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Abstract

For a (molecular) graph, the (first or second) multiplicative Zagreb index
∏

1

or
∏

2 is a multiplicative variant of ordinary Zagreb index (M1 or M2). Gutman
[6] determined that among all trees of order n ≥ 4, the extremal trees with respect
to these multiplicative Zagreb indices are n-vertex path (with maximal

∏
1 and

with minimal
∏

2) and n-vertex star (with maximal
∏

2 and with minimal
∏

1).
Regarding these new topological indices, there is no further results reported so far.
In this paper we investigate extremal properties of these indices along the same line
of [6]. We first introduce some graph transformations which increase or decrease
these two indices. As an application, we obtain a unified approach to characterize
extremal (maximal and minimal) trees, unicyclic graphs and bicyclic graphs with
respect to multiplicative Zagreb indices, respectively.
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1 Introduction

We only consider finite, undirected and simple graphs throughout this paper. Let G be

a graph with vertex set V (G) and edge set E(G). The degree of v ∈ V (G), denoted by

dG(v), is the number of vertices in G adjacent to v. For a subset W of V (G), let G−W

be the subgraph of G obtained by deleting the vertices of W and the edges incident with

them. Similarly, for a subset E ′ of E(G), we denote by G−E ′ the subgraph of G obtained

by deleting the edges of E ′. If W = {v} and E ′ = {xy}, the subgraphs G−W and G−E ′

will be written as G − v and G − xy for short, respectively. For any two nonadjacent

vertices x and y of graph G, let G+ xy be the graph obtained from G by adding an edge

xy. Other undefined notations and terminology from graph theory can be found in [2].

A graphical invariant is a number related to a graph which is a structural invariant,

in other words, it is a fixed number under graph automorphisms. In chemical graph

theory, these invariants are also known as the topological indices. One of the oldest graph

invariants is the well-known Zagreb indices first introduced in [10] where Gutman and

Trinajstić examined the dependence of total π-electron energy on molecular structure

and elaborated in [11]. For a (molecular) graph G, the first Zagreb index M1(G) and the

second Zagreb index M2(G) are, respectively, defined as follows:

M1 = M1(G) =
∑

v∈V (G)

dG(v)
2, M2 = M2(G) =

∑
uv∈E(G)

dG(u)dG(v).

These two classical topological indices (M1 and M2) reflect the extent of branching of

the molecular carbon-atom skeleton [1, 17]. The first Zagreb index M1 was also termed

as “Gutman index” by some scholars (see [17]). The main properties of M1 and M2

were summarized in [4, 5, 7, 13, 14]. In particular, Deng [5] gave a unified approach to

determine extremal values of Zagreb indices for trees, unicyclic graphs and bicyclic graphs,

respectively. Other recent results on ordinary Zagreb indices can be found in [12, 20] and

the references cited therein.

Recently, Todeschini et al. [16, 18] have proposed the multiplicative variants of ordi-

nary Zagreb indices, which are defined as follows:∏
1 =

∏
1(G) =

∏
v∈V (G)

dG(v)
2,

∏
2 =

∏
2(G) =

∏
uv∈E(G)

dG(u)dG(v).

These two graph invariants are called “multiplicative Zagreb indices” by Gutman [6].
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In the same paper, Gutman determined that among all trees of order n ≥ 4, the extremal

trees with respect to these multiplicative Zagreb indices are path Pn (with maximal
∏

1

and with minimal
∏

2) and star Sn (with maximal
∏

2 and with minimal
∏

1). More

recently, Gutman and Ghorbani [8] have obtained some properties of Narumi-Katayama

index whose definition is NK(G) =
∏

v∈V (G)

dG(v) for a graph G. A molecular graph which

models the skeleton of a molecule ([19]) is a connected graph of maximum degree at

most 4. The bounds of a molecular topological descriptor are important information of a

(molecular) graph in the sense that they establish the approximate range of the descriptor

in terms of molecular structural parameters.

Let T (n) and U(n) be the set of trees of order n, and the set of connected unicyclic

graphs of order n, respectively. Denote by B(n) the set of connected bicyclic graph of

order n. The paper is organized as follows. In Section 2, we introduce some graph

transformations which increase or decrease the multiplicative Zagreb index of graphs. In

Section 3, using a unified approach based on these graph transformations in Section 2, we

have determined the extremal multiplicative Zagreb indices of graphs from T (n), U(n)
and B(n), respectively. Moreover, we completely characterize the extremal graph from

these three sets at which maximal or minimal multiplicative Zagreb index is attained.

Finally we pose a related problem as a researching topic in the future.

2 Some graph transformations

In this section we will introduce some graph transformations, which increase or decrease

the multiplicative Zagreb index of graphs. And these graph transformations play an

important role in determining the extremal graphs from T (n), U(n) and B(n) with respect

to multiplicative Zagreb indices.

Now we introduce a graph transformation which increases the first multiplicative Za-

greb index
∏

1 and simultaneously decreases the second multiplicative Zagreb index
∏

2.

Transformation A. Suppose that G is a nontrivial connected graph and v is a

given vertex in G. Let G1 be a graph obtained from G by attaching at v two paths

P : vu1u2 · · · uk of length k and Q : vw1w2 · · ·wl of length l. We further let G2 =
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G1 − vw1 + ukw1. The above referred graphs have been illustrated in Fig. 1.

G G

v v
u1w1wl uk u1 ukw1 wl

A−→
· · · · · ·· · · · · ·

G1 G2

Fig. 1. Transformation A

Lemma 2.1. Let G1 and G2 be two graphs as shown in Fig. 1. Then we have

(1)
∏

1(G2) >
∏

1(G1);

(2)
∏

2(G2) <
∏

2(G1).

Proof . Assume that dG(v) = x > 0. By the definitions of multiplicative Zagreb indices

(
∏

1 and
∏

2), we have∏
1(G2)−

∏
1(G1) ≥ 4k+l−1(x+ 1)2 − 4k−14l−1(x+ 2)2

= 4k+l−2(3x2 + 4x) > 0;∏
2(G1)−

∏
2(G2) ≥ [2(x+ 2)]24k+l−3 − 2(x+ 1)4k+l−2 × 2

= 4k+l−3 × 4x2 > 0.

Thus we complete the proof of the lemma.

Remark 2.1. It is easily seen that any tree T of size t attached to a graph G can be

changed into a path Pt+1 by repeating Transformation A. During this process, the first

multiplicative Zagreb index
∏

1 increases, while the second multiplicative Zagreb index
∏

2

decreases by Lemma 2.1.

Here we define a function f(x) = xx where x are positive integers.

Lemma 2.2. Assume that f(x) is a function defined as above. Then we have

f(x) > f(x1)f(x+ 1− x1)

for any positive integer x1 such that 1 < x1 < x.
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Proof . Note that f(x) > 0 for any positive integer x. Therefore it suffices to prove that

lnf(x) > lnf(x1) + lnf(x + 1 − x1). Now we define another function g(x) = lnf(x) −
lnf(x1)− ln(x+ 1− x1) where x > 0 is a variant.

Clearly, g
′
(x) = lnx − ln(x + 1 − x1) > 0. Therefore, the function g(x) is strictly

increasing when x > 0. So we have g(x) > g(x1) when x > x1. It is equivalent that

lnf(x)− lnf(x1)− lnf(x+ 1− x1) > 0, i.e., that

f(x) > f(x1)f(x+ 1− x1),

finishing the proof of this lemma.

Transformation B. Let uv be an edge of connected graph G with dG(v) ≥ 2.

Suppose that {v, w1, w2, · · · , wt} are all the neighbors of vertex u and w1, w2, · · · , wt are

pendent vertices. Let G′ = G−{uw1, uw2, · · · , uwt}+{vw1, vw2, · · · , vwt}, see Fig. 2 for

these graphs.

G0 G0
v vu

u

w1
w2

wt

w1
w2

wt

...
...

G G′

B−→

Fig. 2. Transformation B

Lemma 2.3. Let G and G′ be two graphs in Fig. 2. Then we have

(1)
∏

1(G) >
∏

1(G
′);

(2)
∏

2(G) <
∏

2(G
′).

Proof . Assume that G0 = G − {u, w1, w2, · · · , wt}. Let dG0(v) = k > 0. Similar to the

proof of Lemma 2.1, we have∏
1(G)−∏

1(G
′) ≥ (t+ 1)2(k + 1)2 − (k + t+ 1)2

> kt > 0,∏
1(G

′)−∏
1(G) ≥ (k + t+ 1)k+t+1 − (t+ 1)t+1(k + 1)k+1

> 0 ( by setting x = t+ k + 1, x1 = t+ 1 in Lemma 2.2) ,

ending the proof.
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Remark 2.2. Repeating Transformation B, any tree T of size t attached to a graph G

can be changed into a star St+1. And the first multiplicative Zagreb index
∏

1 decreases,

while the second multiplicative Zagreb index
∏

2 increases.

Transformation C. Given a nontrivial connected graph G and its two vertices u

and v. Let u1, u2, · · · , uk be pendent vertices adjacent to u and v1, v2, · · · , vl be pendent

vertices adjacent to v. Further, we let G
′
= G−{uu1, uu2, · · · , uuk}+{vu1, vu2, · · · , vuk}

and G
′′
= G− {vv1, vv2, · · · , vvl}+ {uv1, uv2, · · · , uvl}, see Fig. 3 for these graphs.

G0

G0

G0

u

v

u

v

u

v

u1

uk

v1

vl

...

...

...

...

...

...

v1

v1

vl

vl

u1

uk

u1

uk

C

↗

C

↘
G

G
′

G
′′

Fig. 3. Transformation C

Lemma 2.4. Let G, G
′
and G

′′
be graphs as shown in Fig. 3. Then we have

(1) either
∏

1(G) >
∏

1(G
′
) or

∏
1(G) >

∏
1(G

′′
);

(2) either
∏

2(G) <
∏

2(G
′
) or

∏
2(G) <

∏
2(G

′′
).

Proof . Assume that G0 = G − {u1, u2, · · · , uk, v1, v2, · · · , vl}. Let dG0(v) = x > 0 and

dG0(u) = y > 0. Then we have∏
1(G)−∏

1(G
′
) ≥ (x+ k)2(y + l)2 − (x+ k + l)2y2

> (x+ k)(y + l)− (x+ k + l)y > 0, if x− y ≥ 0,∏
1(G)−∏

1(G
′′
) ≥ (x+ k)2(y + l)2 − (y + k + l)2x2

> (x+ k)(y + l)− (y + k + l)x > 0, if x− y < 0.

Therefore the result in (1) follows immediately.

Set Δ1 =
∏

2(G
′
)−∏

2(G) and Δ2 =
∏

2(G
′′
)−∏

2(G). Then we have
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Δ1 ≥ (x+ k + l)x+k+l − (x+ k)x+k − (y + l)y+l,

Δ2 ≥ (y + k + l)y+k+l − (x+ k)x+k − (y + l)y+l.

Note that k ≥ 1 and l ≥ 1. Thus, from Lemma 2.1, we have

Δ1 +Δ2 ≥ (x+ k + l)x+k+l + (y + k + l)y+k+l − 2(x+ k)x+k − 2(y + l)y+l

> (x+ k)x+k(l + 1)l+1 − 2(x+ k)x+k + (y + l)y+l(k + 1)k+1 − 2(y + l)y+l ≥ 0.

Thus we complete the proof of this lemma.

Remark 2.3. Repeating Transformations B and C, any unicyclic or bicyclic graph can be

changed into a unicyclic or bicyclic graph such that all the pendant edges are attached to the

same vertex. And the obtained unicyclic or bicyclic graph has a smaller first multiplicative

Zagreb index
∏

1 and a larger second multiplicative Zagreb index
∏

2.

Transformation D. Assume that a pendent path P = v1v2 · · · vt−1vt is attached

at v1 in graph G and there are two neighbors x and y of v1 different from x2. Let

G′ = G− xv1 + xvt, see Fig. 4.

x yv1

v2

vt−1

vt

x vt vt−1 v1 y· · ·

...

...
...

...
...

D−→

G G
′

Fig. 4. Transformation D

Lemma 2.5. Let G and G′ be two graphs as shown in Fig. 4. Then we have

(1)
∏

1(G) <
∏

1(G
′
);

(2)
∏

2(G) >
∏

2(G
′
).

Proof . By definition, we have∏
1(G

′
)−∏

1(G) ≥ 4t−14− 324t−2 = 7× 4t−2 > 0,∏
2(G)−∏

2(G
′
) ≥ (2× 3)(3dG(x))(3dG(y))4

t−3 × 2− (2dG(x))(2dG(y))4
t−1

= 11dG(x)dG(y)4
t−2 > 0.

This completes the proof of this lemma.
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3 Main results

In this section we turn to determine the extremal multiplicative Zagreb indices of graphs

from T (n), U(n) and B(n), respectively. And the corresponding extremal graphs from

these three sets are completely characterized.

3.1 Extremal graphs in T (n) and U(n) w.r.t. multiplicative Za-
greb indices

Bearing in mind that Remarks 2.1 and 2.2, and using Lemmas 2.1 and 2.3, one can easily

obtain the following result.

Theorem 3.1. [6] Let T be a tree in T (n) with n ≥ 5 different from Sn and Pn. Then

(1)
∏

1(Sn) <
∏

1(T ) <
∏

1(Pn);

(2)
∏

1(Pn) <
∏

2(G) <
∏

2(Sn).

Let Ck
n be a graph obtained by attaching n− k pendent edges to a vertex of Ck. From

Lemmas 2.3 and 2.4, considering Remark 2.3, we have the following lemma.

Lemma 3.1. Let G be a unicyclic graph in U(n) with girth k different from C3
n. Then

(1)
∏

1(C
k
n) <

∏
1(G);

(2)
∏

2(G) <
∏

2(C
k
n).

By definition, we have
∏

1(C
k
n) = (n−k+2)24k−1 and

∏
2(C

k
n) = (n−k+2)n−k+24k−1.

By calculating their derivatives, we find that function h1(x) = (n− x+2)24x−1 is strictly

increasing while h2(x) = (n−x+2)n−x+24x−1 is strictly decreasing when x is a real number

in the interval (3, n). Therefore we can obtain∏
1(C

k
n)−

∏
1(C

3
n) = (n− k + 2)24k−1 − (n− 1)242 > 0 if 3 < k < n;∏

2(C
3
n)−

∏
1(C

k
n) = (n− 1)242 − (n− k + 2)n−k+24k−1 > 0 if 3 < k < n.

Thus the following theorem holds immediately.

Theorem 3.2. Let G be a graph in U(n) different from C3
n. Then we have

(1)
∏

1(C
3
n) <

∏
1(G);
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(2)
∏

2(G) <
∏

2(C
3
n).

A unicyclic graph G is said to be a sun graph ([15]) if cycle vertices have degree at

most three and remaining vertices have degree at most two. The extremal graph in U(n)
with maximal

∏
1 and minimal

∏
2 is presented in the following theorem.

Theorem 3.3. Let G be a graph in U(n) different from Cn. Then we have

(1)
∏

1(G) <
∏

1(Cn);

(2)
∏

2(Cn) <
∏

2(G).

Proof . Since the proof of (2) is similar to that of (1), we only give the proof of (1).

By Lemma 2.1, considering Remark 2.1, we find that any unicyclic graph G can be

changed into a sun graph with a larger first multiplicative Zagreb index
∏

1. We can

apply repeatedly Lemma 2.5 to any sun graph as long as it is not the cycle Cn, increasing

its first multiplicative Zagreb index
∏

1. Thus the result in (1) follows immediately.

Combining Theorems 3.2 and 3.3, we list the following theorem, in which extremal

graph from U(n) is characterized completely with respect to multiplicative Zagreb indices

(
∏

1 and
∏

2).

Theorem 3.4. Let G be a graph in U(n) different from C3
n and Cn. Then we have

(1)
∏

1(C
3
n) <

∏
1(G) <

∏
1(Cn);

(2)
∏

2(Cn) <
∏

2(G) <
∏

2(C
3
n).

3.2 Extremal graphs in B(n) w.r.t. multiplicative Zagreb indices

Now we start to deal with the extremal graphs in B(n) with respect to multiplicative

Zagreb indices (
∏

1 and
∏

2). To do it, we first introduce necessary definitions.

As in [21], for any graph G ∈ B(n), there are at least two cycles in G. The structure

of cycles in G ∈ B(n) can be divided into the following three cases:

(I) The two cycles Cp and Cq in G have only one common vertex v;

(II) The two cycles Cp and Cq in G are linked by a path of length l > 0;
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(III) The two cycles Cl+k and Cl+m in G have a common path of length l > 0.

The graphs Cp,q, Cp,l,q and θk,l,m (where 1 ≤ l ≤ min{k,m}) corresponding to the

cases above shown in Fig. 5 are called main subgraphs of G ∈ B(n) of type (I), (II) and

(III), respectively.

Cp Cq Cp Cq· · ·
· · ·
· · ·
· · ·v u vw1

wl−1

x y

v1 v2 vk−1

u1 u2 ul−1

w1 w2 wm−1Cp,q Cp,l,q θk,l,m

Fig. 5. The graphs Cp,q, Cp,l,q and θk,l,m

Based on Transformations D and B, we can deduce the following transformation.

Transformation E. Let P = xv1v2 · · · vty be an internal path in G, i.e., dG(vi) = 2

for i = 1, 2, · · · , t, dG(x) ≥ 2 and dG(y) ≥ 2. G′ = G − {v2v3, v3v4, · · · , vt−1vt, vty} +

{v1v3, v1v4, · · · , v1vt, v1y} as shown in Fig. 6.

x v1 v2 vt y· · ·
· · ·

... ...
...

...x yv1

v2
v3

vt

G G′

E−→

Fig. 6. Transformation E

From Lemmas 2.5 and 2.3 it follows immediately the following lemma.

Lemma 3.2. Let G and G′ be two graphs shown in Fig. 6. Then we have

(1)
∏

1(G) >
∏

1(G
′
);

(2)
∏

2(G) <
∏

2(G
′
).

Lemma 3.3. [6] For any graph G, we have
∏

2(G) =
∏

x∈V (G)

dG(x)
dG(x).

Let B′
n be a graph as shown in Fig. 7 obtained by attaching two adjacent edges in Sn

among its three pendent vertices.
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· · ·

B′
n

Fig. 7 The graph B′
n

When n = 4, B(n) contains only graph, which is obtained by deleting an edge of

complete graph K4. If n = 5, there are 5 graphs in B(n). It is easy to check that B′
n has

the minimal first multiplicative Zagreb index
∏

1 and the maximal second multiplicative

Zagreb index
∏

2 among these five graphs. By the following theorem we determine the

extremal graph from B(n) for n ≥ 6 with respect to multiplicative Zagreb indices.

Theorem 3.5. Let G be a graph in B(n) with n ≥ 6 different from B′
n. Then we have

(1)
∏

1(B
′
n) <

∏
1(G);

(2)
∏

2(G) <
∏

2(B
′
n).

Proof . (1) Let G0 be a graph from B(n) with minimum first multiplicative Zagreb index∏
1 and B0 be its main subgraph. Then B0 is of one of types I, II and III. By Remark

2.3, we find that G0 must be a graph obtained by attaching some pendent edges to one

vertex of the graph B0. Next we will prove the following claim.

Claim 1. The length of any cycle in B0 is less than 5.

Proof of Claim 1. Otherwise, if B0 is of type I or II, applying Transformation E,

by Lemma 3.2, we can easily obtain another graph G′
0 with a smaller first multiplicative

Zagreb index
∏

1. It contradicts to the choice of G0.

Now we consider the case when B0 is of type III. Assume that B0
∼= θk,l,m with

1 ≤ l ≤ min{k,m} and k + m > 5. Then one of two integers k and m, say k, is not

less than 3. Considering the structure of G0, we conclude that there is an internal path

of length not less than 2 in B0 of G0. By Lemmas 3.2 and 2.4, we can construct a new

graph G
′′
0 in B(n) with a smaller first multiplicative Zagreb index

∏
1. This is also a

contradiction to the choice of G0, which completes the proof of this claim.
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From Claim 1, we find that the length of cycle in B0 of G0 is 3 or 4. Clearly, we have

B0
∼= C3,3 if B0 is of type I, B0

∼= C3,l,3 if B0 is of type II and B0
∼= θ2,1,2 when it is of

type III. Now we claim that l = 1 in B0
∼= C3,l,3 when it is of type II. If not, based on

Lemmas 3.2 and 2.4, we can get a new graph from B(n) with a smaller first multiplicative

Zagreb index
∏

1. This is impossible because of the minimality of
∏

1(G0).

Let C
′
3,3 be the graph obtained by attaching n − 5 pendent edges to a vertex in C3,3

of degree 2 and C
′′
3,3 the graph obtained by attaching n− 5 pendent edges to a vertex in

C3,3 of degree 4. Denote by C
′
3,1,3 the graph obtained by attaching n− 6 pendent edges to

a vertex in C3,1,3 of degree 2, and by C
′′
3,1,3 obtained by attaching n− 6 pendent edges to

a vertex in C3,1,3 of degree 3. And the graph obtained by attaching n− 4 pendent edges

to one vertex in θ2,1,2 of degree 2 is denoted by θ
′
2,1,2 . By definition, we have∏

1(C
′
3,3) = 45(n− 3)2,∏

1(C
′′
3,3) = 44(n− 1)2,∏

1(C
′
3,1,3) = 4392(n− 4)2,∏

1(C
′′
3,1,3) = 449(n− 3)2,∏

1(θ
′
2,1,2) = 4× 92(n− 2)2,∏

1(B
′
n) = 429(n− 1)2.

By a simple comparison of above values, our result in (1) holds immediately.

(2) Set S = {C ′
3,3, C

′′
3,3, C

′
3,1,3, C

′′
3,1,3, θ

′
2,1,2, B

′
n}. By a very similar reasoning to that in

the proof of (1), we find that the maximum of
∏

2(G) with G ∈ B(n) is attained at one

of graphs in the set S. From Lemma 3.3, we have∏
2(C

′
3,3) = 47(n− 3)n−3,∏

2(C
′′
3,3) = 44(n− 1)n−1,∏

2(C
′
3,1,3) = 4393(n− 4)n−4,∏

2(C
′′
3,1,3) = 4433(n− 3)n−3,∏

2(θ
′
2,1,2) = 4× 93(n− 2)n−2,∏

2(B
′
n) = 4233(n− 1)n−1.

Obviously,
∏

2(B
′
n) >

∏
2(C

′′
3,3), and

∏
2(C

′
3,3) >

∏
2(C

′′
3,1,3). Therefore, the remaining

is to prove that
∏

2(B
′
n) >

∏
2(C

′
3,3),

∏
2(B

′
n) >

∏
2(θ

′
2,1,2) and

∏
2(B

′
n) >

∏
2(C

′
3,1,3).

For convenience, set A1 =
∏

2(B
′
n) −

∏
2(C

′
3,3), A2 =

∏
2(B

′
n) −

∏
2(θ

′
2,1,2) and A3 =
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∏
2(B

′
n)−

∏
2(C

′
3,1,3). Then we have

A1 = 4233(n− 1)n−1 − 47(n− 3)n−3

= 42[33(n− 1)n−1 − 45(n− 3)n−3];

A2 = 4233(n− 1)n−1 − 4× 93(n− 2)n−2

= 4× 33[4(n− 1)n−1 − 33(n− 2)n−2];

A3 = 4233(n− 1)n−1 − 4393(n− 4)n−4

= 4233[(n− 1)n−1 − 4× 33(n− 4)n−4].

To prove Ai > 0 for i = 1, 2, 3, we only need to prove that, for n ≥ 6,

3ln3 + (n− 1)ln(n− 1)− 5ln4− (n− 3)ln(n− 3) > 0,

ln4 + (n− 1)ln(n− 1)− 3ln3− (n− 2)ln(n− 2) > 0,

(n− 1)ln(n− 1)− ln4− 3ln3− (n− 4)ln(n− 4) > 0.

By calculating their derivatives, we find that functions f1(x) = 3ln3 + (x − 1)ln(x −
1) − 5ln4 − (x − 3)ln(x − 3), f2(x) = ln4 + (x − 1)ln(x − 1) − 3ln3 − (x − 2)ln(x − 2)

and f3(x) = (x− 1)ln(x− 1)− ln4− 3ln3− (x− 4)ln(x− 4) are all strictly increasing for

x ≥ 6. And fi(6) > 0 for i = 1, 2, 3. Thus the above three inequalities all hold for n ≥ 6.

This finishes the proof of this lemma.

Now we introduce three subsets of the set B(n) as follows:
B1(n) = {Cp,q : p+ q − 1 = n};
B2(n) = {Cp,l,q : p+ q + l − 1 = n};
B3(n) = {θk,l,m : k + l +m− 1 = n}.
Let Gi be any graph from Bi(n) for i = 1, 2, 3. We have∏

1(G1) = 4n+1 and
∏

2(G1) = 4n+3;∏
1(G2) = 344n−2 and

∏
2(G2) = 934n−2;∏

1(G3) = 344n−2 and
∏

2(G3) = 934n−2.

Theorem 3.6. Let G be a graph in B(n) \ B2(n)
⋃B3(n) with n ≥ 6 and H be a graph

in B2(n)
⋃B3(n). Then we have

(1)
∏

1(G) <
∏

1(H);
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(2)
∏

2(H) <
∏

2(G).

Proof . Here we only give the proof of (2) because of the similarity of the proof of (1) to

that of (2).

Using Lemmas 2.1 and 2.5, and noting Remark 2.1, we conclude that the extremal

graph from B(n) with minimal second multiplicative Zagreb index
∏

2 must be graph from

the set B1(n)
⋃B2(n)

⋃B3(n).

From the above calculation of graph Gi in Bi(n) with i = 1, 2, 3, we have∏
2(G1)−

∏
2(G2) =

∏
2(G1)−

∏
2(G3)

= 4n+3 − 934n−2 > 0.

This completes the proof.

Now we present the following theorem in which the extremal from B(n) are completely

determined with respect to multiplicative Zagreb indices (
∏

1 and
∏

2).

Theorem 3.7. Assume that H is any graph from B2(n)
⋃B3(n). Let G be a graph in

B(n) \ B2(n)
⋃B3(n) different from B′

n. Then we have

(1)
∏

1(B
′
n) <

∏
1(G) <

∏
1(H);

(2)
∏

2(H) <
∏

2(G) <
∏

2(B
′
n).

Based on our results obtained in Theorems 3.1, 3.4 and 3.7, we shall end the paper by

posing the following problem.

Problem 3.1. Within any given set of nontrivial connected graphs, is the graph with

maximal first multiplicative Zagreb index
∏

1 (or minimal first multiplicative Zagreb index∏
1, resp.) just the one with minimal second multiplicative Zagreb index

∏
2 (or maximal

second multiplicative Zagreb index
∏

2, resp. ) ?

Obviously, the answer to this problem is positive for the sets T (n), U(n) and B(n),
respectively, without considering the non-uniqueness of extremal graph from B(n) with

maximal first multiplicative Zagreb index
∏

1 (or minimal second multiplicative Zagreb

index
∏

2). But for other general given sets of graphs, the answer to it is still unknown.

Maybe it will be an interesting topic for the further research in the future.
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