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Abstract

The first Zagreb index of a graph G, with vertex set V (G) and edge set E(G), is defined

as M1(G) =
∑

u∈V (G) d(u)
2 where d(u) denotes the degree of the vertex v. An alternative

expression for M1(G) is
∑

uv∈E(G)[d(u) + d(v)]. We consider a multiplicative version of M1

defined as Π∗
1(G) =

∏
uv∈E(G)[d(u) + d(v)]. We prove that among all connected graphs with

a given number of vertices, the path has minimal Π∗
1. We also determine the trees with the

second–minimal Π∗
1.

1 Introduction

In this paper, we are concerned with finite graphs without loops, multiple, or directed

edges. Let G be such a graph. Throughout this paper, n stands for the number of vertices

of G.

Denote by uv the edge of G, connecting the vertices u and v. For any vertex u of

G, the degree of u is denoted by d(u). Numbers reflecting certain structural features of

organic molecules that are obtained from the molecular graph are usually called molecular

structure descriptors or, more commonly, topological indices. Topological indices play a
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significant role in chemistry, pharmacology, etc. (see [2, 3, 7–9, 13, 16, 17]). Many of the

topological indices of current interest in mathematical chemistry are defined in terms of

vertex degrees of the molecular graph. For example, the first Zagreb index M1(G) and

the second Zagreb index M2(G) are defined as [11, 12]:

M1(G) =
∑

u∈V (G)

d(u)2

M2(G) =
∑

uv∈E(G)

d(u) d(v) .

The Zagreb indices and their variants have been used to study molecular complex-

ity, chirality, ZE-isomerism, heterosystems, etc. We encourage the reader to consult

[1,6,15,18,20–22] for historical background, computational techniques, and mathematical

properties of Zagreb indices. A detailed bibliography on recent research of Zagreb indices

is found in [4, 19].

The first Zagreb index can also be expressed as a sum over the edges of G [4, 12]:

M1(G) =
∑

uv∈E(G)

[d(u) + d(v)] . (1)

Following an earlier idea of Narumi and Katayama [14], who put forward what nowadays

is referred to as the Narumi–Katayama index,

NK = NK(G) =
∏

u∈V (G)

d(u)

one of the present authors [5] introduced the multiplicative version of the Zagreb indices.

In particular he put forward

Π1 = Π1(G) =
∏

u∈V (G)

d(u)2

Π2 = Π2(G) =
∏

uv∈E(G)

d(u) d(v)

where, of course, Π1 = (NK)2 . In [5, 10], the graphs for which NK (and therefore also

Π1) assumes an extremal (minimal or maximal) value where characterized.

Bearing in mind the identity (1), we now consider a further multiplicative version of

the first Zagreb index, namely:

Π∗
1 = Π∗

1(G) =
∏

uv∈E(G)

[d(u) + d(v)] . (2)
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It should be immediately noted that in the general case, the indices Π1(G) and Π∗
1(G)

assume different values. For instance, already for the 3-vertex graph P3 , their values are

4 and 9, respectively. It is easy to see that if the graph G is regular, then Π1(G) = Π∗
1(G).

The right–hand side of Eq. (2) is meaningful only if the graph G possesses edges.

If E(G) = ∅, then we may, conventionally, assume that either Π∗
1(G) = 0 or, better,

Π∗
1(G) = 1 . In the case of connected graphs with more than one vertex, such a difficulty

cannot be encountered.

In this paper we prove that among all connected graphs with a given number of

vertices, the path has the minimal Π∗
1 index. In addition, we characterize a class of trees

that among all trees with n ≥ 7 vertices, have the second–minimal Π∗
1-value.

2 Some notations

A tree is a connected acyclic graph. The path of order n is denoted by Pn , and the star

of order n is denoted by Sn . A pendent vertex or leaf of a graph is a vertex of degree 1.

Suppose that n1 ≥ 1 and 2 ≤ t ≤ n − n1 − 1. Denote by T (n, n1, t) the tree of

order n with the set of vertices {v1, v2, . . . , vn}, obtained from the path v1v2v3 . . . vt+n1 by

appending the path vt+n1+1vt+n1+2 . . . vn to vertex vt.

For n ≥ 7, we define the sets

T ∗(n, n1) = {T (n, n1, t) | 3 ≤ t ≤ n− 3} and T ∗(n) =
⋃
n1

T ∗(n, n1) .

For an illustrative example see Figure 1.

The comet Pn,n1 , of order n and with n1 pendent vertices, is obtained by appending

a path with n − n1 − 1 edges to a pendent vertex of the star Sn1+1 . By our notation,

T (n, 1, n− 2) ∼= Pn,3 , cf. Figure 2.
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Fig. 1. The trees forming the class T ∗(9) = {T(9,2,5) (left), T(9,3,3) (right)}.

Fig. 2. The broom Pn,3
∼= T (n, 1, n− 2) .

3 Bounds for the Π∗
1 index

Theorem 1 Among all connected graphs with a fixed number of vertices, the path has

minimal Π∗
1 index.

Proof: For a graph G with n ≥ 3 vertices and m edges, denote by xi the number

of vertices with degree i for i = 1, 2, . . . , n − 1. Let xi,j be the number of edges of G

connecting vertices of degree i and j, where 1 ≤ i ≤ j ≤ n− 1. Then

n = x1 + x2 + · · ·+ xn−1

2m = x1 + 2x2 + · · ·+ (n− 1)xn−1

x1 = x1,2 + x1,3 + · · ·+ x1,n−1

2x2 = x1,2 + 2x2,2 + · · ·+ x2,n−1

...

(n− 1)xn−1 = x1,n−1 + x2,n−1 + · · ·+ 2xn−1,n−1 .
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Using the abbreviations

f1 = x1,3 + x1,4 + · · ·+ x1,n−1

f2 = x2,3 + x2,4 + · · ·+ x2,n−1

f3 = x1,3 + x2,3 + 3x3,3 · · ·+ x3,n−1

...

fn−1 = x1,n−1 + x2,n−1 + · · ·+ 2xn−1,n−1

i. e.,

f1 = x1 − x1,2

f2 = 2x2 − x1,2 − 2x2,2

f3 = 3x3

...

fn−1 = (n− 1)xn−1

we have:

n−1∑
i=1

fi = 2m− 2x1,2 − 2x2,2

n−1∑
i=1

1

i
fi = n− 3

2
x1,2 − x2,2 .

This implies

x1,2 = 2n− 2m+
n−1∑
i=1

(
1− 2

i

)
fi

= 2n− 2m+
∑
∗

(
2− 2

i
− 2

j

)
xi,j (3)

x2,2 = 3m− 2n+
n−1∑
i=1

(
2

i
− 3

2

)
fi

= 2n− 2m+
∑
∗

(
2

i
+

2

j
− 3

)
xi,j (4)

where
∑
∗

indicates summation goes over all (i, j) satisfying 1 ≤ i ≤ j ≤ n − 1, except
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(i, j) = (1, 2) and (i, j) = (2, 2). On the other hand,

ln(Π∗
1(G)) =

∑
uv∈E(G)

ln(d(u) + d(v)) =
∑

1≤i≤j≤n−1

ln(i+ j)xi,j . (5)

By substituting Eqs. (3) and (4) back into Eq. (5) we readily arrive at:

ln(Π∗
1(G)) = x1,2 ln 3 + x2,2 ln 4 +

∑
∗

ln(i+ j) xi,j

= (2n− 2m) ln 3 + (3m− 2n) ln 4 (6)

+
∑
∗

[
ln(i+ j) +

(
2− 2

i
− 2

j

)
ln 3 +

(
2

i
+

2

j
− 3

)
ln 4

]
xi,j .

Let

f(i, j) = ln(i+ j) +

(
2− 2

i
− 2

j

)
ln 3 +

(
2

i
+

2

j
− 3

)
ln 4 .

Then it is easy to see that

f(i, j) = ln(i+ j) + 2(ln 4− ln 3)

(
1

i
+

1

j

)
+ 2 ln 3− 3 ln 4 . (7)

Since −2 < 2 ln 3 − 3 ln 4 < 0, so if i + j ≥ [e2] + 1 = 8, then f(i, j) > 0. In Table

1, we calculated the values of f(i, j) for (i, j) when i + j ≤ 7, 1 ≤ i ≤ j ≤ n − 1 and

(i, j) �= (1, 2) and (i, j) �= (2, 2).

Table 1: Values of f(i, j) for all possible degree pairs

i j f(i, j) i j f(i, j)

1 3 0.19179 1 4 0.36699

1 5 0.52054 1 6 0.65551

2 3 0.12725 2 4 0.26162

2 5 0.38701 3 4 0.31988

3 3 0.21368

So we have f(i, j) > 0, for 1 ≤ i ≤ j ≤ n−1, except for (i, j) = (1, 2) and (i, j) = (2, 2).

Therefore

ln(Π∗
1(G)) ≥ (2n− 2m) ln 3 + (3m− 2n) ln 4

with the equality if and only if all parameters xi,j are equal to zero, except x1,2 and x2,2.

If the graph G is assumed to be connected, then this requirement implies that G it the

path Pn or the cycle Cn with n vertices. It is easy to see that ln(Π∗
1(Pn)) ≤ ln(Π∗

1(Cn))

which completes the proof. �
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Corollary 1 Let G be a connected graph with n ≥ 3 vertices and m edges. Then

32n−2m 43m−2n ≤ Π∗
1(G) ≤ (2n− 2)m

with the left–hand side equality if and only G ∼= Pn and the right–hand side equality if and

only if G ∼= Kn .

Theorem 2 [10] Among all connected graphs with a fixed number of vertices, the star

has minimal Narumi–Katayama index.

Corollary 2 Let G be a connected graph with n ≥ 3 vertices and m edges. Then

n− 1 ≤ NK(G) ≤ (n− 1)m .

The equality on the left–hand side holds if and only if G is the star and the equality on

the right–hand side holds if and only if G is the complete graph.

Corollary 3 [5] Among all connected graphs with a fixed number of vertices, the star

has the minimal Π1 index.

Corollary 4 Let G be a connected graph with n ≥ 3 vertices and m edges. Then

(n− 1)2 ≤ Π1(G) ≤ (n− 1)2m

with the left–hand side equality if and only G ∼= Sn and the right–hand side equality if and

only if G ∼= Kn .

4 Trees with second–minimal Π∗
1 index

We start with the following elementary result:

Lemma 5 (a) Let T be a graph in the class of T ∗(n), where n ≥ 7. Then

Π∗
1(T ) = 33 × 53 × 4n−7 .

(b) Suppose that Un, a tree of order n ≥ 7 and V (Un) = {v1, v2, . . . , vn}, is obtained from

the path v1v2v3 . . . vn−1 by appending the edge vn−3vn. Then for each T ∈ T ∗(n), we have

Π∗
1(Un) > Π∗

1(T ).

-223-



Proof: (a) The proof is straightforward.

(b) It suffices to observe that

Π∗
1(Un)

Π∗
1(T )

=
4n−5 × 32 × 52

33 × 53 × 4n−7
> 1 .

�

Theorem 3 Among all trees with n ≥ 7 vertices, those belonging to the class T ∗(n) have

the second–minimal Π∗
1 index.

Proof: From Theorem 1, we know that Pn has the minimal Π∗
1 index and Π∗

1(Pn) =

32 × 4n−3. Suppose that T is a tree with the second–minimal Π∗
1 index. Since Π∗

1(Pn,3) =

3× 5× 4n−3 > 33 × 53 × 4n−7 (see Lemma 5(a)), so T is neither a path nor Pn,3. Suppose

that P = v1v2 · · · , vk−1vk is a longest path of T . Then d(v1) = d(vk) = 1. We show that

d(vk−1) = d(v2) = 2. We have to distinguish between the following two cases:

Case 1. d(v2) ≥ 4 or d(vk−1) ≥ 4. Without loss of generality, we may assume that

d(vk−1) = d ≥ 4. Since P is a longest path of T , all vertices adjacent to vk−1, other than

vk−2, must be leaves. Let u1, u2, . . . , ud−2 be the neighbors of vk−1 other than vk−2 and

vk. By deleting the edges vk−1u1, vk−1u2, . . . , vk−1ud−2 from T and adding edges

vku1, vku2, . . . , vkud−2, we get a new tree T
′
, which is not a path, as shown in the Figure

3.

Fig. 3. Diagrams pertaining to the proof of Theorem 3, Case 1.

If d(vk−2) = 1, then T is the star. Then Π∗
1(T ) = Π∗

1(Sn) = nn−1. For n ≥ 5, we have

Π∗
1(Sn)

Π∗
1(Pn,3)

=
nn−1

3× 5× 4n−3
> 1

which contradicts to the second–minimality of T .
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Now we can assume that d(vk−2) ≥ 2. So we have

Π∗
1(T )

Π∗
1(T

′)
=

(d(vk−2) + d)(d+ 1)d−1

(d(vk−2) + 2)(d+ 1)dd−2
> 1

which contradicts to the choice of T .

Case 2. d(vk−1) = 3 or d(v2) = 3. Without loss of generality, we may assume that

d(vk−1) = 3. Since the tree T is neither the path Pn nor Pn,3, there exists a vertex vi such

that d(vi) ≥ 3 for some i ∈ {3, 4, . . . , k − 2}. Since d(vk−1) = 3 , let u be the neighbor of

vk−1, other than vk−2 and vk. Since u is a leaf, therefore d(u) = 1. By deleting the edge

uvk−1 from T and adding a new edge uvk, we get a new tree T
′
as shown in the Figure 4,

and T
′
is not the path. Consequently,

Π∗
1(T )

Π∗
1(T

′)
=

(d(vk−2) + 3)(1 + 3)2

(d(vk−2) + 2)(2 + 2)(1 + 2)
> 1 .

Hence, we get Π∗
1(T ) > Π∗

1(T
′
), which is a contradiction. Therefore d(vk−1) = d(v2) = 2.

Fig. 4. Diagrams pertaining to the proof of Theorem 3, Case 2.

In what follows, we prove that T must be in T ∗(n). By considering Lemma 5(a),

without loss of generality, we may assume that d = d(vk−2) ≥ 3. We prove that T ∈
T (n, 2, n− 4) ∈ T ∗(n). Since P is a longest path of T , each vertex adjacent to vk−2, other

than vk−3, must be a leaf or has only a neighbor other than vk−2. Let u1, u2, . . . , ud−2

be the neighbors of vk−2 other than vk−3 and vk−1. Now we consider the following three

subcases.

Subcase 3.1. For each i, d(ui) = 1. If d = 3, then the neighbors of vk−2 are vk−3, u1

and vk−1. Since by Lemma 5(b) T �∈ U(n), so by deleting the edge vk−2u1 from T and

adding the edge vku1 we get a new tree T
′
, which is not the path, see Figure 5. Therefore

Π∗
1(T )

Π∗
1(T

′)
=

(d(vk−3) + 3)(1 + 3)(2 + 3)(1 + 2)

(d(vk−3) + 2)(1 + 2)(2 + 2)(2 + 2)
> 1

which is a contradiction.
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Fig. 5. Diagrams pertaining to the proof of Theorem 3, Subcase 3.1, d = 3.

If d ≥ 4, then by deleting the edges vk−2u1, vk−2u2, . . . , vk−2ud−3 from T and adding

the edges v1u1, u1u2, . . . , ud−4ud−3 we get a new tree T
′
(see Figure 6), which is not the

path and

Π∗
1(T )

Π∗
1(T

′)
=

(1 + 2)(d(vk−3) + d)(1 + d)d−2(d+ 2)

(2 + 2)(d(vk−3) + 3)(2 + 2)d−4(1 + 2)(1 + 3)(3 + 2)

>
(1 + d)2(d+ 2)

(2 + 2)(1 + 3)(3 + 2)
> 1

which is a contradiction.

Fig. 6. Diagrams pertaining to the proof of Theorem 3, Subcase 3.1, d ≥ 4.

Subcase 3.2. There is � ∈ N such that d(u1) = · · · = d(u�) = 1, d(u�+1) = · · · =
d(ud−2) = 2 and � �= d−2. Since � �= d−2 and d ≥ 3, it must be d ≥ 4. Since P is a longest

path of T , there are leaves w�+1, . . . , wd−2 in T , such that for each i ∈ {�+1, . . . , d−2}, the
only neighbors of ui other than vk−2 is wi. By deleting the edges vk−2u1, vk−2u2, . . . , vk−2u�

from T and adding the edges v1u1, u1u2, . . . , u�−1u� we get a new tree T
′
, which is not the

path (see Figure 7) and
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Π∗
1(T )

Π∗
1(T

′)
=

(1 + 2)(d(vk−3) + d)(2 + d)d−2−� (1 + d)� (2 + d)

(2 + 2)(d(vk−3) + d− �)(2 + d− �)d−2−� (2 + d− �)(1 + 2)4�−1

>
(1 + d)�

(2 + 2)4�−1
=

(1 + d)�

4�
> 1

which is a contradiction.

Fig. 7. Diagrams pertaining to the proof of Theorem 3, Subcase 3.2.

Subcase 3.3. d(u1) = · · · = d(ud−2) = 2. If d ≥ 4, then since P is a longest path

of T , there are leaves w�, . . . , wd−2 in T , such that for each i ∈ {1, . . . , d − 2}, the only

neighbor of ui other than vk−2 is wi. By deleting the edges vk−2u1, vk−2u2, . . . , vk−2ud−3,

u1w1, u2w2, . . . ud−3wd−3 from T and adding the edges v1u1, u1w1, w1u2, u2w2, w2u3 . . .,

wd−4ud−3, ud−3wd−4, we get a new tree T
′
, which is not the path and

Π∗
1(T )

Π∗
1(T

′)
=

(1 + 2)(d(vk−3) + d)(1 + 2)d−2 (2 + d)d−2 (2 + d)

(2 + 2)(d(vk−3) + 3)(1 + 2)(2 + 3)(2 + 3)42d−7 (1 + 2)

>
3d−3(2 + d)d−1

25× 42d−6
.

Let

f(d) =
3d−3(2 + d)d−1

25× 42d−6
.

Then for d > 3, the function f monotonically increases. Therefore, f(d) > f(3) = 1. This

implies Π∗
1(T ) > Π∗

1(T
′
), which is a contradiction.

If d = 3, then d(u1) = 2 and w1 in T is the only neighbor of u1 other than vk−2. If

T �∈ T (n, 2, n − 4), then there is i ∈ {3, . . . , n − 3} such that d(vi) ≥ 3. By deleting the
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edges vk−2u1, u1w1 and adding the edges v1u1, u1w1 we get a new tree T
′
, which is not the

path and

Π∗
1(T )

Π∗
1(T

′)
=

(d(vk−3) + 3)(2 + 3)(2 + 3)(1 + 2)

(d(vk−3) + 2)(2 + 2)(2 + 2)(2 + 2)

>
5× 5× 3

4× 4× 4
> 1 .

This is a contradiction and the proof is thus completed. �

Corollary 6 Let G be a connected graph with n ≥ 7 vertices, such that no one of its

spanning tree is isomorphic to Pn. Then Π∗
1(G) ≥ 33 × 53 × 4n−7 and the equality holds if

and only G ∈ T ∗(n).

For n ≥ 7, suppose that U(n, t), 2 < t < n−2, is a tree with vertex set {v1, v2, . . . , vn} ,
obtained from the path v1v2v3 . . . vn−1 by appending the edge vtvn. Also let U∗(n) =

{U(n, t) | t < n} . Then we conjecture that among all trees with n ≥ 7 vertices, the

trees belonging to U∗(n) have the third–minimal Π∗
1 index.

Acknowledgement. I. G. thanks for support by the Serbian Ministry of Science (Grant

No. 174033).
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