MATCH Communications in Mathematical and in Computer Chemistry

ISSN 0340 - 6253

Sharp Upper Bounds for Multiplicative Zagreb Indices

Jingzhong Liu^{*a*}, Qianhong Zhang ^{*b, c**}

^aDepartment of Computer and Information Science, Hunan Institute of Technology,

Hengyang, Hunan 421002, P. R. China

 $^b\mathrm{Guizhou}$ Key Laboratory of Economic System Simulation,

Guizhou College of Finance and Economics,

Guiyang, Guizhou 550004, P. R. China

^cDepartment of Mathematics, Central South University, Railway Campus,

Changsha, Hunan 410075, PR China

(Received October 24, 2011)

Abstract

For a (molecular) graph, the multiplicative Zagreb indices \prod_1 -index and \prod_2 index are multiplicative versions of the ordinary Zagreb indices (M_1 -index and M_2 index). In this note we report several sharp upper bounds for \prod_1 -index in terms of graph parameters including the order, size, radius, Wiener index and eccentric distance sum, and upper bounds for \prod_2 -index in terms of graph parameters including the order, size, the first Zagreb index, the first Zagreb coindex and degree distance.

^{*}Corresponding author. E-mail address: qhzhangmath@yeah.net (Q. Zhang)

1 Introduction

We only consider finite, undirected and simple graphs throughout this paper. Let G be a graph with vertex set V(G) and edge set E(G). The **degree** of $v \in V(G)$, denoted by $d_G(v)$, is the number of vertices adjacent to v in G. The **distance** between two vertices uand v in a connected graph G is the length of a shortest path connecting u and v. Other undefined notations and terminology from graph theory can be found in [4].

A graphical invariant is a number related to a graph which is a structural invariant, in other words, it is a fixed number under graph automorphisms. In chemical graph theory, these invariants are also known as the topological indices. One of the oldest graph invariants is the well-known Zagreb indices first introduced in [8] where Gutman and Trinajstić examined the dependence of total Π -electron energy on molecular structure and elaborated in [9]. For a (molecular) graph G, the **first Zagreb index** $M_1(G)$ and the **second Zagreb index** $M_2(G)$ are, respectively, defined as follows:

$$M_1 = M_1(G) = \sum_{v \in V(G)} (d_G(v))^2, \qquad M_2 = M_2(G) = \sum_{uv \in E(G)} d_G(u) d_G(v)$$

These two classical topological indices (M_1 -index and M_2 -index) reflect the extent of branching of the molecular carbon-atom skeleton [3,23]. These two Zagreb indices were well-studied during the past decades, see [5,6,12,20,21,29,30] for instance.

Recently, Todeschini et al. [24,25] have proposed the multiplicative variants of ordinary Zagreb indices, which are defined as follows:

$$\prod_{1} = \pi_{1}(G) = \prod_{v \in V(G)} (d_{G}(v))^{2}, \qquad \prod_{2} = \pi_{2}(G) = \prod_{uv \in E(G)} d_{G}(u) d_{G}(v)$$

These two graph invariants are called "**multiplicative Zagreb indices**" by Gutman [10]. In the same paper, Gutman determined that among all trees of order $n \geq 4$, the extremal trees with respect to these multiplicative Zagreb indices are path P_n (with maximal \prod_1 and minimal \prod_2) and star S_n (with maximal \prod_2 and minimal \prod_1). More recently, Xu and Hua [28] provided a unified approach to determine extremal trees and unicyclic graphs with respect to these two Multiplicative Zagreb indices. The readers can also refer to [11] for properties of these new indices.

In this note we report further properties of multiplicative Zagreb indices. In Section 2, we report several sharp upper bounds for \prod_1 -index in terms of graph parameters including the order, size, radius, Wiener index and eccentric distance sum. In Section 3, we report some upper bounds for \prod_2 -index in terms of graph parameters including the order, size,

the first Zagreb index, the first Zagreb coindex and degree distance.

2 Bounds for \prod_1 -index of connected graphs

Let G be a connected graph composed of m components G_1, \ldots, G_m . According to the definition of \prod_j -index, we clearly have $\prod_j (G) = \prod_{i=1}^m \prod_j (G_i)$ (j = 1, 2). So, it suffices to investigate \prod_j -index of connected graphs.

The Arithmetic Mean of a_1, \dots, a_n is

$$AM(a_1, \cdots, a_n) = \frac{a_1 + \cdots + a_n}{n}$$

and the **Geometric Mean** of a_1, \dots, a_n is

$$GM(a_1, \cdots, a_n) = \sqrt[n]{a_1 \cdots a_n}$$

Regarding these two means, we have the following well-known inequality.

Lemma 2.1 (Arithmetic–Geometric Mean Inequality) Let a_1, \dots, a_n be positive numbers. Then

$$AM(a_1, \cdots, a_n) \ge GM(a_1, \cdots, a_n)$$

with equality if and only if all a_i 's are equal.

In the following, we shall present some upper bounds for π_1 -index of connected graphs.

Theorem 2.1 Let G be a nontrivial connected graph of order n and size m. Then

$$\prod_{1} (G) \le \left(\frac{2m}{n}\right)^{2n}$$

with equality if and only if G is a $\frac{2m}{n}$ -regular graph.

Proof. For brevity, we label vertices of G as v_1, \ldots, v_n and let $d_i = d_G(v_i)$. By the definition of π_1 -index, Lemma 2.1 and the fact that $\sum_{i=1}^n d_i = 2m$,

$$\prod_{1} (G) = (d_{1}d_{2}\cdots d_{n})^{2}$$

$$= [(2m - d_{2} - \cdots - d_{n})d_{2}\cdots d_{n}]^{2}$$

$$\leq \left\{ \left[\frac{(2m - d_{2} - \cdots - d_{n}) + d_{2} + \cdots + d_{n}}{n} \right]^{n} \right\}^{2}$$

$$= \left[(\frac{2m}{n})^{n} \right]^{2} = (\frac{2m}{n})^{2n}.$$

The above equality holds if and only if $2m - d_2 - \cdots - d_n = d_2 = \cdots = d_n$, that is, $d_2 = \cdots = d_n = \frac{2m}{n}$ and then $d_1 = 2m - (n-1) \cdot \frac{2m}{n} = \frac{2m}{n}$. So, $\prod_1 (G) \le (\frac{2m}{n})^{2n}$ with equality if and only if G is a $\frac{2m}{n}$ -regular graph, as claimed.

A connected graph is called a unicyclic graph if it possesses equal number of vertices and edges. Note that C_n is the unique 2-regular graph $\left(\frac{2m}{n} = 2\right)$ among all connected unicyclic graphs of order n. By Theorem 2.1, we immediately obtain the following result. **Corollary 2.1 ([28])** Let G be a unicyclic graph of order n. Then

$$\prod_{1} (G) \le 4^n$$

with equality if and only if G is the n-vertex cycle C_n .

Corollary 2.2 Let G be a connected bipartite graph of order 2n. Then

$$\prod {}_1(G) \le n^{4n}$$

with equality if and only if G is the balanced bipartite graph $K_{n,n}$.

Proof. Let m(G) denote the number of edges in G. By Theorem 2.1,

$$\prod_{1} (G) \le (\frac{2m(G)}{2n})^{4n} = (\frac{m(G)}{n})^{4n}$$

with equality if and only if G is a connected $\frac{m(G)}{n}$ -regular bipartite graph of order 2n. Note that $m(G) \leq n^2$. Thus, $\prod_1 (G) \leq (\frac{m(G)}{n})^{4n} \leq n^{4n}$ with equality if and only if G is a connected *n*-regular bipartite graph of order 2n, that is, $G \cong K_{n,n}$.

For a vertex u in a nontrivial connected graph G, we let $ecc_G(u) = \max\{d_G(u, v) | v \in V(G)\}$ denote the **eccentricity** of u. The **radius** r(G) of G is defined as $r(G) = \min\{ecc_G(u) | u \in V(G)\}$.

The Wiener index of a connected graph G (see [22, 26, 27]), denoted by W(G), is defined as

$$W(G) = \sum_{\{u,v\} \subseteq V(G)} d_G(u,v) = \frac{1}{2} \sum_{u \in V(G)} D_G(u)$$
(1)

and the eccentric distance sum of G (see [15–17]), denoted by $\xi^d(G)$, is defined as

$$\xi^d(G) = \sum_{u \in V(G)} ecc_G(u) D_G(u) \tag{2}$$

where $D_G(u)$ is the sum of distances between u and all other vertices in G.

Theorem 2.2 Let G be a nontrivial connected graph of order n. Then

$$\prod_{1} (G) \le \left(\frac{2W(G)}{n}\right)^{2n}$$

with equality if and only if G is the complete graph K_n .

Proof. As done in the previous theorem, we label vertices of G as v_1, \ldots, v_n and let $d_i = d_G(v_i)$. Moreover, we write $D_i = D_G(v_i)$ and $ecc_i = ecc_G(v_i)$. It is obvious that

$$D_i = d_i + \sum_{v_j \in V(G) \setminus N_G[v_i]} d_G(v_i, v_j) \ge d_i$$
(3)

with equality if and only if $ecc_i = 1$, that is, $d_i = n - 1$, for any $i = 1, \ldots, n$.

By the definition of π_1 -index, Lemma 2.1, and the equations (1) and (3),

$$\prod_{1} (G) = (d_{1}d_{2} \dots d_{n})^{2}$$

$$\leq (D_{1}D_{2} \dots D_{n})^{2}$$

$$= [(2W(G) - D_{2} - \dots - D_{n})D_{2} \dots D_{n}]^{2}$$

$$\leq \left[(\frac{2W(G)}{n})^{n} \right]^{2} = (\frac{2W(G)}{n})^{2n}.$$

The above first equality holds if and only if $ecc_i = 1$, that is, $d_i = n - 1$, for any $i = 1, \ldots, n$. The above second equality holds if and only if $2W(G) - D_2 - \cdots - D_n = D_2 = \cdots = D_n$, that is, $D_2 = \cdots = D_n = \frac{2W(G)}{n}$ and $D_1 = 2W(G) - (n-1) \cdot \frac{2W(G)}{n} = \frac{2W(G)}{n}$.

So, $\prod_{1} (G) \leq (\frac{2W(G)}{n})^{2n}$ with equality if and only if $d_1 = \cdots = d_n = n-1$ and $D_1 = \cdots = D_n$, i.e., G is the complete graph K_n .

Corollary 2.3 Let G be a nontrivial connected graph of order n. Then

$$\prod_{1} (G) \le \left(\frac{\xi^d(G)}{n}\right)^{2n}$$

with equality if and only if G is the complete graph K_n .

Proof. As $ecc_G(u) \ge 1$ for any u in G, by the equations (1) and (2), we have $\xi^d(G) \ge 2W(G)$ with equality if and only if $ecc_G(u) = 1$ for each u, that is, $G \cong K_n$. According to Theorem 2.2, we have $\prod_{1} (G) \le (\frac{\xi^d(G)}{n})^{2n}$ with equality if and only if G is the complete graph K_n .

In the following, we shall give a sharp upper bound for \prod_1 -index of connected graphs in terms of its order and radius.

We first summarize here a result of [17] as the following lemma.

Lemma 2.2 Let G be a nontrivial connected graph of order n. For each vertex v in G, it holds

$$ecc_G(v) \le n - d_G(v).$$
 (4)

Moreover, all equalities hold together if and only if $G \cong P_4$ or $K_n - iK_2 (0 \le i \le \lfloor \frac{n}{2} \rfloor)$, where $K_n - iK_2$ denotes the graph obtained by removing i independent edges from G.

Theorem 2.3 Let G be a nontrivial connected graph of order n. Then

$$\prod_{1} (G) \le (n - r(G))^{2n}$$

with equality if and only if $G \cong K_n$, or the graph obtained from K_n by removing a perfect matching.

Proof. As before, we label vertices of G as v_1, \ldots, v_n , and let $d_i = d_G(v_i)$ and $ecc_i = ecc_G(v_i)$.

By the definition of π_1 -index and the equation (4),

$$\prod_{1} (G) = (d_1 d_2 \dots d_n)^2$$

$$\leq [(n - ecc_1)(n - ecc_2) \dots (n - ecc_n)]^2$$

$$\leq [(n - r(G))^n]^2 = (n - r(G))^{2n}.$$

By Lemma 2.2, the above first equality holds if and only if $d_i = n - ecc_i$ for each i, that is, $G \cong P_4$ or $K_n - iK_2$ ($0 \le i \le \lfloor \frac{n}{2} \rfloor$). The above second equality holds if and only if $r(G) = ecc_i$ for each i.

So, $\prod_1(G) \leq (n - r(G))^{2n}$ with equality if and only if $G \cong K_n$, or the graph obtained from K_n by removing a perfect matching.

3 Bounds for \prod_2 -index of connected graphs

In this section, we give some bounds for \prod_2 -index of connected graphs in terms of other graph invariants including the first Zagreb index, the first Zagreb coindex and the degree distance.

Theorem 3.1 Let G be a nontrivial connected graph of order n and size m. Then

$$\prod_2 (G) \le \left(\frac{M_1(G)}{2m}\right)^{2m}$$

with equality if and only if G is a $\frac{2m}{n}$ -regular graph.

-237-

Proof. For convenience, we label vertices of G as v_1, \ldots, v_n and let $d_i = d_G(v_i)$. By the definition of π_2 -index, Lemma 2.1 and the fact that $\sum_{i=1}^n d_i = 2m$,

$$\begin{split} \prod_{2} (G) &= d_{1}^{d_{1}} d_{2}^{d_{2}} \cdots d_{n}^{d_{n}} \\ &\leq \left[\underbrace{\frac{(d_{1} + \cdots + d_{1})}{d_{1} times} + \underbrace{(d_{2} + \cdots + d_{2})}_{d_{2} times} + \cdots + \underbrace{(d_{n} + \cdots + d_{n})}_{d_{n} times}}_{2m} \right]^{2m} \\ &= \left(\underbrace{\frac{d_{1}^{2} + d_{2}^{2} + \cdots + d_{n}^{2}}{2m}}_{2m} \right)^{2m} \\ &= \left(\underbrace{\frac{d_{1}^{2} + d_{2}^{2} + \cdots + d_{n}^{2}}{2m}}_{2m} \right)^{2m} \end{split}$$

The above equality holds if and only if $d_1 = d_2 = \cdots = d_n$, that is, G is a regular graph. So, $\prod_2(G) \leq \left(\frac{M_1(G)}{2m}\right)^{2m}$ with equality if and only if G is a $\frac{2m}{n}$ -regular graph, as claimed.

Let $\overline{M}_1(G) = \sum_{uv \notin E(G)} (d_u + d_v)$ denote the **first Zagreb coindex** (see [1, 2, 13]).

Lemma 3.1 ([1]) Let G be a simple graph with n vertices and m edges. Then $\overline{M}_1(G) = 2m(n-1) - M_1(G)$.

It then follows from Theorem 3.1 and Lemma 3.1 the following consequence.

Corollary 3.1 Let G be a nontrivial connected graph of order n and size m. Then

$$\prod {}_2(G) \leq \left[\frac{2m(n-1) - \overline{M}_1(G)}{2m}\right]^{2m}$$

with equality if and only if G is a $\frac{2m}{n}$ -regular graph.

The **degree distance** of a nontrivial connected graph G (see [18, 19, 31]), denoted by D'(G), is defined as

$$D'(G) = \sum_{u \in V(G)} d_G(u) D_G(u)$$

where $D_G(u)$ is defined as before.

Theorem 3.2 Let G be a nontrivial connected graph of order n and size m. Then

$$\prod_2 (G) \le \left(\frac{D'(G)}{2m}\right)^{2m}$$

with equality if and only if $G \cong K_n$.

Proof. For convenience, we label vertices of G as v_1, \ldots, v_n and let $d_i = d_G(v_i)$. By the definition of \prod_2 -index, Lemma 2.1, the equation (3) and the fact that $\sum_{i=1}^n d_i = 2m$,

$$\begin{split} \prod_{2} 2(G) &= d_{1}^{d_{1}} d_{2}^{d_{2}} \cdots d_{n}^{d_{n}} \\ &\leq D_{1}^{d_{1}} D_{2}^{d_{2}} \cdots D_{n}^{d_{n}} \\ &\leq \left[\underbrace{\frac{(D_{1} + \cdots + D_{1}) + (D_{2} + \cdots + D_{2}) + \cdots + (D_{n} + \cdots + D_{n})}{d_{n} times}}_{2m} \right]^{2m} \\ &= \left(\frac{d_{1} D_{1} + d_{2} D_{2} + \cdots + d_{n} D_{n}}{2m} \right)^{2m} \\ &= \left(\frac{d_{1} D_{1} + d_{2} D_{2} + \cdots + d_{n} D_{n}}{2m} \right)^{2m} \\ &= \left(\frac{D'(G)}{2m} \right)^{2m}. \end{split}$$

The above first equality holds if and only if $d_i = D_i$ for each i, that is, $d_i = n - 1$ for each i. The above second equality holds if and only if $D_1 = D_2 = \cdots = D_n$. So, $\prod_2 (G) \leq (\frac{D'(G)}{2m})^{2m}$ with equality if and only if $G \cong K_n$, as claimed.

4 Concluding remarks

In this paper, we have established sharp upper bounds for \prod_1 -index in terms of graph parameters including the order, size, radius, Wiener index and eccentric distance sum, and upper bounds for \prod_2 -index in terms of graph parameters including the order, size, the first Zagreb index, the first Zagreb coindex and degree distance. It may be interesting to give the bounds for \prod_1 -index and \prod_2 -index in terms of other graph invariants.

Acknowledgment: The authors are grateful to the referee and the editors for helpful suggestions which improved considerably the presentation of this paper.

References

- A. R. Ashrafi, T. Došlić, A. Hamzeh, The Zagreb coindices of graph operations, Discr. Appl. Math. 158 (2010) 1571–1578.
- [2] A. R. Ashrafi, T. Došlić, A. Hamzeh, Extremal graphs with respect to the Zagreb coindices, MATCH Commun. Math. Comput. Chem. 65 (2011) 85–92.
- [3] A. T. Balaban, I. Motoc, D. Bonchev, O. Mekenyan, Topological indices for structure–activity corrections, *Topics Curr. Chem.* 114 (1983) 21–55.

- [4] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, MacMillan, London, 1976.
- [5] K. C. Das, I. Gutman, B. Zhou, New upper bounds on Zagreb indices, J. Math. Chem. 46 (2009) 514–521.
- [6] K. C. Das, N. Trinajstić, Relationship between the eccentric connectivity index and Zagreb indices, *Comput. Math. Appl.* 62 (2011) 1758–1764.
- [7] K. C. Das, I. Gutman, Estimating the Wiener index by means of number of vertices, number of edges, and diameter, MATCH Commun. Math. Comput. Chem. 64 (2010) 647–660.
- [8] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. III. Total π-electron energy of alternant hydrocarbons, *Chem. Phys. Lett.* **17** (1972) 535–538.
- [9] I. Gutman, B. Ruščić, N. Trinajstić, C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399–3405.
- [10] I. Gutman, Multiplicative Zagreb indices of trees, Bull. Soc. Math. Banja Luka 18 (2011) 17–23.
- [11] I. Gutman, M. Ghorbani, Some properties of the Narumi-Katayama index, Appl. Math. Lett., in press.
- [12] H. Hua, Zagreb M₁ index, independence number and connectivity in graphs, MATCH Commun. Math. Comput. Chem. 60 (2008) 45–56.
- [13] H. Hua, S. Zhang, Relations between Zagreb coindices and some distance-based topological indices, MATCH Commun. Math. Comput. Chem. 68 (2012) 199–208.
- [14] H. Hua, Wiener and Schultz molecular topological indices of graphs with specified cut edges, MATCH Commun. Math. Comput. Chem. 61 (2009) 643–651.
- [15] H. Hua, K. Xu, S. Wen, A short and unified proof of Yu et al.'s results on the eccentric distance sum, J. Math. Anal. Appl. 382 (2011) 364–366.
- [16] H. Hua, S. Zhang, K. Xu, Further results on the eccentric distance sum, Discr. Appl. Math. 160 (2012) 170–180.
- [17] A. Ilić, G. Yu, L. Feng, On the eccentric distance sum of graphs, J. Math. Anal. Appl. 381 (2011) 590–600.
- [18] A. Ilić, D. Stevanović, L. Feng, G. Yu, P. Dankelmann, Degree distance of unicyclic and bicyclic graphs, *Discr. Appl. Math.* **159** (2011) 779–788.

- [19] A. Ilić, S. Klavžar, D. Stevanović, Calculating the degree distance of partial Hamming graphs, MATCH Commun. Math. Comput. Chem. 63 (2010) 411–424.
- [20] M. H. Khalifeh, H. Yousefi–Azari, A. R. Ashrafi, The first and second Zagreb indices of graph operations, *Discr. Appl. Math.* 157 (2009) 804–811.
- [21] B. Liu, Z. You, A survey on comparing Zagreb indices, MATCH Commun. Math. Comput. Chem. 65 (2011) 581–593.
- [22] I. Pesek, M. Rotovnik, D. Vukičević, J. Žerovnik, Wiener number of directed graphs and its relation to the oriented network design problem, *MATCH Commun. Math. Comput. Chem.* 64 (2010) 727–742.
- [23] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley–VCH, Weinheim, 2000.
- [24] R. Todeschini, D. Ballabio, V. Consonni, Novel molecular descriptors based on functions of new vertex degrees, in: I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors — Theory and Applications I, Univ. Kragujevac, Kragujevac, 2010, pp. 73–100.
- [25] R. Todeschini, V. Consonni, New local vertex invariants and molecular descriptors based on functions of the vertex degrees, *MATCH Commun. Math. Comput. Chem.* 64 (2010) 359–372.
- [26] S. Wagner, A note on the inverse problem for the Wiener index, MATCH Commun. Math. Comput. Chem. 64 (2010) 639–646.
- [27] B. Wu, Wiener index of line graphs, MATCH Commun. Math. Comput. Chem. 64 (2010) 699–706.
- [28] K. Xu, H. Hua, A unified approach to extremal multiplicative Zagreb indices for trees, unicyclic and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 68 (2012) 241–256.
- [29] B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem. 52 (2004) 113– 118.
- [30] B. Zhou, D. Stevanović, A note on Zagreb indices, MATCH Commun. Math. Comput. Chem. 56 (2006) 571–578.
- [31] Z. Du, B. Zhou, Degree distance of unicyclic graphs, *Filomat* 24 (2010) 95–120.