Multiplicative Versions of First Zagreb Index

Mehdi Eliasi^a, Ali Iranmanesh^{a,1}, Ivan Gutman^b

^aDepartment of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P. O. Box 14115–137, Tehran, Iran

^bFaculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia

(Received August 27, 2011)

Abstract

The first Zagreb index of a graph G, with vertex set V(G) and edge set E(G), is defined as $M_1(G) = \sum_{u \in V(G)} d(u)^2$ where d(u) denotes the degree of the vertex v. An alternative expression for $M_1(G)$ is $\sum_{uv \in E(G)} [d(u) + d(v)]$. We consider a multiplicative version of M_1 defined as $\Pi_1^*(G) = \prod_{uv \in E(G)} [d(u) + d(v)]$. We prove that among all connected graphs with a given number of vertices, the path has minimal Π_1^* . We also determine the trees with the second-minimal Π_1^* .

1 Introduction

In this paper, we are concerned with finite graphs without loops, multiple, or directed edges. Let G be such a graph. Throughout this paper, n stands for the number of vertices of G.

Denote by uv the edge of G, connecting the vertices u and v. For any vertex u of G, the degree of u is denoted by d(u). Numbers reflecting certain structural features of organic molecules that are obtained from the molecular graph are usually called molecular structure descriptors or, more commonly, topological indices. Topological indices play a

¹Corresponding author; e-mail: iranmanesh@modares.ac.ir

significant role in chemistry, pharmacology, etc. (see [2, 3, 7-9, 13, 16, 17]). Many of the topological indices of current interest in mathematical chemistry are defined in terms of vertex degrees of the molecular graph. For example, the first Zagreb index $M_1(G)$ and the second Zagreb index $M_2(G)$ are defined as [11, 12]:

$$M_1(G) = \sum_{u \in V(G)} d(u)^2$$

 $M_2(G) = \sum_{uv \in E(G)} d(u) d(v) .$

The Zagreb indices and their variants have been used to study molecular complexity, chirality, ZE-isomerism, heterosystems, etc. We encourage the reader to consult [1,6,15,18,20–22] for historical background, computational techniques, and mathematical properties of Zagreb indices. A detailed bibliography on recent research of Zagreb indices is found in [4,19].

The first Zagreb index can also be expressed as a sum over the edges of G [4,12]:

$$M_1(G) = \sum_{uv \in E(G)} [d(u) + d(v)] .$$
(1)

Following an earlier idea of Narumi and Katayama [14], who put forward what nowadays is referred to as the Narumi–Katayama index,

$$NK = NK(G) = \prod_{u \in V(G)} d(u)$$

one of the present authors [5] introduced the multiplicative version of the Zagreb indices. In particular he put forward

$$\Pi_{1} = \Pi_{1}(G) = \prod_{u \in V(G)} d(u)^{2}$$
$$\Pi_{2} = \Pi_{2}(G) = \prod_{uv \in E(G)} d(u) d(v)$$

where, of course, $\Pi_1 = (NK)^2$. In [5, 10], the graphs for which NK (and therefore also Π_1) assumes an extremal (minimal or maximal) value where characterized.

Bearing in mind the identity (1), we now consider a further multiplicative version of the first Zagreb index, namely:

$$\Pi_1^* = \Pi_1^*(G) = \prod_{uv \in E(G)} [d(u) + d(v)] .$$
⁽²⁾

It should be immediately noted that in the general case, the indices $\Pi_1(G)$ and $\Pi_1^*(G)$ assume different values. For instance, already for the 3-vertex graph P_3 , their values are 4 and 9, respectively. It is easy to see that if the graph G is regular, then $\Pi_1(G) = \Pi_1^*(G)$.

The right-hand side of Eq. (2) is meaningful only if the graph G possesses edges. If $E(G) = \emptyset$, then we may, conventionally, assume that either $\Pi_1^*(G) = 0$ or, better, $\Pi_1^*(G) = 1$. In the case of connected graphs with more than one vertex, such a difficulty cannot be encountered.

In this paper we prove that among all connected graphs with a given number of vertices, the path has the minimal Π_1^* index. In addition, we characterize a class of trees that among all trees with $n \ge 7$ vertices, have the second-minimal Π_1^* -value.

2 Some notations

A tree is a connected acyclic graph. The path of order n is denoted by P_n , and the star of order n is denoted by S_n . A pendent vertex or leaf of a graph is a vertex of degree 1.

Suppose that $n_1 \ge 1$ and $2 \le t \le n - n_1 - 1$. Denote by $T(n, n_1, t)$ the tree of order n with the set of vertices $\{v_1, v_2, \ldots, v_n\}$, obtained from the path $v_1v_2v_3 \ldots v_{t+n_1}$ by appending the path $v_{t+n_1+1}v_{t+n_1+2} \ldots v_n$ to vertex v_t .

For $n \geq 7$, we define the sets

$$T^*(n, n_1) = \{T(n, n_1, t) \mid 3 \le t \le n - 3\}$$
 and $T^*(n) = \bigcup_{n_1} T^*(n, n_1)$.

For an illustrative example see Figure 1.

The comet P_{n,n_1} , of order n and with n_1 pendent vertices, is obtained by appending a path with $n - n_1 - 1$ edges to a pendent vertex of the star S_{n_1+1} . By our notation, $T(n, 1, n - 2) \cong P_{n,3}$, cf. Figure 2.

Fig. 1. The trees forming the class $T^*(9) = \{T(9,2,5) \ (left), T(9,3,3) \ (right)\}.$

Fig. 2. The broom $P_{n,3} \cong T(n, 1, n-2)$.

3 Bounds for the Π_1^* index

Theorem 1 Among all connected graphs with a fixed number of vertices, the path has minimal Π_1^* index.

Proof: For a graph G with $n \ge 3$ vertices and m edges, denote by x_i the number of vertices with degree i for i = 1, 2, ..., n - 1. Let $x_{i,j}$ be the number of edges of G connecting vertices of degree i and j, where $1 \le i \le j \le n - 1$. Then

$$n = x_1 + x_2 + \dots + x_{n-1}$$

$$2m = x_1 + 2x_2 + \dots + (n-1)x_{n-1}$$

$$x_1 = x_{1,2} + x_{1,3} + \dots + x_{1,n-1}$$

$$2x_2 = x_{1,2} + 2x_{2,2} + \dots + x_{2,n-1}$$

$$\vdots$$

$$(n-1)x_{n-1} = x_{1,n-1} + x_{2,n-1} + \dots + 2x_{n-1,n-1}$$

Using the abbreviations

$$f_1 = x_{1,3} + x_{1,4} + \dots + x_{1,n-1}$$

$$f_2 = x_{2,3} + x_{2,4} + \dots + x_{2,n-1}$$

$$f_3 = x_{1,3} + x_{2,3} + 3x_{3,3} \dots + x_{3,n-1}$$

$$\vdots$$

$$f_{n-1} = x_{1,n-1} + x_{2,n-1} + \dots + 2x_{n-1,n-1}$$

i. e.,

$$f_{1} = x_{1} - x_{1,2}$$

$$f_{2} = 2x_{2} - x_{1,2} - 2x_{2,2}$$

$$f_{3} = 3x_{3}$$

$$\vdots$$

$$f_{n-1} = (n-1)x_{n-1}$$

we have:

$$\sum_{i=1}^{n-1} f_i = 2m - 2x_{1,2} - 2x_{2,2}$$
$$\sum_{i=1}^{n-1} \frac{1}{i} f_i = n - \frac{3}{2} x_{1,2} - x_{2,2} .$$

This implies

$$x_{1,2} = 2n - 2m + \sum_{i=1}^{n-1} \left(1 - \frac{2}{i}\right) f_i$$

$$= 2n - 2m + \sum_{*} \left(2 - \frac{2}{i} - \frac{2}{j}\right) x_{i,j} \qquad (3)$$

$$x_{2,2} = 3m - 2n + \sum_{i=1}^{n-1} \left(\frac{2}{i} - \frac{3}{2}\right) f_i$$

$$= 2n - 2m + \sum_{*} \left(\frac{2}{i} + \frac{2}{j} - 3\right) x_{i,j} \qquad (4)$$

where \sum_{*} indicates summation goes over all (i, j) satisfying $1 \le i \le j \le n - 1$, except

(i, j) = (1, 2) and (i, j) = (2, 2). On the other hand,

$$\ln(\Pi_1^*(G)) = \sum_{uv \in E(G)} \ln(d(u) + d(v)) = \sum_{1 \le i \le j \le n-1} \ln(i+j) x_{i,j} .$$
(5)

By substituting Eqs. (3) and (4) back into Eq. (5) we readily arrive at:

$$\ln(\Pi_1^*(G)) = x_{1,2} \ln 3 + x_{2,2} \ln 4 + \sum_* \ln(i+j) x_{i,j}$$

= $(2n-2m) \ln 3 + (3m-2n) \ln 4$ (6)
+ $\sum_* \left[\ln(i+j) + \left(2 - \frac{2}{i} - \frac{2}{j}\right) \ln 3 + \left(\frac{2}{i} + \frac{2}{j} - 3\right) \ln 4 \right] x_{i,j}.$

Let

$$f(i,j) = \ln(i+j) + \left(2 - \frac{2}{i} - \frac{2}{j}\right) \ln 3 + \left(\frac{2}{i} + \frac{2}{j} - 3\right) \ln 4 .$$

Then it is easy to see that

$$f(i,j) = \ln(i+j) + 2(\ln 4 - \ln 3)\left(\frac{1}{i} + \frac{1}{j}\right) + 2\ln 3 - 3\ln 4.$$
(7)

Since $-2 < 2 \ln 3 - 3 \ln 4 < 0$, so if $i + j \ge [e^2] + 1 = 8$, then f(i, j) > 0. In Table 1, we calculated the values of f(i, j) for (i, j) when $i + j \le 7$, $1 \le i \le j \le n - 1$ and $(i, j) \ne (1, 2)$ and $(i, j) \ne (2, 2)$.

Table 1: Values of f(i, j) for all possible degree pairs

i	j	f(i,j)	i	j	f(i, j)
1	3	0.19179	1	4	0.36699
1	5	0.52054	1	6	0.65551
2	3	0.12725	2	4	0.26162
2	5	0.38701	3	4	0.31988
3	3	0.21368			

So we have f(i, j) > 0, for $1 \le i \le j \le n-1$, except for (i, j) = (1, 2) and (i, j) = (2, 2). Therefore

$$\ln(\Pi_1^*(G)) \ge (2n - 2m) \ln 3 + (3m - 2n) \ln 4$$

with the equality if and only if all parameters $x_{i,j}$ are equal to zero, except $x_{1,2}$ and $x_{2,2}$. If the graph G is assumed to be connected, then this requirement implies that G it the path P_n or the cycle C_n with n vertices. It is easy to see that $\ln(\Pi_1^*(P_n)) \leq \ln(\Pi_1^*(C_n))$ which completes the proof. **Corollary 1** Let G be a connected graph with $n \ge 3$ vertices and m edges. Then

$$3^{2n-2m} 4^{3m-2n} \le \Pi_1^*(G) \le (2n-2)^m$$

with the left-hand side equality if and only $G \cong P_n$ and the right-hand side equality if and only if $G \cong K_n$.

Theorem 2 [10] Among all connected graphs with a fixed number of vertices, the star has minimal Narumi–Katayama index.

Corollary 2 Let G be a connected graph with $n \ge 3$ vertices and m edges. Then

$$n-1 \le NK(G) \le (n-1)^m \; .$$

The equality on the left-hand side holds if and only if G is the star and the equality on the right-hand side holds if and only if G is the complete graph.

Corollary 3 [5] Among all connected graphs with a fixed number of vertices, the star has the minimal Π_1 index.

Corollary 4 Let G be a connected graph with $n \ge 3$ vertices and m edges. Then

$$(n-1)^2 \le \Pi_1(G) \le (n-1)^{2m}$$

with the left-hand side equality if and only $G \cong S_n$ and the right-hand side equality if and only if $G \cong K_n$.

4 Trees with second-minimal Π_1^* index

We start with the following elementary result:

Lemma 5 (a) Let T be a graph in the class of $T^*(n)$, where $n \ge 7$. Then

$$\Pi_1^*(T) = 3^3 \times 5^3 \times 4^{n-7}$$
.

(b) Suppose that U_n , a tree of order $n \ge 7$ and $V(U_n) = \{v_1, v_2, \ldots, v_n\}$, is obtained from the path $v_1v_2v_3 \ldots v_{n-1}$ by appending the edge $v_{n-3}v_n$. Then for each $T \in T^*(n)$, we have $\Pi_1^*(U_n) > \Pi_1^*(T)$. **Proof:** (a) The proof is straightforward.

(b) It suffices to observe that

$$\frac{\Pi_1^*(U_n)}{\Pi_1^*(T)} = \frac{4^{n-5} \times 3^2 \times 5^2}{3^3 \times 5^3 \times 4^{n-7}} > 1 \ .$$

Theorem 3 Among all trees with $n \ge 7$ vertices, those belonging to the class $T^*(n)$ have the second-minimal Π_1^* index.

Proof: From Theorem 1, we know that P_n has the minimal Π_1^* index and $\Pi_1^*(P_n) = 3^2 \times 4^{n-3}$. Suppose that T is a tree with the second-minimal Π_1^* index. Since $\Pi_1^*(P_{n,3}) = 3 \times 5 \times 4^{n-3} > 3^3 \times 5^3 \times 4^{n-7}$ (see Lemma 5(a)), so T is neither a path nor $P_{n,3}$. Suppose that $P = v_1 v_2 \cdots, v_{k-1} v_k$ is a longest path of T. Then $d(v_1) = d(v_k) = 1$. We show that $d(v_{k-1}) = d(v_2) = 2$. We have to distinguish between the following two cases:

Case 1. $d(v_2) \ge 4$ or $d(v_{k-1}) \ge 4$. Without loss of generality, we may assume that $d(v_{k-1}) = d \ge 4$. Since P is a longest path of T, all vertices adjacent to v_{k-1} , other than v_{k-2} , must be leaves. Let $u_1, u_2, \ldots, u_{d-2}$ be the neighbors of v_{k-1} other than v_{k-2} and v_k . By deleting the edges $v_{k-1}u_1, v_{k-1}u_2, \ldots, v_{k-1}u_{d-2}$ from T and adding edges

 $v_k u_1, v_k u_2, \ldots, v_k u_{d-2}$, we get a new tree T', which is not a path, as shown in the Figure 3.

Fig. 3. Diagrams pertaining to the proof of Theorem 3, Case 1.

If $d(v_{k-2}) = 1$, then T is the star. Then $\Pi_1^*(T) = \Pi_1^*(S_n) = n^{n-1}$. For $n \ge 5$, we have

$$\frac{\Pi_1^*(S_n)}{\Pi_1^*(P_{n,3})} = \frac{n^{n-1}}{3 \times 5 \times 4^{n-3}} > 1$$

which contradicts to the second–minimality of T.

Now we can assume that $d(v_{k-2}) \ge 2$. So we have

$$\frac{\Pi_1^*(T)}{\Pi_1^*(T')} = \frac{(d(v_{k-2}) + d)(d+1)^{d-1}}{(d(v_{k-2}) + 2)(d+1)d^{d-2}} > 1$$

which contradicts to the choice of T.

Case 2. $d(v_{k-1}) = 3$ or $d(v_2) = 3$. Without loss of generality, we may assume that $d(v_{k-1}) = 3$. Since the tree T is neither the path P_n nor $P_{n,3}$, there exists a vertex v_i such that $d(v_i) \ge 3$ for some $i \in \{3, 4, \ldots, k-2\}$. Since $d(v_{k-1}) = 3$, let u be the neighbor of v_{k-1} , other than v_{k-2} and v_k . Since u is a leaf, therefore d(u) = 1. By deleting the edge uv_{k-1} from T and adding a new edge uv_k , we get a new tree T' as shown in the Figure 4, and T' is not the path. Consequently,

$$\frac{\Pi_1^*(T)}{\Pi_1^*(T')} = \frac{(d(v_{k-2})+3)(1+3)^2}{(d(v_{k-2})+2)(2+2)(1+2)} > 1 \ .$$

Hence, we get $\Pi_1^*(T) > \Pi_1^*(T')$, which is a contradiction. Therefore $d(v_{k-1}) = d(v_2) = 2$.

Fig. 4. Diagrams pertaining to the proof of Theorem 3, Case 2.

In what follows, we prove that T must be in $T^*(n)$. By considering Lemma 5(a), without loss of generality, we may assume that $d = d(v_{k-2}) \ge 3$. We prove that $T \in$ $T(n, 2, n-4) \in T^*(n)$. Since P is a longest path of T, each vertex adjacent to v_{k-2} , other than v_{k-3} , must be a leaf or has only a neighbor other than v_{k-2} . Let $u_1, u_2, \ldots, u_{d-2}$ be the neighbors of v_{k-2} other than v_{k-3} and v_{k-1} . Now we consider the following three subcases.

Subcase 3.1. For each i, $d(u_i) = 1$. If d = 3, then the neighbors of v_{k-2} are v_{k-3}, u_1 and v_{k-1} . Since by Lemma 5(b) $T \notin U(n)$, so by deleting the edge $v_{k-2}u_1$ from T and adding the edge $v_k u_1$ we get a new tree T', which is not the path, see Figure 5. Therefore

$$\frac{\Pi_1^*(T)}{\Pi_1^*(T')} = \frac{(d(v_{k-3})+3)(1+3)(2+3)(1+2)}{(d(v_{k-3})+2)(1+2)(2+2)(2+2)} > 1$$

which is a contradiction.

Fig. 5. Diagrams pertaining to the proof of Theorem 3, Subcase 3.1, d = 3.

If $d \ge 4$, then by deleting the edges $v_{k-2}u_1$, $v_{k-2}u_2$, ..., $v_{k-2}u_{d-3}$ from T and adding the edges v_1u_1 , u_1u_2 , ..., $u_{d-4}u_{d-3}$ we get a new tree T' (see Figure 6), which is not the path and

$$\begin{split} \frac{\Pi_1^*(T)}{\Pi_1^*(T')} &= \frac{(1+2)(d(v_{k-3})+d)(1+d)^{d-2}(d+2)}{(2+2)(d(v_{k-3})+3)(2+2)^{d-4}(1+2)(1+3)(3+2)} \\ &> \frac{(1+d)^2(d+2)}{(2+2)(1+3)(3+2)} > 1 \end{split}$$

which is a contradiction

Fig. 6. Diagrams pertaining to the proof of Theorem 3, Subcase 3.1, $d \ge 4$.

Subcase 3.2. There is $\ell \in N$ such that $d(u_1) = \cdots = d(u_\ell) = 1$, $d(u_{\ell+1}) = \cdots = d(u_{d-2}) = 2$ and $\ell \neq d-2$. Since $\ell \neq d-2$ and $d \geq 3$, it must be $d \geq 4$. Since P is a longest path of T, there are leaves $w_{\ell+1}, \ldots, w_{d-2}$ in T, such that for each $i \in \{\ell+1, \ldots, d-2\}$, the only neighbors of u_i other than v_{k-2} is w_i . By deleting the edges $v_{k-2}u_1, v_{k-2}u_2, \ldots, v_{k-2}u_\ell$ from T and adding the edges $v_1u_1, u_1u_2, \ldots, u_{\ell-1}u_\ell$ we get a new tree T', which is not the path (see Figure 7) and

$$\begin{split} \frac{\Pi_1^*(T)}{\Pi_1^*(T')} &= \frac{(1+2)(d(v_{k-3})+d)(2+d)^{d-2-\ell}(1+d)^{\ell}(2+d)}{(2+2)(d(v_{k-3})+d-\ell)(2+d-\ell)^{d-2-\ell}(2+d-\ell)(1+2)4^{\ell-1}} \\ &> \frac{(1+d)^{\ell}}{(2+2)4^{\ell-1}} = \frac{(1+d)^{\ell}}{4^{\ell}} > 1 \end{split}$$

W

Fig. 7. Diagrams pertaining to the proof of Theorem 3, Subcase 3.2.

Subcase 3.3. $d(u_1) = \cdots = d(u_{d-2}) = 2$. If $d \ge 4$, then since P is a longest path of T, there are leaves $w_{\ell}, \ldots, w_{d-2}$ in T, such that for each $i \in \{1, \ldots, d-2\}$, the only neighbor of u_i other than v_{k-2} is w_i . By deleting the edges $v_{k-2}u_1, v_{k-2}u_2, \ldots, v_{k-2}u_{d-3},$ $u_1w_1, u_2w_2, \ldots u_{d-3}w_{d-3}$ from T and adding the edges $v_1u_1, u_1w_1, w_1u_2, u_2w_2, w_2u_3 \ldots,$ $w_{d-4}u_{d-3}, u_{d-3}w_{d-4}$, we get a new tree T', which is not the path and

$$\begin{aligned} \frac{\Pi_1^*(T)}{\Pi_1^*(T')} &= \frac{(1+2)(d(v_{k-3})+d)(1+2)^{d-2}(2+d)^{d-2}(2+d)}{(2+2)(d(v_{k-3})+3)(1+2)(2+3)(2+3)4^{2d-7}(1+2)} \\ &> \frac{3^{d-3}(2+d)^{d-1}}{25\times 4^{2d-6}} \,. \end{aligned}$$

Let

$$f(d) = \frac{3^{d-3}(2+d)^{d-1}}{25 \times 4^{2d-6}}$$

Then for d > 3, the function f monotonically increases. Therefore, f(d) > f(3) = 1. This implies $\Pi_1^*(T) > \Pi_1^*(T')$, which is a contradiction.

If d = 3, then $d(u_1) = 2$ and w_1 in T is the only neighbor of u_1 other than v_{k-2} . If $T \notin T(n, 2, n-4)$, then there is $i \in \{3, \ldots, n-3\}$ such that $d(v_i) \ge 3$. By deleting the

edges $v_{k-2}u_1, u_1w_1$ and adding the edges v_1u_1, u_1w_1 we get a new tree T', which is not the path and

$$\frac{\Pi_1^*(T)}{\Pi_1^*(T')} = \frac{(d(v_{k-3})+3)(2+3)(2+3)(1+2)}{(d(v_{k-3})+2)(2+2)(2+2)(2+2)} \\ > \frac{5\times5\times3}{4\times4\times4} > 1.$$

This is a contradiction and the proof is thus completed.

Corollary 6 Let G be a connected graph with $n \ge 7$ vertices, such that no one of its spanning tree is isomorphic to P_n . Then $\Pi_1^*(G) \ge 3^3 \times 5^3 \times 4^{n-7}$ and the equality holds if and only $G \in T^*(n)$.

For $n \geq 7$, suppose that U(n, t), 2 < t < n-2, is a tree with vertex set $\{v_1, v_2, \ldots, v_n\}$, obtained from the path $v_1v_2v_3\ldots v_{n-1}$ by appending the edge v_tv_n . Also let $U^*(n) = \{U(n,t) \mid t < n\}$. Then we conjecture that among all trees with $n \geq 7$ vertices, the trees belonging to $U^*(n)$ have the third-minimal Π_1^* index.

Acknowledgement. I. G. thanks for support by the Serbian Ministry of Science (Grant No. 174033).

References

- J. Braun, A. Kerber, M. Meringer, C. Rucker, Similarity of molecular descriptors: The equivalence of Zagreb indices and walk counts, *MATCH Commun. Math. Comput. Chem.* 54 (2005) 163–176.
- [2] M. V. Diudea, Nanomolecules and Nanostructures Polynomials and Indices, Univ. Kragujevac, Kragujevac, 2010.
- [3] M. V. Diudea, M. S. Florescu, P. V. Khadikar, *Molecular Topology and Its Applica*tions, Eficon, Bucarest, 2006.
- [4] T. Došlić, B. Furtula, A. Graovac, I. Gutman, S. Moradi, Z. Yarahmadi, On vertexdegree-based molecular structure descriptors, *MATCH Commun. Math. Comput. Chem.* 66 (2011) 613–626.

- [5] I. Gutman, Multiplicative Zagreb indices of trees, Bull. Int. Math. Virt. Inst. 1 (2011) 13–19.
- [6] I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83–92.
- [7] I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors Theory and Applications I, Univ. Kragujevac, Kragujevac, 2010.
- [8] I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors Theory and Applications II, Univ. Kragujevac, Kragujevac, 2010.
- [9] I. Gutman, B. Furtula (Eds.), Distance in Molecular Graphs, Univ. Kragujevac, Kragujevac, 2012.
- [10] I. Gutman, M. Ghorbani, Some properties of the Narumi-Katayama index, Appl. Math. Lett., submitted.
- [11] I. Gutman, B. Ruščić, N. Trinajstić, C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399–3405.
- [12] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π -electron energy of alternant hydrocarbons, *Chem. Phys. Lett.* **17** (1972) 535–538.
- [13] M. Karelson, Molecular Descriptors in QSAR/QSPR, Wiley, New York, 2000.
- [14] H. Narumi, M. Katayama, Simple topological index. A newly devised index characterizing the topological nature of structural isomers of saturated hydrocarbons, *Mem. Fac. Engin. Hokkaido Univ.* 16 (1984) 209–214.
- [15] S. Nikolić, G. Kovačević, A. Milicević, N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113–124.
- [16] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley–VCH, Weinheim, 2000.
- [17] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley– VCH, Weinheim, 2009, Vols. I & II.
- [18] N. Trinajstić, S. Nikolić, A. Miličević, I. Gutman, On Zagreb indices, Kem. Ind. 59 (2010) 577–589 (in Croatian).

- [19] D. Vukičević, I. Gutman, B. Furtula, V. Andova, D. Dimitrov, Some observations on comparing Zagreb indices, *MATCH Communications in Mathematical and in Computer Chemistry* 66 (2011) 627–645.
- [20] B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem. 52 (2004) 113– 118.
- [21] B. Zhou, I. Gutman, Relations between Wiener, hyper-Wiener and Zagreb indices, *Chem. Phys. Lett.* **394** (2004) 93–95.
- [22] B. Zhou, I. Gutman, Further properties of Zagreb indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 233–239.