
Relations between Zagreb Coindices and
Some Distance–Based Topological Indices∗

Hongbo Huaa, b†, Shenggui Zhangb
aFaculty of Mathematics and Physics, Huaiyin Institute of Technology,

Huai’an, Jiangsu 223003, P. R. China

bDepartment of Applied Mathematics, Northwestern Polytechnical
University, Xi’an, Shaanxi 710072, P.R. China

(Received July 12, 2011)

Abstract

For a nontrivial graph G, its first Zagreb coindex is defined as the sum of degree
sum over all non-adjacent vertex pairs in G and the second Zagreb coindex is defined
as the sum of degree product over all non-adjacent vertex pairs in G. Till now, estab-
lished results concerning Zagreb coindices are mainly related to composite graphs
and extremal values of some special graphs. The existing literatures witnessed
no results dealing with the relations between Zagreb coindices and distance-based
topological indices so far. Aiming at filling in this gap, we reveal the relations be-
tween the first Zagreb coindex and some distance-based topological indices here.
We establish sharp bounds on the first Zagreb coindex in terms of distance-based
topological indices including Wiener index, eccentric connectivity index, eccentric
distance sum, degree distance and reverse degree distance.

1 Introduction

Let G be a simple connected graph with vertex set V (G) and edge set V (G). For a

graph G, we let dG(v) be the degree of a vertex v in G and let dG(u, v) denote the

distance between vertices u and v in G. Let ecG(u) = max{dG(u, v)|v ∈ V (G)} denote

the eccentricity of G.

A graph invariant is a function defined on a graph which is independent of the labeling

of its vertices. Till now, hundreds of different graphs invariants have been employed in

QSAR/QSPR studies, some of which have been proved to be successful (see [22]). Among

those successful invariants, there are two invariants called the first Zagreb index and the
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second Zagreb index (see [5, 8, 11,12,19, 21,25–27]), defined as

M1(G) =
∑

u∈V (G)

(dG(u))
2 and M2(G) =

∑
uv∈E(G)

dG(u)dG(v),

respectively.

In fact, one can rewrite the first Zagreb index as

M1(G) =
∑

uv∈E(G)

(dG(u) + dG(v)). (1)

Noticing that contribution of nonadjacent vertex pairs should be taken into account

when computing the weighted Wiener polynomials of certain composite graphs (see [7]),

Ashrafi et al. [1, 2] defined the first Zagreb coindex and second Zagreb coindex as

M1(G) =
∑

uv �∈E(G)

(dG(u) + dG(v)) and M2(G) =
∑

uv �∈E(G)

dG(u)dG(v),

respectively.

It is well known that many graphs arise from simpler graphs via various graph op-

erations. Hence, it is important to understand how certain invariants of such composite

graphs are related to the corresponding invariants of the original graphs. Ashrafi et al. [1]

explored basic mathematical properties of Zagreb coindices and in particular presented

explicit formulae for these new graph invariants under several graph operations, such

as, union, join, Cartesian product, disjunction product, and so on. Ashrafi et al. [2]

determined the extremal values of Zagreb coindices over some special classes of graphs.

However, among established results in the existing literature, we can hardly find a re-

sult dealing with the relations between Zagreb coindices and distance-based topological

indices.

In this paper, we reveal the relations between the first Zagreb coindex and some

distance-based topological indices. This paper is organized as follows. In Section 2,

we give two general bounds on the first Zagreb coindex. In Section 3, we establish sharp

bounds on the first Zagreb coindex in terms of distance-based topological indices including

Wiener index, eccentric connectivity index, eccentric distance sum and degree distance.

In Section 4, we establish sharp lower and upper bounds on the second Zagreb coindex in

terms of modified degree distance.

2 General bounds on M 1 index

In this section, we give two general bounds on the first Zagreb coindex in terms of order,

size, maximum degree and minimum degree.
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It is not difficult to see that the contribution of each vertex u in G to M1(G) is exactly

(n− dG(u)− 1)dG(u). Thus, we can rewrite the first Zagreb coindex as

M1(G) =
∑

u∈V (G)

(n− dG(u)− 1)dG(u). (2)

Theorem 2.1 Let G be a connected graph of order n. Then

0 ≤ M1(G) ≤ n(n− 1)2

4

where the left-hand side equality holds if and only if G ∼= Kn, and the right-hand side one

holds if and only if n is odd and G is a n−1
2
-regular graph.

Proof. Obviously, each vertex in Kn contributes 0 to M1 index. So M1(Kn) = 0.

Any connected graph G not isomorphic to Kn has at least one non-adjacent vertex pair.

Then M1(G) > 0.

Now, let us treat the right-hand side inequality. In view of the equation (2), we have

M1(G) ≤ n ·
(
n−1
2

)2
= n(n−1)2

4
with equality if and only if for each vertex u, dG(u) =

n−1
2
,

i.e., n is odd and G is a n−1
2
-regular graph.

A graph G is said to be (a, b)-biregular if its vertex degrees assume exactly two different

values: a and b.

Theorem 2.2 Let G be a connected graph of order n, size m, maximum degree �(G)

and minimum degree δ(G). Then

(n2 − n− 2m)δ(G) ≤ M1(G) ≤ (n2 − n− 2m)�(G)

where the left-hand side equality holds if and only if G is a 2m
n
-regular graph or a (n −

1, δ(G))-biregular graph with 2m−nδ(G)
n−1−δ(G)

vertices having degree n − 1 and n2−n−2m
n−1−δ(G)

vertices

having degree δ(G), and the right-hand side equality holds if and only if G is a 2m
n
-regular

graph or a (n− 1,�(G))-biregular graph with 2m−n(G)
n−1−(G)

vertices having degree n− 1 and
n2−n−2m
n−1−(G)

vertices having degree �(G).

Proof. If G ∼= Kn, then M1(G) = 0 and the result follows readily. Suppose that

G � Kn and that there are t (0 ≤ t ≤ n − 2) vertices of degree n − 1. It is obvious that

the number of vertex pairs {u, v} in G at distance greater than or equal to 2 is exactly(
n
2

)
−m = n(n−1)

2
−m. Thus

2δ(G)

[
n(n− 1)

2
−m

]
≤ M1(G) ≤ 2�(G)

[
n(n− 1)

2
−m

]
,

that is,

(n2 − n− 2m)δ(G) ≤ M1(G) ≤ (n2 − n− 2m)�(G).
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The above left (resp., right) equality holds if and only if for each vertex x in G, if

dG(x) �= n − 1, then dG(x) = δ(G) (resp., �(G)). Then t(n − 1) + (n − t)δ(G) = 2m

(resp., t(n− 1) + (n− t)δ(G) = 2m). So we have t = 2m−nδ(G)
n−1−δ(G)

(resp., t = 2m−n(G)
n−1−(G)

).

If t = 0, then each of above two equalities holds if and only if G is a 2m
n
-regular graph.

Otherwise, we have the left-hand side equality holds if and only if G is a (n − 1, δ(G))-

biregular graph with 2m−nδ(G)
n−1−δ(G)

vertices having degree n − 1 and n2−n−2m
n−1−δ(G)

vertices having

degree δ(G), and the right-hand side equality holds if and only if G is a (n − 1,�(G))-

biregular graph with 2m−n(G)
n−1−(G)

vertices having degree n− 1 and n2−n−2m
n−1−(G)

vertices having

degree �(G). This proves theorem.

3 Sharp bounds on M 1 index involving

distance-based topological indices

In this section, we present sharp bounds on the first Zagreb coindex in terms of some

distance-based topological indices including Wiener index, eccentric connectivity index,

eccentric distance sum, and degree distance.

The eccentric connectivity index (see [3, 16, 17]) of a connected graph G, denoted by

ξc(G), is defined as

ξc(G) =
∑

u∈V (G)

ecG(u)dG(u). (3)

As introduced in [4], we call ξ(G) =
∑

u∈V (G)

ecG(u) the total eccentricity of a connected

graph G.

Theorem 3.1 Let G be a connected graph of order n and size m. Then

ξc(G)− 2m ≤ M1(G) ≤ (n− 1)n2 − 2mn− (n− 1)ξ(G) + ξc(G)

with either equality if and only if G ∼= P4 or Kn − iK2 (0 ≤ i ≤ �n
2
�).

Proof. First, let us prove the left-hand side inequality. For each vertex v, we clearly

have ecG(v) ≤ n− dG(v). According to the equations (2) and (3), we have

M1(G) ≥
∑

v∈V (G)

(ecG(v)− 1)dG(v)

= ξc(G)− 2m.

Suppose now that M1(G) = ξc(G)− 2m. Then we must have ecG(v) = n− dG(v) for

each vertex v in V (G). We first prove the following claim.

Claim 1 Suppose that ecG(v) = n − dG(v) for each vertex v in V (G). If G � P4, then

ecG(v) ≤ 2 for each v.
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Proof. Suppose to the contrary that ecG(v) ≥ 3 for some v. Let ecG(v) = dG(v, u)

for some vertex u. Then dG(v, u) ≥ 3. Set NG(v) = {v1, . . . , vdG(v)} and assume that

the vertex vdG(v) lies within the u − v path. Clearly, uvi �∈ E(G) (i = 1, . . . , vdG(v)),

for otherwise, dG(v, u) = 2, a contradiction. Thus, dG(u) = 1. Note that ecG(u) ≤
1 + ecG(v) with equality only if each vi is not adjacent to any vertex in the set V (G) \
{v1, . . . , vdG(v)−1, u, v}. So we have dG(u) + ecG(u) = 1 + ecG(u) ≤ 2 + ecG(v) = 2 +

[n− dG(v)]. Note that ecG(u) + dG(u) = n, thus, we have dG(v) ≤ 2 with equality only if

dG(v1) = 1. By above analysis, G is just the path Pn when dG(v) = 1 or 2.

By our assumption that G � P4 and ecG(v) ≥ 3, we must have G is a path Pn of order

at least 5. However, for such a path Pn, the equality ecG(v) = n− dG(v) cannot hold for

each vertex v in Pn, a contradiction. This proves the claim.

By Claim 1, if G � P4, then ecG(v) = 1 or 2 for each v in G. Since ecG(v)+dG(v) = n

for each vertex v, we must have dG(v) = n − 1 or n − 2 for each v in G, that is, G ∼=
Kn − iK2 (0 ≤ i ≤ �n

2
�). So we have G ∼= P4 or Kn − iK2 (0 ≤ i ≤ �n

2
�).

Conversely, if G ∼= P4 or Kn − iK2 (0 ≤ i ≤ �n
2
�), then we clearly have ecG(v) =

n− dG(v) for each vertex v in V (G). Thus, M1(G) = ξc(G)− 2m, as desired.

Now, we turn to the right-hand side inequality.

Again, by the equation (2), we have

M1(G) ≤
∑

v∈V (G)

(n− dG(v)− 1)(n− ecG(v))

= (n− 1)n2 − 2mn− (n− 1)ξ(G) + ξc(G).

The equality holds if and only if for any vertex v, dG(v) = n − ecG(v). By previous

analysis, we must have G ∼= P4 or Kn − iK2 (0 ≤ i ≤ �n
2
�). This completes the proof.

For a connected graph G, we let W (G) =
∑

{u, v}⊆V (G)

dG(u, v) denote the Wiener index

(see [6] for a survey).

Theorem 3.2 Let G be a connected graph of order n and size m. Then

M1(G) ≥ 2W (G)− 2M1(G) + 6m(n− 1)− n3 + n2

with equality if and only if G ∼= Kn − iK2 (0 ≤ i ≤ �n
2
�).

Proof. Let DG(x) =
∑

y∈V (G)

dG(x, y). Then W (G) = 1
2

∑
x∈V (G)

DG(x). We have

DG(x) =
∑

y∈V (G)

dG(x, y)

= dG(x) +
∑

y∈V (G)\NG[v]

dG(x, y)

-203-



≤ dG(x) +
∑

y∈V (G)\NG[v]

ecG(x)

= dG(x) + (n− dG(x)− 1)ecG(x)

≤ dG(x) + (n− dG(x)− 1)(n− dG(x))

= (dG(x))
2 − 2(n− 1)dG(x) + n2 − n.

Note that M1(G) =
∑

x∈V (G)

[(n− 1)dG(x)− (dG(x))
2]. Thus,

W (G) =
1

2

∑
x∈V (G)

DG(x)

≤ 1

2

∑
x∈V (G)

[(dG(x))
2 − 2(n− 1)dG(x) + n2 − n]

=
1

2
M1(G) +

1

2

∑
x∈V (G)

[2(dG(x))
2 − 3(n− 1)dG(x) + n2 − n]

=
1

2
M1(G) +M1(G)− 3m(n− 1) +

n3 − n2

2
.

Suppose now that W (G) = 1
2
M1(G) + M1(G) − 3m(n − 1) + n3−n2

2
. Then we must

guarantee that for each x in V (G) and any y ∈ V (G) \NG[v], dG(x, y) = ecG(x), that is,

ecG(x) ≤ 2. Also, we must guarantee that for each x ∈ V (G), dG(x) + ecG(x) = n. By

the previous analysis in Theorem 3.1, we must have G ∼= P4 or Kn − iK2 (0 ≤ i ≤ �n
2
�).

Since P4 has diameter 3, we must have G ∼= Kn − iK2 (0 ≤ i ≤ �n
2
�).

Conversely, if G ∼= Kn− iK2 (0 ≤ i ≤ �n
2
�), then W (G) = 1

2
M1(G)+M1(G)− 3m(n−

1) + n3−n2

2
, that is, M1(G) = 2W (G)− 2M1(G) + 6m(n− 1)− n3 + n2.

This completes the proof.

The degree distance or schultz index of a connected graph G is defined [10] as

D
′
(G) =

∑
{u, v}⊆V (G)

(dG(u) + dG(v))dG(u, v). (4)

For recent results on degree distance, see [14, 15,23,24].

Note that Kn has diameter one and M1(Kn) = 0. So, we will always assume that the

underlying graphs have diameter greater than or equal to two in the subsequent part of

this paper.

Theorem 3.3 Let G be a nontrivial connected graph of diameter d ≥ 2. Then

D
′
(G)−M1(G)

d
≤ M1(G) ≤ D

′
(G)−M1(G)

2

with either equality if and only if d = 2.
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Proof. By means of the equations (1) and (4),

D
′
(G) =

∑
uv∈E(G)

(dG(u) + dG(v))dG(u, v) +
∑

uv �∈E(G)

(dG(u) + dG(v))dG(u, v)

= M1(G) +
∑

uv �∈E(G)

(dG(u) + dG(v))dG(u, v)

≥ M1(G) + 2
∑

uv �∈E(G)

(dG(u) + dG(v))

= M1(G) + 2M1(G).

Therefore, M1(G) ≤ D
′
(G)−M1(G)

2
with equality if and only if for any non-adjacent

vertex pairs {u, v}, dG(u, v) = 2, that is, d = 2.

Similarly, we have

D
′
(G) =

∑
uv∈E(G)

(dG(u) + dG(v))dG(u, v) +
∑

uv �∈E(G)

(dG(u) + dG(v))dG(u, v)

= M1(G) +
∑

uv �∈E(G)

(dG(u) + dG(v))dG(u, v)

≤ M1(G) + d
∑

uv �∈E(G)

(dG(u) + dG(v))

= M1(G) + dM1(G).

Therefore, M1(G) ≥ D
′
(G)−M1(G)

d
with equality if and only if for any non-adjacent

vertex pairs {u, v}, dG(u, v) = d, that is, d = 2. This completes the proof.

The reverse degree distance of a connected graph G of order n, size m and diameter d

is defined [28] as rD
′
(G) = 2(n− 1)md−D

′
(G).

By means of Theorem 3.3, we immediately get the following consequence.

Corollary 3.1 Let G be a nontrivial connected graph of order n, size m and diameter

d ≥ 2. Then

2(n− 1)md−r D
′
(G)−M1(G)

d
≤ M1(G) ≤ 2(n− 1)md−r D

′
(G)−M1(G)

2

with either equality if and only if d = 2.

Let ξd(G) =
∑

u∈V (G)

ecG(u)DG(u) denote the eccentric distance sum (see [13,18]), where

DG(u) is the sum of distances between u and all other vertices in G.

Lemma 3.1 ( [18]) Let G be a nontrivial connected graph on n ≥ 3 vertices. Then

ξd(G) ≤ 2nW (G)−D
′
(G)

with equality if and only if G ∼= P4 or Kn − ie, where i = 0, 1, . . . , �n
2
�.
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Corollary 3.2 Let G be a nontrivial connected graph. Then

M1(G) ≤ 2nW (G)− ξd(G)−M1(G)

2

with equality if and only if G ∼= Kn − ie, where i = 1, . . . , �n
2
�.

Proof. Note that Kn has diameter 1, Pn has diameter 3 and Kn− ie, i = 1, . . . , �n
2
�,

has diameter 2.

According to Theorem 3.3 and Lemma 3.1, we have

M1(G) ≤ 2nW (G)− ξd(G)−M1(G)

2

with equality if and only if G ∼= Kn − ie, where i = 1, . . . , �n
2
�.

4 Concluding remarks

In this paper, we have established sharp bounds for the first Zagreb coindex in terms of

distance-based topological indices including Wiener index, eccentric connectivity index,

eccentric distance sum, degree distance and reverse degree distance. It seems to be natural

to consider the relations between the second Zagreb coindex and these distance-based

topological indices. As expected, the properties of second Zagreb coindex are less elegant

than those of first Zagreb coindex. We present here a result revealing the relation between

second Zagreb coindex and the modified schultz index.

The modified degree distance or modified schultz index of a connected graph G is

defined [20] as

S∗(G) =
∑

{u, v}⊆V (G)

dG(u)dG(v)dG(u, v). (5)

Theorem 4.1 Let G be a nontrivial connected graph of diameter d ≥ 2. Then

S∗(G)−M2(G)

d
≤ M2(G) ≤ S∗(G)−M2(G)

2

with either equality if and only if d = 2.

Proof. According to the equation (5),

S∗(G) =
∑

uv∈E(G)

dG(u)dG(v)dG(u, v) +
∑

uv �∈E(G)

dG(u)dG(v)dG(u, v)

= M2(G) +
∑

uv �∈E(G)

dG(u)dG(v)dG(u, v)

≥ M2(G) + 2
∑

uv �∈E(G)

dG(u)dG(v)
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= M2(G) + 2M2(G).

Therefore, M2(G) ≤ S∗(G)−M2(G)
2

with equality if and only if d = 2. Similarly, we have

S∗(G) =
∑

uv∈E(G)

dG(u)dG(v)dG(u, v) +
∑

uv �∈E(G)

dG(u)dG(v)dG(u, v)

= M2(G) +
∑

uv �∈E(G)

dG(u)dG(v)dG(u, v)

≤ M2(G) + d
∑

uv �∈E(G)

dG(u)dG(v)

= M2(G) + dM2(G).

Therefore, M2(G) ≥ S∗(G)−M2(G)
d

with equality if and only if d = 2.
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[8] T. Došlić, B. Furtula, A. Graovac, I. Gutman, S. Moradi, Z. Yarahmadi, On vertex–
degree–based molecular structure descriptors, MATCH Commun. Math. Comput.
Chem. 66 (2011) 613–626.

[9] Z. Du, B. Zhou, Degree distance of unicyclic graphs, Filomat 24 (2010) 95–120.

[10] I. Gutman, Selected properties of the Schultz molecular topological index, J. Chem.
Inf. Comput. Sci. 34 (1994) 1087–1089.

[11] J. Hao, Theorems about Zagreb indices and modified Zagreb indices, MATCH Com-
mun. Math. Comput. Chem. 65 (2011) 659–670.

-207-



[12] H. Hua, ZagrebM1 index, independence number and connectivity in graphs, MATCH
Commun. Math. Comput. Chem. 60 (2008) 45–56.

[13] H. Hua, K. Xu, S. Wen, A short and unified proof of Yu et al’s two results on the
eccentric distance sum, J. Math. Anal. Appl. 382 (2011) 364–366.

[14] H. Hua, On degree distance of some composite graphs, Bull. Aust. Math. Soc. in
press.
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