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Abstract

For a (molecular) graph, the multiplicative Zagreb indices
∏

1-index and
∏

2-

index are multiplicative versions of the ordinary Zagreb indices (M1-index and M2-

index). In this note we report several sharp upper bounds for
∏

1-index in terms of

graph parameters including the order, size, radius, Wiener index and eccentric dis-

tance sum, and upper bounds for
∏

2-index in terms of graph parameters including

the order, size, the first Zagreb index, the first Zagreb coindex and degree distance.
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1 Introduction

We only consider finite, undirected and simple graphs throughout this paper. Let G be

a graph with vertex set V (G) and edge set E(G). The degree of v ∈ V (G), denoted by

dG(v), is the number of vertices adjacent to v in G. The distance between two vertices u

and v in a connected graph G is the length of a shortest path connecting u and v. Other

undefined notations and terminology from graph theory can be found in [4].

A graphical invariant is a number related to a graph which is a structural invariant,

in other words, it is a fixed number under graph automorphisms. In chemical graph

theory, these invariants are also known as the topological indices. One of the oldest graph

invariants is the well-known Zagreb indices first introduced in [8] where Gutman and

Trinajstić examined the dependence of total
∏
-electron energy on molecular structure

and elaborated in [9]. For a (molecular) graph G, the first Zagreb index M1(G) and

the second Zagreb index M2(G) are, respectively, defined as follows:

M1 = M1(G) =
∑

v∈V (G)

(dG(v))
2, M2 = M2(G) =

∑
uv∈E(G)

dG(u)dG(v).

These two classical topological indices (M1-index and M2-index) reflect the extent of

branching of the molecular carbon-atom skeleton [3, 23]. These two Zagreb indices were

well-studied during the past decades, see [5, 6, 12, 20,21,29,30] for instance.

Recently, Todeschini et al. [24,25] have proposed themultiplicative variants of ordinary

Zagreb indices, which are defined as follows:∏
1 = π1(G) =

∏
v∈V (G)(dG(v))

2,
∏

2 = π2(G) =
∏

uv∈E(G) dG(u)dG(v).

These two graph invariants are called “ multiplicative Zagreb indices ” by Gutman

[10]. In the same paper, Gutman determined that among all trees of order n ≥ 4,

the extremal trees with respect to these multiplicative Zagreb indices are path Pn (with

maximal
∏

1 and minimal
∏

2) and star Sn (with maximal
∏

2 and minimal
∏

1). More

recently, Xu and Hua [28] provided a unified approach to determine extremal trees and

unicyclic graphs with respect to these two Multiplicative Zagreb indices. The readers can

also refer to [11] for properties of these new indices.

In this note we report further properties of multiplicative Zagreb indices. In Section 2,

we report several sharp upper bounds for
∏

1-index in terms of graph parameters including

the order, size, radius, Wiener index and eccentric distance sum. In Section 3, we report

some upper bounds for
∏

2-index in terms of graph parameters including the order, size,
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the first Zagreb index, the first Zagreb coindex and degree distance.

2 Bounds for
∏

1-index of connected graphs

Let G be a connected graph composed of m components G1, . . . , Gm. According to the

definition of
∏

j-index, we clearly have
∏

j(G) =
m∏
i=1

∏
j(Gi) (j = 1, 2). So, it suffices to

investigate
∏

j-index of connected graphs.

The Arithmetic Mean of a1, · · · , an is

AM(a1, · · · , an) =
a1 + · · ·+ an

n

and the Geometric Mean of a1, · · · , an is

GM(a1, · · · , an) = n
√
a1 · · · an.

Regarding these two means, we have the following well-known inequality.

Lemma 2.1 (Arithmetic–Geometric Mean Inequality) Let a1, · · · , an be positive num-

bers. Then

AM(a1, · · · , an) ≥ GM(a1, · · · , an)

with equality if and only if all ai
′
s are equal.

In the following, we shall present some upper bounds for π1-index of connected graphs.

Theorem 2.1 Let G be a nontrivial connected graph of order n and size m. Then∏
1(G) ≤

(
2m

n

)2n

with equality if and only if G is a 2m
n
-regular graph.

Proof. For brevity, we label vertices of G as v1, . . . , vn and let di = dG(vi). By the

definition of π1-index, Lemma 2.1 and the fact that
n∑

i=1

di = 2m,

∏
1(G) = (d1d2 · · · dn)2

= [(2m− d2 − · · · − dn)d2 · · · dn]2

≤
{[

(2m− d2 − · · · − dn) + d2 + · · ·+ dn
n

]n}2

=

[
(
2m

n
)n
]2

= (
2m

n
)2n.
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The above equality holds if and only if 2m − d2 − · · · − dn = d2 = · · · = dn, that is,

d2 = · · · = dn = 2m
n

and then d1 = 2m− (n− 1) · 2m
n

= 2m
n
.

So,
∏

1(G) ≤ (2m
n
)2n with equality if and only if G is a 2m

n
-regular graph, as claimed.

A connected graph is called a unicyclic graph if it possesses equal number of vertices

and edges. Note that Cn is the unique 2-regular graph (2m
n

= 2) among all connected

unicyclic graphs of order n. By Theorem 2.1, we immediately obtain the following result.

Corollary 2.1 ( [28]) Let G be a unicyclic graph of order n. Then

∏
1(G) ≤ 4n

with equality if and only if G is the n-vertex cycle Cn.

Corollary 2.2 Let G be a connected bipartite graph of order 2n. Then

∏
1(G) ≤ n4n

with equality if and only if G is the balanced bipartite graph Kn, n.

Proof. Let m(G) denote the number of edges in G. By Theorem 2.1,

∏
1(G) ≤ (

2m(G)

2n
)4n = (

m(G)

n
)4n

with equality if and only if G is a connected m(G)
n

-regular bipartite graph of order 2n.

Note that m(G) ≤ n2. Thus,
∏

1(G) ≤ (m(G)
n

)4n ≤ n4n with equality if and only if G is a

connected n-regular bipartite graph of order 2n, that is, G ∼= Kn, n.

For a vertex u in a nontrivial connected graph G, we let eccG(u) = max{dG(u, v)|v ∈
V (G)} denote the eccentricity of u. The radius r(G) of G is defined as r(G) =

min{eccG(u)|u ∈ V (G)}.
The Wiener index of a connected graph G (see [22, 26, 27]), denoted by W (G), is

defined as

W (G) =
∑

{u, v}⊆V (G)

dG(u, v) =
1

2

∑
u∈V (G)

DG(u) (1)

and the eccentric distance sum of G (see [15–17]), denoted by ξd(G), is defined as

ξd(G) =
∑

u∈V (G)

eccG(u)DG(u) (2)

where DG(u) is the sum of distances between u and all other vertices in G.
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Theorem 2.2 Let G be a nontrivial connected graph of order n. Then

∏
1(G) ≤ (

2W (G)

n
)2n

with equality if and only if G is the complete graph Kn.

Proof. As done in the previous theorem, we label vertices of G as v1, . . . , vn and let

di = dG(vi). Moreover, we write Di = DG(vi) and ecci = eccG(vi). It is obvious that

Di = di +
∑

vj∈V (G)\NG[vi]

dG(vi, vj) ≥ di (3)

with equality if and only if ecci = 1, that is, di = n− 1, for any i = 1, . . . , n.

By the definition of π1-index, Lemma 2.1, and the equations (1) and (3),

∏
1(G) = (d1d2 . . . dn)

2

≤ (D1D2 . . . Dn)
2

= [(2W (G)−D2 − · · · −Dn)D2 · · ·Dn]
2

≤
[
(
2W (G)

n
)n
]2

= (
2W (G)

n
)2n.

The above first equality holds if and only if ecci = 1, that is, di = n − 1, for any

i = 1, . . . , n. The above second equality holds if and only if 2W (G) −D2 − · · · −Dn =

D2 = · · · = Dn, that is, D2 = · · · = Dn = 2W (G)
n

andD1 = 2W (G)−(n−1)· 2W (G)
n

= 2W (G)
n

.

So,
∏

1(G) ≤ (2W (G)
n

)2n with equality if and only if d1 = · · · = dn = n − 1 and

D1 = · · · = Dn, i.e., G is the complete graph Kn.

Corollary 2.3 Let G be a nontrivial connected graph of order n. Then

∏
1(G) ≤ (

ξd(G)

n
)2n

with equality if and only if G is the complete graph Kn.

Proof. As eccG(u) ≥ 1 for any u in G, by the equations (1) and (2), we have ξd(G) ≥
2W (G) with equality if and only if eccG(u) = 1 for each u, that is, G ∼= Kn. According to

Theorem 2.2, we have
∏

1(G) ≤ ( ξ
d(G)
n

)2n with equality if and only if G is the complete

graph Kn.

In the following, we shall give a sharp upper bound for
∏

1-index of connected graphs

in terms of its order and radius.

We first summarize here a result of [17] as the following lemma.
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Lemma 2.2 Let G be a nontrivial connected graph of order n. For each vertex v in G,

it holds

eccG(v) ≤ n− dG(v). (4)

Moreover, all equalities hold together if and only if G ∼= P4 or Kn− iK2 (0 ≤ i ≤ �n
2
�),

where Kn − iK2 denotes the graph obtained by removing i independent edges from G.

Theorem 2.3 Let G be a nontrivial connected graph of order n. Then∏
1(G) ≤ (n− r(G))2n

with equality if and only if G ∼= Kn, or the graph obtained from Kn by removing a perfect

matching.

Proof. As before, we label vertices of G as v1, . . . , vn, and let di = dG(vi) and ecci =

eccG(vi).

By the definition of π1-index and the equation (4),∏
1(G) = (d1d2 . . . dn)

2

≤ [(n− ecc1)(n− ecc2) . . . (n− eccn)]
2

≤ [(n− r(G))n]2 = (n− r(G))2n.

By Lemma 2.2, the above first equality holds if and only if di = n − ecci for each i,

that is, G ∼= P4 or Kn − iK2 (0 ≤ i ≤ �n
2
�). The above second equality holds if and only

if r(G) = ecci for each i.

So,
∏

1(G) ≤ (n− r(G))2n with equality if and only if G ∼= Kn, or the graph obtained

from Kn by removing a perfect matching.

3 Bounds for
∏

2-index of connected graphs

In this section, we give some bounds for
∏

2-index of connected graphs in terms of other

graph invariants including the first Zagreb index, the first Zagreb coindex and the degree

distance.

Theorem 3.1 Let G be a nontrivial connected graph of order n and size m. Then∏
2(G) ≤ (

M1(G)

2m
)2m

with equality if and only if G is a 2m
n
-regular graph.
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Proof. For convenience, we label vertices of G as v1, . . . , vn and let di = dG(vi). By the

definition of π2-index, Lemma 2.1 and the fact that
n∑

i=1

di = 2m,∏
2(G) = dd11 dd22 · · · ddnn

≤

⎡
⎢⎢⎣
(d1 + · · ·+ d1︸ ︷︷ ︸

d1times

) + (d2 + · · ·+ d2︸ ︷︷ ︸
d2times

) + · · ·+ (dn + · · ·+ dn︸ ︷︷ ︸
dntimes

)

2m

⎤
⎥⎥⎦
2m

=

(
d21 + d22 + · · ·+ d2n

2m

)2m

= (
M1(G)

2m
)2m.

The above equality holds if and only if d1 = d2 = · · · = dn, that is, G is a regular

graph. So,
∏

2(G) ≤ (M1(G)
2m

)2m with equality if and only if G is a 2m
n
-regular graph, as

claimed.

Let M1(G) =
∑

uv �∈E(G)

(du + dv) denote the first Zagreb coindex (see [1, 2, 13]).

Lemma 3.1 ( [1]) Let G be a simple graph with n vertices and m edges. Then M1(G) =

2m(n− 1)−M1(G).

It then follows from Theorem 3.1 and Lemma 3.1 the following consequence.

Corollary 3.1 Let G be a nontrivial connected graph of order n and size m. Then

∏
2(G) ≤

[
2m(n− 1)−M1(G)

2m

]2m
with equality if and only if G is a 2m

n
-regular graph.

The degree distance of a nontrivial connected graph G (see [18,19,31]), denoted by

D
′
(G), is defined as

D
′
(G) =

∑
u∈V (G)

dG(u)DG(u)

where DG(u) is defined as before.

Theorem 3.2 Let G be a nontrivial connected graph of order n and size m. Then

∏
2(G) ≤ (

D
′
(G)

2m
)2m

with equality if and only if G ∼= Kn.
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Proof. For convenience, we label vertices of G as v1, . . . , vn and let di = dG(vi). By the

definition of
∏

2-index, Lemma 2.1, the equation (3) and the fact that
n∑

i=1

di = 2m,

∏
2(G) = dd11 dd22 · · · ddnn

≤ Dd1
1 Dd2

2 · · ·Ddn
n

≤

⎡
⎢⎢⎣
(D1 + · · ·+D1︸ ︷︷ ︸

d1times

) + (D2 + · · ·+D2︸ ︷︷ ︸
d2times

) + · · ·+ (Dn + · · ·+Dn︸ ︷︷ ︸
dntimes

)

2m

⎤
⎥⎥⎦

2m

=

(
d1D1 + d2D2 + · · ·+ dnDn

2m

)2m

= (
D

′
(G)

2m
)2m.

The above first equality holds if and only if di = Di for each i, that is, di = n − 1

for each i. The above second equality holds if and only if D1 = D2 = · · · = Dn . So,∏
2(G) ≤ (D

′
(G)

2m
)2m with equality if and only if G ∼= Kn, as claimed.

4 Concluding remarks

In this paper, we have established sharp upper bounds for
∏

1-index in terms of graph

parameters including the order, size, radius, Wiener index and eccentric distance sum,

and upper bounds for
∏

2-index in terms of graph parameters including the order, size,

the first Zagreb index, the first Zagreb coindex and degree distance. It may be interesting

to give the bounds for
∏

1-index and
∏

2-index in terms of other graph invariants.

Acknowledgment: The authors are grateful to the referee and the editors for helpful
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[19] A. Ilić, S. Klavžar, D. Stevanović, Calculating the degree distance of partial Hamming

graphs, MATCH Commun. Math. Comput. Chem. 63 (2010) 411–424.

[20] M. H. Khalifeh, H. Yousefi–Azari, A. R. Ashrafi, The first and second Zagreb indices

of graph operations, Discr. Appl. Math. 157 (2009) 804–811.

[21] B. Liu, Z. You, A survey on comparing Zagreb indices, MATCH Commun. Math.

Comput. Chem. 65 (2011) 581–593.
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