedy tree and let (x′
1, . . . , x

′
m), (y

′
1, . . . , y

′
m) be the corresponding sequences for any tree

with the same outdegrees on each level. It is easy to see that (2) is satisfied and hence

(3) implies that the level-greedy tree indeed maximizes the number of pairs of vertices at

levels i and j that have a common ancestor at level r = 	(i + j − k)/2
, for every i and

j. Hence pk is maximized by the level-greedy tree. �
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Lemma 2.5. Consider the set of all edge-rooted trees whose outdegrees at each level i

are given by a multiset {ai1, ai2, . . . , ai�i} as in Definition 3. Among all such trees, the

level-greedy tree maximizes the value of pk(T ).

Proof. Analogous to the previous lemma. �

Recall that, with a given degree sequence, a tree with the following “semi-regular

property” is a greedy tree, as it was shown in [20].

Definition 4 (Semi-regular property). We say that a tree satisfies the semi-regular property

if, given any path with non-leaf end vertices u, v ∈ V (T ), the set of subtrees {T 1
u , . . . , T

a
u}

attached to u and the set of subtrees {T 1
v , . . . , T

b
v} attached to v (such that v �∈ T i

u and

u �∈ T j
v holds for each i and j) satisfy either

a ≥ b and min{|V (T 1
u )|, . . . , |V (T a

u )|} ≥ max{|V (T 1
v )|, . . . , |V (T b

v )|}

or

b ≥ a and max{|V (T 1
u )|, . . . , |V (T a

u )|} ≤ min{|V (T 1
v )|, . . . , |V (T b

v )|}.

Now we are able to prove the main theorem by showing that for trees maximizing pk,

being level-greedy implies the semi-regular property.

Proof of Theorem 2.1. Let T be any tree that maximizes pk(T ) among all trees with the

same degree sequence, and suppose further that T does not yet satisfy the semi-regularity

condition. Let v and w be a pair of vertices violating this condition. If the unique path

between v and w is of even length, we consider the midpoint of the path as the root of T

and apply Lemma 2.3 to the resulting rooted tree. Then v and w are at the same level,

and the reshuffling process that yields the level-greedy tree will actually change the shape

of T . The value of pk does not decrease by the lemma. Likewise, if the path between v

and w is of odd length, we take the middle edge of the path as the root of T and apply

Lemma 2.5.

Since the value of pk does not necessarily increase strictly, however, we have to make

sure that repeated application of the two lemmas does not result in an infinite loop. This is

guaranteed by the fact that each “reshuffling step” (i.e. replacing a rooted or edge-rooted

tree by the level-greedy tree with the same outdegrees) strictly decreases the Wiener

index. Hence the process has to stop, and the “semi-regular” property in Definition 4 has

to hold at the end. This implies that we must end up with the greedy tree. �

Let us specifically consider the special cases k = 1, 2, 3. It is easy to see that p1(T ) is

just the number of edges of a tree T , and that

p2(T ) =
1

2

∑
v∈V (T )

(deg v)2,
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which only depends on the degree sequence. Hence the statement of Theorem 2.1 is void

in these two cases. For k = 3, we obtain

p3(T ) = p2(T ) +
∑

{v,w}∈E(T )

(deg v − 1)(degw − 1)

=
∑

{v,w}∈E(T )

(deg v)(degw)− 1

2

∑
v∈V (T )

(deg v)2 + |E(T )|,

so that maximizing p3(T ) among all trees with given degree sequence amounts to maxi-

mizing ∑
{v,w}∈E(T )

(deg v)(degw),

an invariant which is also known as second Zagreb index (the first Zagreb index is the sum

of the squared degrees, which in our setting is obviously constant). In this case, one can

give a very precise description of all extremal trees, discussed in [5] as the weight of a tree

and later in [21] as a special case of the generalized Randić index of trees. As described

in [5], trees that maximize p3(T ) can be obtained by the following greedy algorithm:

• Sort the prescribed vertex degrees in decreasing order: d1 ≥ d2 ≥ d3 ≥ · · · .

• Start with a single vertex of degree d1.

• At step k, a vertex of degree dk is attached to one of the vertices of highest degree

for which this is still possible.

If the degrees of the non-leaves are pairwise distinct, this algorithm yields a unique

tree (the greedy tree), but generally there is more than one optimal solution. It is obvious

that the greedy tree can always be obtained by the above algorithm, in agreement with

Theorem 2.1.

3 Caterpillars

In this section we deal with the maximization problem analogous to the minimization

problem of Section 2. It is no longer possible to fully characterize the solution, as explained

in the introduction, but the problem can be reduced to the study of caterpillars:

Proposition 3.1. Let f(x) be a strictly increasing and convex function (i.e. the incre-

ments f(x+1)− f(x) are nondecreasing). Furthermore let Tmax be a tree that maximizes

Wf (T ) =
∑

{u,v}⊆V (T )

f(d(u, v))
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among all trees with degree sequence (d1, . . . , dn). Then Tmax is a caterpillar.

Proof. Assume (for contradiction) that Tmax is not a caterpillar.

x1 x2 x3 xk xk+1 x�

y

z1 zs

· · · · · ·

· · ·

T1
T2

T3

Figure 4: T1, T2 and T3 in an optimal tree Tmax that is not a caterpillar.

Let P = (x1, x2, . . . , x�) be a longest path of Tmax. As Tmax is not a caterpillar, we

have that � ≥ 5 and there exists an xk, 2 < k < � − 1, such that xk has a non-leaf

neighbor y that is not on P . Let N(y) = {xk, z1, . . . , zs}, s ≥ 1, be the neighbors of y.

Furthermore, after deleting the edges (xk, xk+1) and (xk, y), let T1, T2 and T3 denote the

components containing xk, xk+1 and y respectively, as illustrated in Figure 4. Without

loss of generality we can also assume that |V (T1)| ≥ |V (T2)| ≥ 2.

Let T ′ be obtained from Tmax by replacing each edge (y, zi) of Tmax by the new edge

(x�, zi), 1 ≤ i ≤ s. Then T ′ and Tmax have the same degree sequence.

Now we consider the distance between two vertices u and v. Note that dT ′(u, v) �=
dTmax(u, v) only when u ∈ V (T3) \ {y} and v ∈ V (T1) ∪ V (T2) ∪ {y} (or vice versa). The

contributions of y and x� cancel, so it suffices to consider v ∈ V (T1) and v ∈ V (T2)\{x�}.
Then we obtain

Wf (T
′)−Wf (Tmax)

=
∑

u∈V (T3)\{y}

[ ∑
v∈V (T1)

(
f(dT ′(u, v))− f(dTmax(u, v))

)
+

∑
v∈V (T2)\{x�}

(
f(dT ′(u, v))− f(dTmax(u, v))

)]

=
∑

u∈V (T3)\{y}

[ ∑
v∈V (T1)

(
f(dTmax(u, y) + dTmax(xk, x�) + dTmax(xk, v))

− f(dTmax(u, y) + dTmax(xk, v) + 1)
)

+
∑

v∈V (T2)\{x�}

(
f(dTmax(u, y) + dTmax(x�, v))

− f(dTmax(u, y) + dTmax(xk, v) + 1)
)]
.
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Since P is a longest path in Tmax, we obtain that dTmax(xk, v) ≤ dTmax(xk, x�) for

all v ∈ V (T2) \ {x�} and dTmax(xk, x�) ≥ 2. We are also going to use the fact that

dTmax(x�, x�−1) = 1 and dTmax(x�, v) ≥ 2 for all v ∈ V (T2) \ {x�, x�−1}.
With this we obtain that the contribution from each u ∈ V (T3) \ {y} to Wf (T

′) −
Wf (Tmax) is at least∑

v∈V (T1)

[
f(dTmax(u, y) + dTmax(xk, x�) + dTmax(xk, v))

− f(dTmax(u, y) + dTmax(xk, v) + 1)
]

+
∑

v∈V (T2)\{x�−1,x�}

[
f(dTmax(u, y) + 2)

− f(dTmax(u, y) + dTmax(xk, x�) + 1)
]

+ f(dTmax(u, y) + 1)− f(dTmax(u, y) + dTmax(xk, x�))

≥
∑

v∈V (T1)\{xk}

[
f(dTmax(u, y) + dTmax(xk, x�) + 1)

− f(dTmax(u, y) + 2)
]

+ f(dTmax(u, y) + dTmax(xk, x�))− f(dTmax(u, y) + 1)

+
∑

v∈V (T2)\{x�−1,x�}

[
f(dTmax(u, y) + 2)

− f(dTmax(u, y) + dTmax(xk, x�) + 1)
]

+ f(dTmax(u, y) + 1)− f(dTmax(u, y) + dTmax(xk, x�))

=
[
f(dTmax(u, y) + dTmax(xk, x�) + 1)− f(dTmax(u, y) + 2)

]
·
(
|V (T1)| − 1− |V (T2)|+ 2

)
≥ f(dTmax(u, y) + dTmax(xk, x�) + 1)− f(dTmax(u, y) + 2) > 0.

Thus Wf (T
′) > Wf (Tmax), contradicting the optimality of Tmax. �

Remark 3. If the function f in Proposition 3.1 is not strictly increasing, but only non-

decreasing, we obtain the weaker result that there always exists a caterpillar that is an

optimal solution.

Remark 4. Proposition 3.1 is wrong if f is not convex, and it is not hard to con-

struct counterexamples. Consider for instance f(x) =
√
x and the degree sequence

(20, 20, 20, 3, 1, 1, . . . , 1). There are only two non-isomorphic caterpillars in this case,

and the value of Wf for these two caterpillars is 858+ 573
√
2+ 760

√
3+ 38

√
5 ≈ 3069.67

and 858 + 573
√
2 + 437

√
3 + 361

√
5 ≈ 3232.47 respectively. However, it turns out that a

tree with a center of degree 3 whose neighbors all have degree 20 (the other vertices being

leaves) is optimal in this case: for this tree, Wf attains a value of 2226+573
√
2+114

√
3 ≈
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3233.8. The difference is very small in this example, but it increases if 20 is replaced by

a larger value.

Remark 5. Note that the Wiener index as well as the hyper-Wiener index and the gener-

alized Wiener index with α > 1 form strictly increasing and convex functions, and thus

Proposition 3.1 holds.

Unlike in Section 2, the optimal tree differs for different functions f . For instance,

let (d1, . . . , d7) = (80, 76, 60, 30, 11, 6, 2) be the degree sequence of the internal vertices.

Then the unique optimal tree with respect to the Wiener index is the caterpillar T1 with

(d1,1, . . . , d1,7) = (d1, d4, d5, d6, d7, d3, d2), whereas the unique optimal tree with respect to

the hyper-Wiener index is the caterpillar T2 with (d2,1, . . . , d2,7) = (d1, d4, d5, d7, d6, d3, d2).

Here di,j is the degree of the j-th vertex on the backbone of Ti.

Under the assumption that T is a caterpillar, Wf (T ) can be directly calculated from

its degree sequence. We skip the details.

Lemma 3.2. Let T be a caterpillar on n vertices and v1, . . ., vk the vertices on the

backbone of T in this order. Then

Wf (T ) =
1

2

k∑
i=1

k∑
j=1

f(|j − i|+ 2)(di − 2)(dj − 2)

+
k∑

i=1

k+1∑
j=0

f(|j − i|+ 1)(di − 2) (4)

+
k∑

i=0

k+1∑
j=i+1

f(j − i)− 1

2
f(2)(n− k − 2)

for d� = deg(v�) and f(x) an arbitrary function.

Maximizing (4) is essentially a quadratic assignment problem (QAP), which is known

to be NP-hard even in rather special cases [3]. For the Wiener index, there is an efficient

algorithm [4], but it seems unlikely that such an algorithm exists for more general functions

f . However, we can further characterize the structure of the caterpillars maximizing (4).

Theorem 3.3. Let x1 ≥ x2 ≥ · · · ≥ xk ≥ 0 be integers with k ≥ 3 and let f(x) be a strictly

increasing and convex function. Further let Sk be the set of all permutations of {1, . . . , k}
and suppose that (y1, . . . , yk) is a permutation of (x1, . . . , xk) such that w.l.o.g. y1 ≥ yk

and

1

2

k∑
i=1

k∑
j=1

f(|j − i|+ 2)yiyj +
k∑

i=1

k+1∑
j=0

f(|j − i|+ 1)yi

= max
π∈Sk

(
1

2

k∑
i=1

k∑
j=1

f(|j − i|+ 2)xπ(i)xπ(j) +
k∑

i=1

k+1∑
j=0

f(|j − i|+ 1)xπ(i)

)
.
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Then there exists a 2 ≤ t ≤ k − 1 such that

y1 ≥ y2 ≥ · · · ≥ yt−1 ≥ yt ≤ yt+1 ≤ · · · ≤ yk.

Moreover, if k ≥ 4, then t �= k − 1.

Proof. Let us consider the permutation

(z1, . . . , zk) = (y1, . . . , y�−1, y�+1, y�, y�+2, . . . , yk)

of (x1, . . . , xk). Since (y1, . . . , yk) is optimal, we get

0 ≤ 1

2

k∑
i=1

k∑
j=1

f(|j − i|+ 2)(yiyj − zizj) +
k∑

i=1

k+1∑
j=0

f(|j − i|+ 1)(yi − zi)

= (y�+1 − y�)

( �−1∑
i=1

(f(�− i+ 3)− f(�− i+ 2))yi (5)

−
k∑

i=�+2

(f(i− �+ 2)− f(i− �+ 1))yi + f(�+ 2)− f(k − �+ 2)

)
.

Now let us define the function

g(�) :=
�−1∑
i=1

(f(�− i+ 3)− f(�− i+ 2))yi −
k∑

i=�+2

(f(i− �+ 2)− f(i− �+ 1))yi

+ f(�+ 2)− f(k − �+ 2)

for 1 ≤ � ≤ k − 1. Obviously g(1) < 0, g(k − 1) > 0 and g(�) < g(�+ 1).

For k = 3, we immediately obtain by using (5) that y1 ≥ y2 ≤ y3.

For k ≥ 4, we have that there exists a t′ ∈ {2, 3, . . . , k − 2} such that

g(t′ − 1) < 0, g(t′ + 1) > 0.

Together with (5) we obtain

y�+1 − y� ≤ 0 for 1 ≤ � ≤ t′ − 1,

y�+1 − y� ≥ 0 for t′ + 1 ≤ � ≤ k − 1,

which means

y1 ≥ y2 ≥ · · · ≥ yt′−1 ≥ yt′ and yt′+1 ≤ yt′+2 ≤ · · · ≤ yk.
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Since y1 ≥ yk, we have g(k − 2) > 0 and thus for k = 4, the theorem holds. To choose t

properly for k ≥ 5, we have to distinguish the following two cases.

• If yt′ ≤ yt′+1, then t = t′ fulfills the theorem.

• If yt′ ≥ yt′+1, then t = t′+1. Since g(k−2) > 0 and k ≥ 5, we obtain that t′ �= k−2

and thus t �= k − 1 in this case.

�

In terms of our maximization problem, this means that the degrees of the vertices on

the backbone of an optimal caterpillar have to be unimodular (decreasing up to a certain

point, then increasing). Note, however, that the optimal tree is not necessarily unique:

for example, for k = 6 and (d1, . . . , d6) = (81, 77, 30, 25, 18, 9), the two caterpillars T1 and

T2 with (d1,1, . . . , d1,6) = (d1, d4, d6, d5, d3, d2) and (d2,1, . . . , d2,6) = (d1, d4, d5, d6, d3, d2),

where di,j is the degree of the j-th vertex on the backbone of Ti, both maximize the

Hyper-Wiener index.

4 Terminal Wiener index

In this final section, we consider the problem of finding the tree with prescribed degree

sequence (d1, . . . , dn) that maximizes the terminal Wiener index (as mentioned earlier,

the minimization problem has been solved in [20]). The techniques are very similar to the

previous section.

Lemma 4.1. Let (d1, d2, . . . , dn) be a degree sequence with
∑n

i=1 di = 2(n − 1). Then

there always exists a caterpillar with maximum terminal Wiener index among all trees

that have this particular degree sequence.

Proof. Let Tmax be a tree with maximum terminal Wiener index. We assume that Tmax

is not a caterpillar. Similar to the proof of Proposition 3.1, there exists a longest path

P = (x1, x2, . . . , x�) in Tmax with � ≥ 5 and an xk, 2 < k < � − 1, such that xk has a

neighbor y /∈ P and degTmax
(y) ≥ 2. We define T1, T2 and T3 as shown in Figure 4 and

N(y) = {xk, z1, . . . , zs}, s ≥ 1, to be the neighbors of y. Without loss of generality we

can assume that |L(T1)| ≥ |L(T2)|, where L(Ti) is the set of leaves of Tmax in Ti.

Again we consider the tree T ′ arising from Tmax by replacing each edge (y, zi) by the

edge (x�, zi), 1 ≤ i ≤ s. The contributions to the terminal Wiener index of Tmax and T ′

differ only in the following four cases:

(1) u ∈ L(T3) and v ∈ L(T1): we obtain

dTmax(u, v) = dTmax(u, y) + 1 + dTmax(xk, v),
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dT ′(u, v) = dTmax(u, y) + dTmax(x�, xk) + dTmax(xk, v).

(2) u ∈ L(T3) and v ∈ L(T2) \ {x�}: we get

dTmax(u, v) = dTmax(u, y) + 1 + dTmax(xk, v),

dT ′(u, v) = dTmax(u, y) + dTmax(x�, v).

(3) y and v ∈ L(T1) ∪ L(T2) \ {x�}: since y is an inner vertex of Tmax, there is no

contribution to the terminal Wiener index of Tmax; for T
′ we get

dT ′(y, v) = 1 + dTmax(xk, v).

(4) x� and v ∈ L(T1)∪L(T2)\{x�}: as x� is an inner vertex of T ′, we get no contribution

in this case; for Tmax we have a contribution of

dTmax(x�, v) = dTmax(x�, xk) + dTmax(xk, v)

if v ∈ L(T1) and

dTmax(x�, v)

if v ∈ L(T2) \ {x�}.

Thus we have

TW (T ′)− TW (Tmax) =
∑

u∈L(T3)

( ∑
v∈L(T1)

(dTmax(x�, xk)− 1)

+
∑

v∈L(T2)\{x�}
(dTmax(x�, v)− dTmax(xk, v)− 1)

)

+
∑

v∈L(T1)

(1− dTmax(x�, xk))

+
∑

v∈L(T2)\{x�}
(dTmax(xk, v)− dTmax(x�, v) + 1)

= (dTmax(x�, xk)− 1) |L(T1)| (|L(T3)| − 1)

+
∑

v∈L(T2)\{x�}
(dTmax(x�, v)− dTmax(xk, v)− 1)(|L(T3)| − 1)

≥ (|L(T3)| − 1)(dTmax(x�, xk)− 1)(|L(T1)| − |L(T2)|+ 1),

where the last inequality holds since dTmax(x�, v) ≥ 2 and dTmax(xk, v) ≤ dTmax(xk, x�) for
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all v ∈ L(T2) \ {x�}. Hence together with dTmax(x�, xk) ≥ 2 we arrive at

TW (T ′) ≥ TW (Tmax).

Repeatedly applying this operation of transforming Tmax to T ′ whenever Tmax is not a

caterpillar, we can always find a caterpillar tree with maximum terminal Wiener index

(the process terminates since the diameter increases with every step). �

Lemma 4.1 guarantees the existence of a caterpillar tree that maximizes the terminal

Wiener index. But in contrast to the results of the previous section, not all optimal

solutions have to be caterpillar trees. The following definition and proposition describe

all possible optimal solutions.

Definition 5. A tree is called starlike if there is at most one vertex with degree greater

than 2.

Proposition 4.2. Let Tmax be a tree that maximizes the terminal Wiener index among

all trees with the same degree sequence. Then Tmax is either a caterpillar or a starlike

tree.

Proof. Assume that Tmax is not a caterpillar as presented in Figure 4 with P = (x1, x2, . . . , x�),

� ≥ 5, being a longest path in Tmax and y ∈ N(xk) \ {xk−1, xk+1}.
If |L(T3)| > 1, then the proof of Lemma 4.1 leads to a contradiction.

Thus let us consider the case |L(T3)| = 1. This implies that s = 1 and, for the sake

of simplicity, we denote z1 by z. Furthermore we define L(xk) to be the set of leaves of

Tmax in the connected subgraph of Tmax containing xk after deleting the edges (xk−1, xk),

(xk, xk+1) and (xk, y). Without loss of generality we assume |L(T1) \ L(xk)| ≥ |L(T2)|.
Now let T ′ be the tree arising from Tmax by deleting the edges (y, z), (xk−1, xk) and adding

the edges (xk, z), (xk−1, y). Then we obtain

dT ′(u, v) = dTmax(u, v) + 1

for u ∈ L(T1) \ L(xk) and v ∈ L(T2) ∪ L(xk) and

dT ′(u, v) = dTmax(u, v)− 1

for u ∈ L(T3) and v ∈ L(T2) ∪ L(xk). For all other pairs of leaves the distances in Tmax

and T ′ are the same. Hence we get

TW (T ′)− TW (Tmax) =
∑

v∈L(T2)∪L(xk)

( ∑
u∈L(T1)\L(xk)

1−
∑

u∈L(T3)

1

)

= (|L(T2)|+ |L(xk)|) (|L(T1) \ L(xk)| − |L(T3)|).
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If |L(T1)\L(xk)| > 1, we have TW (T ′) > TW (Tmax) and thus Tmax has to be a caterpillar.

Otherwise we have |L(T1) \L(xk)| = |L(T2)| = |L(T3)| = 1. We can repeat this argument

to show that indeed every component of Tmax \ {xk} contains only a single leaf of Tmax.

Thus Tmax has to be a starlike tree. �

Remark 6. If the prescribed degree sequence only contains a single value > 2, then all

possible trees are starlike, and it is easy to see that they all have the same terminal Wiener

index. If this is not the case, then the above proposition shows that every optimal tree is

indeed a caterpillar.

Again, one can give a simple formula for the terminal Wiener index of a caterpillar.

We skip the details.

Lemma 4.3. Let T be a caterpillar on n vertices and v1, v2, . . ., vk be the k non-leaves

that form the backbone of T in this order. Furthermore let di be the degree of vertex vi,

1 ≤ i ≤ k. Then

TW (T ) = (n− 1)(n− k − 1) +
1

2

k∑
i=1

k∑
j=1

|j − i| (di − 2)(dj − 2).

Combining Lemmas 4.1 and 4.3, we obtain the following theorem:

Theorem 4.4. Let T be a caterpillar and (d1, d2, . . . , dn) be its degree sequence with di ≥ 2

for 1 ≤ i ≤ k and dk+1 = · · · = dn = 1. Furthermore let d′i be the degree of the i-th vertex

on the backbone of T . If

k∑
i=1

k∑
j=1

|j − i| (d′i − 2)(d′j − 2) = max
π∈Sk

k∑
i=1

k∑
j=1

|j − i| (dπ(i) − 2)(dπ(j) − 2)

with Sk the set of all permutations of {1, . . . , k}, then T has maximum terminal Wiener

index among all trees with the same degree sequence.

Therefore we have to solve the following maximization problem:

max
π∈Sk

k∑
i=1

k∑
j=1

|j − i|απ(i)απ(j)

with α� ≥ 0, where Sk is the set of all permutations of {1, . . . , k}. Maximizing the Wiener

index leads to the exact same problem, and a solution can be found in quadratic time by

means of an algorithm described in [4].
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Math. 308 (2008) 3407–3411.

[22] H. Wang, The extremal values of the Wiener index of a tree with given degree

sequence, Discr. Appl. Math. 156 (2008) 2647–2654.

[23] H. Wang, Corrigendum: The extremal values of the Wiener index of a tree with

given degree sequence, Discr. Appl. Math. 157 (2009) 3754–3754.

[24] S. Wang, X. Guo, Trees with extremal Wiener indices, MATCH Commun. Math.

Comput. Chem. 60 (2008) 609–622.

[25] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc.

69 (1947) 17–20.
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