
Trees, Unicyclic, and Bicyclic Graphs

Extremal with Respect to

Multiplicative Sum Zagreb Index∗

Kexiang Xu a, Kinkar Ch. Dasb

aCollege of Science, Nanjing University of Aeronautics & Astronautics,
Nanjing, Jiangsu 210016, P. R. China

bDepartment of Mathematics, Sungyunkwan University,
Suwon 440-746, Republic of Korea

(Received November 18, 2011)

Abstract

For a (molecular) graph G with vertex set V (G) and edge set E(G), the first
Zagreb index of G is defined as M1(G) =

∑
v∈V (G) dG(v)

2 where dG(v) is the degree
of vertex v in G. The alternative expression for M1(G) is

∑
uv∈E(G)(dG(u)+dG(v)).

Very recently, Eliasi, Iranmanesh and Gutman [7] introduced a new graphical in-
variant

∏∗
1(G) =

∏
uv∈E(G)(dG(u) + dG(v)) as the multiplicative version of M1.

Here we call this new index the multiplicative sum Zagreb index. We characterize
the trees, unicylcic, and bicyclic graphs extremal (maximal and minimal) with re-
spect to the multiplicative sum Zagreb index. Moreover, we use a method different
but shorter than that in [7] for determining the minimal multiplicative sum Zagreb
index of trees.

1 Introduction

Throughout this paper we consider finite, undirected and simple graphs. Let G be a

graph with vertex set V (G) and edge set E(G). The degree of v ∈ V (G), denoted by

dG(v), is the number of vertices in G adjacent to v. For a subset W of V (G), let G−W

be the subgraph of G obtained by deleting the vertices of W and the edges incident with

them. Similarly, for a subset E ′ of E(G), we denote by G−E ′ the subgraph of G obtained
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by deleting the edges of E ′. If W = {v} and E ′ = {xy}, the subgraphs G−W and G−E ′

will be written as G − v and G − xy for short, respectively. For any two nonadjacent

vertices x and y of graph G, let G+ xy be the graph obtained from G by adding an edge

xy. Other undefined notations and terminology from graph theory can be found in [3].

A graphical invariant is a number related to a graph which is a structural invariant,

in other words, it is a fixed number under graph automorphisms. In chemical graph

theory, these invariants are also known as the topological indices. One of the oldest

graph invariants is the well-known Zagreb indices first introduced in [13] where Gutman

and Trinajstić examined the dependence of total π-electron energy on molecular structure

and elaborated in [14]. For a (molecular) graph G, the first Zagreb index M1(G) and the

second Zagreb index M2(G) are, respectively, defined as follows:

M1 = M1(G) =
∑

v∈V (G)

dG(v)
2, M2 = M2(G) =

∑
uv∈E(G)

dG(u)dG(v).

These two classical topological indices (M1 and M2) reflect the extent of branching of

the molecular carbon-atom skeleton [1, 19]. The first Zagreb index M1 was also termed

as “Gutman index” by some scholars (see [19]). The main properties of M1 and M2

were summarized in [5, 6, 10, 15, 16]. In particular, Deng [6] gave a unified approach

to determine extremal values of Zagreb indices for trees, unicyclic graphs, and bicyclic

graphs, respectively. Other recent results on ordinary Zagreb indices can be found in

[15, 22] and the references cited therein.

Recently, Todeschini et al. [18, 20] have proposed the multiplicative variants of ordi-

nary Zagreb indices, which are defined as follows:∏
1 =

∏
1(G) =

∏
v∈V (G)

dG(v)
2,

∏
2 =

∏
2(G) =

∏
uv∈E(G)

dG(u)dG(v).

These two graph invariants are called “multiplicative Zagreb indices” by Gutman [9].

In the same paper, Gutman showed that among all trees of order n ≥ 4, the trees extremal

with respect to these multiplicative Zagreb indices are the path Pn (with maximal
∏

1

and with minimal
∏

2), and the star Sn (with maximal
∏

2 and with minimal
∏

1). More

recently, Gutman and Ghorbani [11] obtained some properties of the Narumi–Katayama

index, whose definition is NK(G) =
∏

v∈V (G)

dG(v) for a graph G. By using a unified

approach, one of the present authors and Hua [24] determined the trees, unicylcic, and

bicyclic graphs extremal with respect to
∏

1 and
∏

2. A molecular graph which models

the skeleton of a molecule ([21]) is a connected graph of maximum degree at most 4. The

bounds of a molecular topological descriptor are important information of a (molecular)

graph in the sense that they establish the approximate range of the descriptor in terms

of molecular structural parameters.
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Very recently, Eliasi, Iranmanesh and Gutman [7] introduced a new graphical invariant

as the multiplicative version of ordinary first Zagreb index M1, which is defined as:∏∗
1(G) =

∏
uv∈E(G)(dG(u) + dG(v)).

According to its definition, we call
∏∗

1(G) the multiplicative sum Zagreb index. As

pointed out in [7], the multiplicative sum Zagreb index
∏∗

1 is not equal to the first

multiplicative Zagreb index
∏

1. For example, we have
∏∗

1(P3) = 9 while
∏

1(P3) = 4.

Let T (n) and U(n) be the set of trees of order n, and the set of connected unicyclic

graphs of order n, respectively. Denote by B(n) the set of connected bicyclic graphs of

order n.

The paper is organized as follows. In Section 2, we introduce some graph transforma-

tions that increase or decrease the multiplicative sum Zagreb index of graphs. In Section

3, based on these graph transformations, we determine the extremal multiplicative sum

Zagreb indices of graphs from T (n), U(n), and B(n), respectively. Moreover, we com-

pletely characterize the extremal graphs from these three sets at which the maximal or

minimal value of the multiplicative sum Zagreb index is attained.

2 Some graph transformations

In this section we introduce some graph transformations, that increase or decrease the

multiplicative sum Zagreb index of graphs. These graph transformations play an impor-

tant role in determining the graphs from T (n), U(n), and B(n) that are extremal with

respect to the multiplicative sum Zagreb index.

Now we introduce a graph transformation that decreases the multiplicative sum Za-

greb index
∏∗

1.

Transformation A. Suppose that G is a nontrivial connected graph and v is a

given vertex in G. Let G1 be a graph obtained from G by attaching at v two paths

P : vu1u2 · · · uk of length k and Q : vw1w2 · · ·wl of length l. We further let G2 =

G1 − vw1 + ukw1. The above referred graphs are illustrated in Fig. 1.

G G

v v
u1w1wl uk u1 ukw1 wl

A−→
· · · · · ·· · · · · ·

G1 G2

Fig. 1. Transformation A

Lemma 2.1. Let G1 and G2 be two graphs as shown in Fig. 1. Then
∏∗

1(G2) <
∏∗

1(G1).
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Proof . Assume that dG(v) = x > 0 and the degrees of neighbors of v in G are d(1), d(2),

. . . , d(x), respectively. For k, l ≥ 2, by the definition of multiplicative sum Zagreb index,

we have∏∗
1(G1)−

∏∗
1(G2) ≥ 9×(x+4)24k+l−4

x∏
i=1

(d(i)+x+2)−3×4k+l−2(x+3)
x∏

i=1

(d(i)+x+1)

> 4k+l−4[9(x+ 4)2 − 48(x+ 3)]

≥ 9x2 + 24x > 0.

When k = l = 1 or k = 1 and l = 2, or k = 2 and l = 1, simple calculation shows the

validity of
∏∗

1(G2) <
∏∗

1(G1).

Thus we complete the proof of the lemma.

Remark 2.1. It is easily seen that any tree T of size t attached to a graph G can be

changed into a path Pt+1 by repeating Transformation A. During this process, the multi-

plicative sum Zagreb index
∏∗

1 decreases by Lemma 2.1.

Transformation B. Let uv be an edge of a connected graph G with dG(v) ≥ 2.

Suppose that {v, w1, w2, · · · , wt} are all the neighbors of the vertex u and w1, w2, · · · , wt

are pendent vertices. Let G′ = G− {uw1, uw2, · · · , uwt}+ {vw1, vw2, · · · , vwt}, see Fig.

2 for these graphs.

G0 G0
v vu

u

w1
w2

wt

w1
w2

wt

...
...

G G′

B−→

Fig. 2. Transformation B

Lemma 2.2. Let G and G′ be two graphs in Fig. 2. Then
∏∗

1(G) <
∏∗

1(G
′).

Proof . Let G0 = G− {u, w1, w2, · · · , wt}. Assume that dG0(v) = x > 0 and the degrees

of neighbors of v in G0 are d
(1), d(2), . . . , d(x), respectively. Similar to the proof of Lemma

2.1, we have∏∗
1(G

′)−∏∗
1(G) ≥ (x+ t+2)t+1

x∏
i=1

(d(i)+x+ t+1)− (x+ t+1)(t+2)t
x∏

i=1

(d(i)+x+1)

> (x+ t+ 2)t+1 − (x+ t+ 1)(t+ 2)t > 0 ,

ending the proof.

Remark 2.2. Repeating Transformation B, any tree T of size t attached to a graph G

can be changed into a star St+1. And the multiplicative sum Zagreb index
∏∗

1 increases

by Lemma 2.2.
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Transformation C. Given a nontrivial connected graph G with two non-pendent

adjacent vertices u and v where u and v have no common neighbor in G. Further, we

construct a new graph G
′
which is obtained by identifying the vertices u and v to a new

vertex w and attaching a pendent vertex w0 to the vertex w, see Fig. 3 for these graphs.

...
...

...
...u v w

w0

G G′
C−→

Fig. 3. Transformation C

Lemma 2.3. Let G, G
′
be graphs as shown in Fig. 3. Then

∏∗
1(G

′
) >

∏∗
1(G).

Proof . Assume that the neighbors of u except v are u1, . . . , ux with degrees d
(1)
u , . . . , d

(x)
u ,

respectively, and the neighbors of v except u are v1, . . . , vy with degrees d
(1)
v , . . . , d

(y)
v ,

respectively. Set A =
∏∗

1(G
′
)−∏∗

1(G), then

A ≥ (x+ y + 2)
x∏

i=1

(d
(i)
u + x+ y + 1)

y∏
j=1

(d
(j)
v + x+ y + 1)

− (x+ y + 2)
x∏

i=1

(d
(i)
u + x+ 1)

y∏
j=1

(d
(j)
v + y + 1)

>
x∏

i=1

(d
(i)
u + x+ y + 1)

y∏
j=1

(d
(j)
v + x+ y + 1)−

x∏
i=1

(d
(i)
u + x+ 1)

y∏
j=1

(d
(j)
v + y + 1) > 0.

Therefore the result in this lemma follows immediately.

Transformation D. Assume that a pendent path P = v1v2 · · · vt−1vt is attached

at v1 in graph G and there are two neighbors u and w of v1 different from v2. Let

G′ = G− uv1 + uvt, see Fig. 4.

u wv1

v2

vt−1

vt

u vt vt−1 v1 w
· · ·

...

...
...

...
...

D−→

G G
′

Fig. 4. Transformation D

Lemma 2.4. Let G and G′ be two graphs as shown in Fig. 4. Then
∏∗

1(G
′
) <

∏∗
1(G).
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Proof . Assume that dG(u) = x > 1 and dG(w) = y > 1. When t ≥ 2, by the definition

of multiplicative sum Zagreb index, we have∏∗
1(G)−∏∗

1(G
′
) ≥ (x+ 3)(y + 3)(3 + 2)4t−2 × 3− (x+ 2)(y + 2)4t

= 4t−2[18(x+ 3)(y + 3)− 16(x+ 2)(y + 2)] > 0.

Similarly, if t = 1, then∏∗
1(G)−∏∗

1(G
′
) ≥ (x+ 3)(y + 3)× 4− (x+ 2)(y + 2)× 4

> (x+ 3)(y + 3)− (x+ 2)(y + 2) > 0.

This completes the proof of this lemma.

Based on Transformations D and B, we can deduce the following transformation.

Transformation E. Let P = xv1v2 · · · vty be an internal path in G, i.e., dG(vi) = 2

for i = 1, 2, · · · , t, dG(x) ≥ 2 and dG(y) ≥ 2. G′ = G − {v2v3, v3v4, · · · , vt−1vt, vty} +

{v1v3, v1v4, · · · , v1vt, v1y} as shown in Fig. 5.

x v1 v2 vt y· · ·
· · ·

... ...
...

...x yv1

v2
v3

vt

G G′

E−→

Fig. 5. Transformation E

From Lemmas 2.4 and 2.2 the lemma below follows immediately.

Lemma 2.5. Let G and G′ be two graphs shown in Fig. 5. Then
∏∗

1(G) <
∏∗

1(G
′
).

Let d(1), d(2), . . . , d(m) be m nonnegative integers. Now we define a function

f(x) = (x+m+ 1)x
m∏
i=1

(d(i) + x+m)

where x > 0 is a variant.

Lemma 2.6. Let f(x) be a function defined as above. Then, for any two positive integers

s and t, we have f(s+ t)f(0) > f(s)f(t).

Proof . Note that f(x) > 0 for any variant x > 0. Therefore, to obtain the result, it

suffices to prove that lnf(s+ t) + lnf(0) > lnf(s) + lnf(t).

Now we consider a new function g(x) = lnf(x)+ lnf(0)− lnf(x1)− lnf(x−x1) where

0 < x1 < x is an invariant. Setting another new function h(x) = ln(x+m+1)+ x
x+m+1

+
m∑
i=1

1
d(i)+x+m

, then we have
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h′(x) = 1
x+m+1

− m+1
(x+m+1)2

+
m∑
i=1

1
(d(i)+x+m)2

= x
(x+m+1)2

+
m∑
i=1

1
(d(i)+x+m)2

> 0.

Therefore we claim that h(x) is strictly increasing when x > 0. Thus we have

g′(x) = ln(x+m+ 1) + x
x+m+1

+
m∑
i=1

1
d(i)+x+m

− [ln(x− x1 +m+ 1) + x−x1

x−x1+m+1
+

m∑
i=1

1
d(i)+x−x1+m

]

= h(x)− h(x− x1) > 0.

Again g(x) is also strictly increasing when x > 0. Obviously we have g(x) > g(x1) = 0.

By choosing x = s + t and x1 = s, it follows that g(s + t) > g(s) = 0, i.e., that

lnf(s+ t)+ lnf(0)− lnf(s)− lnf(t) > 0, which completes the proof of this theorem.

Now we introduce a new graph transformation as follows:

Transformation F. Given a connected graph G with u, v ∈ V (G), let u1, u2, . . . , us

be pendent vertices adjacent to u and v1, v2, . . . , vt be pendent vertices adjacent to v. Set

G0 = G− {u1, u2, . . . , uk, v1, v2, . . . , vl}. In G0, vertex u has m neighbors u0
1, . . . , u

0
m and

v has also m neighbors v01, . . . , v
0
m with dG0(u

0
i ) = dG0(v

0
i ) = d(i) for i = 1, 2, . . . ,m.

Further, we let G
′
= G − {uu1, uu2, . . . , uus} + {vu1, vu2, . . . , vus} and G

′′
= G −

{vv1, vv2, . . . , vvt}+ {uv1, uv2, · · · , uvt}, see Fig. 6 for these graphs.

G0

G0

G0

u

v

u

v

u

v

u1

us

vt

vt

...

...

...

...

...

...

v1

v1

vt

vt

u1

us

u1

us

F

↗

F

↘
G

G
′

G
′′

Fig. 6. Transformation F

Lemma 2.7. Let G, G
′
and G

′′
be graphs as shown in Fig. 6. Then

∏∗
1(G) <

∏∗
1(G

′
) =∏∗

1(G
′′
).

Proof . By definition, we have∏∗
1(G

′
)−∏∗

1(G) =
∏∗

1(G
′′
)−∏∗

1(G)

≥ (s+ t+m+ 1)s+t
m∏
i=1

(d(i) + s+ t+m)
m∏
i=1

(d(i) +m)
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− (s++m+ 1)s(t++m+ 1)t
m∏
i=1

(d(i) + s+m)
m∏
i=1

(d(i) + t+m)

> 0 by Lemma 2.6.

Therefore we complete the proof of this lemma.

3 Main results

In this section we turn to determine the extremal multiplicative sum Zagreb indices of

graphs from T (n), U(n), and B(n). Also the corresponding extremal graphs from these

three sets are completely characterized.

3.1 Graphs in T (n) and U(n) extremal w.r.t. multiplicative sum
Zagreb index

By the definition of multiplicative sum Zagreb index, the following corollary can be easily

obtained.

Lemma 3.1. Let G be a graph with two nonadjacent vertices u, v ∈ V (G) and e ∈ E(G).

Then

(1)
∏∗

1(G+ uv) >
∏∗

1(G);

(2)
∏∗

1(G− e) <
∏∗

1(G).

Theorem 3.1. [7] Among all connected graphs of order n > 1, the path Pn has the

minimal multiplicative sum Zagreb index.

Combining Lemma 3.1 (2) with Theorem 3.1, we can obtain the following theorem,

in which the minimal multiplicative sum Zagreb index of trees from T (n) is determined.

Theorem 3.2. Let T be a tree in T (n) with n ≥ 4 different from Pn. Then
∏∗

1(Pn) <∏∗
1(T ).

In fact, taking Remark 2.1 into account, and using Lemma 2.1 repeatedly, one can

easily obtain the above result.

A caterpillar is a tree if deleting all its pendent vertices will reduce it to a path. Note

that caterpillar is also called as Gutman tree (see [2, 8]). Now we consider the maximal

multiplicative sum Zagreb index of trees from T (n).

Theorem 3.3. Let T be a tree in T (n) with n ≥ 4 different from Sn. Then
∏∗

1(T ) <∏∗
1(Sn).
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Proof . By Lemma 2.2 and Remark 2.2, we find that the tree from T (n) with maximal

multiplicative sum Zagreb index must be a caterpillar. Considering Transformations C

and E, from Lemmas 2.3 and 2.5, we conclude that any caterpillar can be changed into

star Sn with a larger multiplicative sum Zagreb index. Thus the result in this theorem

follows immediately.

Combining Theorems 3.2 and 3.3, we list the following theorem, in which the graph

from T (n) extremal with respect to multiplicative sum Zagreb index
∏∗

1 is completely

characterized.

Theorem 3.4. Let G be a graph in T (n) different from Sn and Pn. Then we have∏∗
1(Pn) <

∏
1(G) <

∏∗
1(Sn).

Denote by T 0(n) the set of all trees of order n and with a unique vertex of maximum

degree 3. Let S0
n be a tree obtained by attaching a pendent edge to a pendent vertex

of Sn−1. In [7], Eliasi, Iranmanesh and Gutman have proved that any tree from T 0(n)

has the second minimal multiplicative sum Zagreb index among all connected graphs of

order n. In the following theorem the graph from T (n) is characterized having second

minimal or second maximal multiplicative sum Zagreb index.

Theorem 3.5. Let G be a tree in T (n) different from Sn, Pn, S
0
n and any tree T 0

n from

T 0(n). Then we have
∏∗

1(T
0
n) <

∏
1(G) <

∏∗
1(S

0
n).

Proof . For any tree T ∈ T (n) different from Sn, Pn, S
0
n and any tree T 0

n from T 0(n),

T can be changed into a tree of order n and with a unique vertex of maximum degree 3

which has a smaller multiplicative sum Zagreb index from Remark 2.1 and Lemma 2.1.

Therefore the result in left side holds immediately.

Similarly, for the above tree T , it can be changed into a caterpillar with diameter 3

which has a larger multiplicative sum Zagreb index. Any caterpillar with diameter 3 is

just a double star, denoted by Sn1,n2 , with 1 ≤ n1 ≤ n2 and n1 + n2 = n − 2, which is

obtained by attaching n1 pendent vertices to one pendent vertex of P2 and n2 pendent

vertices to the other. Now we claim that
∏∗

1(Sn1,n2) reaches its maximum value when

n1 = 1 and n2 = n− 3. Otherwise, n1 ≥ 2. Using Transformation F, by Lemma 2.7, we

can get the graph S1,n−3 with
∏∗

1(S1,n−3) >
∏∗

1(Sn1,n2). Note that S1,n−3
∼= S0

n defined

as above. By now we finish the proof of this theorem.

A unicyclic graph G is said to be a sun graph ([17]) if the vertices belonging to the

cycle have degree at most three and the remaining vertices have degree at most two. The

graph in U(n) with minimal
∏∗

1 is specified in the following theorem.
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Theorem 3.6. Let G be a graph in U(n) different from Cn . Then
∏∗

1(Cn) <
∏∗

1(G).

Proof . By Lemma 2.1, considering Remark 2.1, we find that any unicyclic graph G

can be changed into a sun graph with a smaller multiplicative sum Zagreb index
∏∗

1.

We can apply repeatedly Lemma 2.4 to any sun graph as long as it is not the cycle

Cn, decreasing its multiplicative sum Zagreb index
∏∗

1. Thus the result in this theorem

follows immediately.

A unicyclic graph is called as cycle-caterpillar if deleting all its pendent vertices will

reduce it to a cycle. If a cycle-caterpillar has girth k, then we say that this cycle-caterpillar

is on the cycle Ck. Let Ck
n be a graph obtained by attaching n − k pendent edges to a

vertex of Ck. By the following theorem we determine the graph from U(n) with maximal

multiplicative sum Zagreb index
∏∗

1.

Theorem 3.7. Let G be a unicyclic graph in U(n) different from C3
n. Then

∏∗
1(G) <∏∗

1(C
3
n).

Proof . Considering Remark 2.2, by Lemma 2.2, we claim that the graph from U(n) with
maximal multiplicative sum Zagreb index must be a cycle–caterpillar.

Applying Transformations E and C, from Lemma 2.5 and 2.3, we conclude that any

cycle-caterpillar can be changed into a cycle-caterpillar on triangle C3 = v1v2v3v1 with

a larger multiplicative sum Zagreb index. Denote by C3(n1, n2, n3) the cycle-caterpillar

of order n obtained by attaching ni pendent vertices to vertex vi for i = 1, 2, 3. Us-

ing Transformation F at most twice, by Lemma 2.7, we can obtain the graph C3
n with∏∗

1(C
3
n) >

∏∗
1(C3(n1, n2, n3)), ending the proof of this theorem.

Combining Theorems 3.6 and 3.7, we list the following theorem, in which the graph

from U(n) extremal with respect to the multiplicative sum Zagreb index is completely

characterized.

Theorem 3.8. Let G be a graph in U(n) different from C3
n and Cn. Then we have∏∗

1(Cn) <
∏∗

1(G) <
∏∗

1(C
3
n).

3.2 Graphs in B(n) extremal w.r.t. multiplicative sum Zagreb
index

Now we start to deal with the graphs in B(n) extremal with respect to the multiplicative

sum Zagreb index. To do it, we first introduce necessary definitions.
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As in [23], for any graph G ∈ B(n), there are at least two cycles in G. The structure

of cycles in G ∈ B(n) can be divided into the following three cases:

(I) The two cycles Cp and Cq in G have only one common vertex v;

(II) The two cycles Cp and Cq in G are linked by a path of length l > 0;

(III) The two cycles Cl+k and Cl+m in G have a common path of length l > 0.

The graphs Cp,q, Cp,l,q and θk,l,m (where 1 ≤ l ≤ min{k,m}) corresponding to the

cases above shown in Fig. 7 are called main subgraphs of G ∈ B(n) of type (I), (II) and

(III), respectively.

Cp Cq Cp Cq· · ·
· · ·
· · ·
· · ·v u vw1

wl−1

x y

v1 v2 vk−1

u1 u2 ul−1

w1 w2 wm−1Cp,q Cp,l,q θk,l,m

Fig. 7. The graphs Cp,q, Cp,l,q and θk,l,m

Let B′
n be a graph as shown in Fig. 8 obtained by attaching two adjacent edges in Sn

among its three pendent vertices.

· · ·

B′
n

Fig. 8 The graph B′
n

When n = 4, B(n) contains only graph, which is obtained by deleting an edge of

complete graph K4. If n = 5, there are 5 graphs in B(n). It is easy to check that B′
n

has the maximal multiplicative sum Zagreb index
∏∗

1 among these five graphs. In what

follows, we only consider the extremal graph from B(n) with n ≥ 6. By the following

theorem we determine the extremal graph from B(n).

Theorem 3.9. Let G be a graph in B(n) with n ≥ 6 different from B′
n. Then we have∏∗

1(G) <
∏∗

1(B
′
n).

Proof . Let G0 be a graph from B(n) with maximum multiplicative sum Zagreb index∏∗
1 and B0 be its main subgraph. Then B0 is of one of types I, II and III. By Remark

-267-



2.2, we find that G0 must be a graph obtained by attaching some pendent edges to some

vertices of the graph B0. Owing to Transformations C and E, in view of Lemmas 2.3 and

2.5, any graph G from B(n) with main subgraph of type II can be changed into another

graph G′ with main subgraph of type I with a larger multiplicative sum Zagreb index.

Therefore we only need to consider the graphs from B(n) with main subgraph of type I

or III. Next we will prove the following claim.

Claim 1. The length of any cycle in B0 is less than 5.

Proof of Claim 1. Otherwise, if B0 is of type I, applying Transformations C and E,

by Lemmas 2.3 and 2.5, we can easily obtain another graph G′
0 with two shorter cycles

than those in G0 and
∏∗

1(G
′
0) >

∏∗
1(G0). It contradicts to the choice of G0.

Now we consider the case when B0 is of type III. Assume that B0
∼= θk,l,m with

1 ≤ l ≤ min{k,m} and k +m ≥ 5. Then one of two integers k and m, say k, is not less

than 3. Considering the structure of G0, we apply Transformation C or Transformation

E to B0 in G0 and obtain a new graph G
′′
0 in B(n) with a smaller multiplicative sum

Zagreb index by Lemma 2.3 or 2.5. This is also a contradiction to the choice of G0, which

completes the proof of this claim.

By Claim 1, we found that the length of any cycle in B0 is 3 or 4. Furthermore, we

conclude that B0
∼= C3,3 when it is of type I, B0

∼= θ2,1,2 if it is of type III.

Let C3,3(n1, n2) be a graph obtained by attaching n1 pendent vertices to one vertex

of degree 2 in C3,3 and n2 pendent vertices to one vertex of degree 4 in it. Denote by

θ2,1,2(n1, n2) a graph obtained by attaching n1 pendent vertices to one vertex of degree 2

in C3,3 and n2 pendent vertices to one vertex of degree 3 in it. Noticing the symmetry of

C3,3 and θ2,1,2, in view of Transformation F and Lemma 2.7, we find that G0 must be of

the form C3,3(n1, n2) with n1+n2 = n−5 or of the form θ2,1,2(n1, n2) with n1+n2 = n−4.

By definition, we have∏∗
1(C3,3(n1, n2)) = 4(n1 + n2 + 6)(n1 + 4)(n1 + 3)n1(n2 + 6)3(n2 + 5)n2

= 4(n+ 1)(n1 + 4)(n1 + 3)n1(n2 + 6)3(n2 + 5)n2 ,∏∗
1(θ2,1,2(n1, n2)) = 4(n1 + n2 + 5)(n1 + 5)(n1 + 3)n1(n2 + 5)(n2 + 6)(n2 + 4)n2

= 4(n+ 1)(n1 + 5)(n1 + 3)n1(n2 + 5)(n2 + 6)(n2 + 4)n2 .

Claim 2.
∏∗

1(C3,3(n1, n2)) reaches its its maximum value when n1 = 0, n2 = n− 5.

Proof of Claim 2. In order to prove this claim, we have to find the maximum value

of (n2+6)3(n2+5)n2(n1+4)(n1+3)n1 , where n1+n2 = n− 5. From the factors, one can

see easily that the maximum value occurs only when n2 ≥ n1, that is, n1 ≤ (n − 5)/2.

Thus we have to find the maximum value of (n−n1+1)3(n−n1)
n−n1−5(n1+4)(n1+3)n1 ,
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n1 ≤ (n− 5)/2. For this let us consider a function

f(x) = (x+ 4)(x+ 3)x(n− x+ 1)3(n− x)n−x−5, 0 ≤ x ≤ (n− 5)/2 .

Then

f ′(x) = f(x)
[
− 1

(x+ 3)(x+ 4)
− 2(n− 2x− 2)

(n− x+ 1)(x+ 3)
+

5

(n− x)(n− x+ 1)
+ln

(x+ 3

n− x

)]
.

Since 0 ≤ x ≤ (n− 5)/2, we have x+ 3 < n− x and n− 2x− 2 ≥ 3. Using these results,

we have

− 2(n− 2x− 2)

(n− x+ 1)(x+ 3)
+

5

(n− x)(n− x+ 1)
< 0 .

Moreover,

0 ≤ x+ 3

n− x
≤ 1 and hence ln

(x+ 3

n− x

)
≤ 0 .

Hence

f ′(x) < 0 .

Thus f(x) is a decreasing function on x ≤ (n− 5)/2 and hence f(x) ≤ 4(n+ 1)3nn−5

with maximum value occurs only when x = 0, that is, n1 = 0, n2 = n−5. This completes

the proof of this claim.

Similarly we can prove that the maximum value of
∏∗

1(θ2,1,2(n1, n2)) is attained at

n1 = 0, n2 = n − 4. By the above arguments, we claim that G0 is one of two graphs

C3,3(0, n− 5) and θ2,1,2(n1, n2) ∼= B′
n. Moreover,∏∗

1(C3,3(0, n− 5)) = 16(n+ 1)4nn−5,∏∗
1(θ2,1,2(0, n− 4)) = 20(n+ 1)2(n+ 2)nn−4, thus,∏∗
1(θ2,1,2(0, n− 4))−∏∗

1(C3,3(0, n− 5)) = 4(n+ 1)2nn−5[5(n+ 2)n− 4(n+ 1)2]

= 4(n+ 1)2nn−5(n2 + 2n− 4) > 0.

Therefore we complete the proof of this theorem.

Now we introduce three subsets of the set B(n) as follows:
B1(n) = {Cp,q : p+ q − 1 = n};
B2(n) = {Cp,l,q : p+ q + l − 1 = n};
B3(n) = {θk,l,m : k + l +m− 1 = n}.
Let Gi be any graph from Bi(n) for i = 1, 2, 3. Then,∏∗

1(G1) = 644n−3;∏∗
1(G2) = 54 × 6× 4n−4 if l = 1,

∏∗
1(G2) = 56 × 4n−5 if l > 1;∏∗

1(G3) = 54 × 6× 4n−4 when l = 1,
∏∗

1(G3) = 56 × 4n−5 when l > 1.
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Theorem 3.10. Let G be a graph in B(n) \ B2(n)
⋃B3(n) with n ≥ 6 and H be a graph

in B2(n)
⋃B3(n) with l = 1. Then we have

∏∗
1(H) <

∏∗
1(G).

Proof . Using Lemmas 2.1 and 2.4, and noting Remark 2.1, we conclude that the graph

from B(n) with minimal multiplicative sum Zagreb index
∏

2 must be a graph from the

set B1(n)
⋃B2(n)

⋃B3(n).

From the above calculation of graph Gi in Bi(n) with i = 1, 2, 3, we have∏∗
1(G1)−

∏∗
1(G2) > 0 and

∏∗
1(G1)−

∏∗
1(G3) > 0.

Considering the difference of
∏∗

1(Gi) for i = 2, 3 when l is different, the result follows

immediately.

Now we present the following theorem in which the graphs extremal with respect to

multiplicative sum Zagreb index from B(n) are completely determined.

Theorem 3.11. Assume that H is any graph from B2(n)
⋃B3(n) with l = 1. Let G be

a graph in B(n) \ B2(n)
⋃B3(n) different from B′

n. Then
∏∗

1(H) <
∏∗

1(G) <
∏∗

1(B
′
n).

Considering the graphs from T (n), U(n) and B(n) extremal with respect to the second

multiplicative Zagreb index (see [24]), it seems that there is some interesting relationship

between the second multiplicative Zagreb index (
∏

2) and the multiplicative sum Zagreb

index (
∏∗

1). This may be a research topic in the coming future.
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