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Abstract

The first (M1) and the second (M2) Zagreb indices, as well as the first (M1) and the second

(M2) Zagreb coindices, and the relations between them are examined. An upper bound on

M1(T ) and a lower bound on 2M2(T ) +
1
2M1(T ) of trees is obtained, in terms of the number

of vertices (n) and maximum degree (Δ). Moreover, we compare the Zagreb indices and the

Zagreb coindices of trees.

1 Introduction

Let G = (V,E) be a simple graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set

E(G). This graph has n vertices and m = |E(G)| edges. The edge connecting the vertices

vi and vj will be denoted by vivj .

For vi ∈ V (G), di is the degree of the vertex vi , i = 1, 2, . . . , n . The maximum vertex

degree of the graph G is denoted by Δ .
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In the early 1970s Trinajstić and one of the present authors [19] derived a formula

for estimating the total π-electron energy of conjugated systems. Within this study, two

vertex–degree based invariants were encountered, that eventually were named [6] the first

(M1) and the second (M2) Zagreb indices. Soon after that, M1 and M2 were recognized

as measures of the branching of the carbon–atom molecular skeleton [18], and since then

these are frequently used for structure–property modeling [28,29]. Details on the chemical

applications of the two Zagreb indices can be found in the books [28,29], the reviews [6,26,

30], and elsewhere [27, 32]. For details on the mathematical theory of the Zagreb indices

see the recent works [1–3,7,9,10,15–17,20,21,23–25,31,35,36]. In the newest time much

attention is being paid to the comparison of M1 and M2 [1,2,7,9,10,20,21,23–25,31,35].

The first and second Zagreb indices of a graph G are defined as

M1 = M1(G) =
∑

vi∈V (G)

d2i and M2 = M2(G) =
∑

vivj∈E(G)

di dj .

It is easy to show that the first Zagreb index can also be expressed as

M1(G) =
∑

vivj∈E(G)

[di + dj] .

The Zagreb indices can be viewed as consisting of the contributions of pairs of adjacent

vertices to additively and multiplicatively weighted versions of Wiener numbers and poly-

nomials [22]. Curiously enough, it turns out that similar contributions of non-adjacent

pairs of vertices must be taken into account when computing the weighted Wiener poly-

nomials of certain composite graphs [14]. As the sums involved run over the edges of the

complement of G, such quantities were called Zagreb coindices. In [4, 5], Ashrafi et al.

defined the first and second Zagreb coindices of the graph G as

M1 = M1(G) =
∑

vivj /∈E(G)

[di + dj] and M2 = M2(G) =
∑

vivj /∈E(G)

di dj .

As usual, K1,n−1 and Pn denote, respectively, the star and the path on n vertices.

Given a graph G, a subset S(G) of V (G) is called an independent set of G if G[S], the

subgraph induced by S(G), is a graph with |S(G)| isolated vertices. The independence

number α(G) of G is the number of vertices in the largest independent set of G. Recall

that if T is a tree of order n, then �n/2� ≤ α(T ) ≤ n− 1 [8].

Let n and α be positive integers, such that �n/2� ≤ α ≤ n − 1. Denote by Sn,α the

tree obtained from the star K1,α, by attaching to n− α− 1 of its pendent vertices a new
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pendent vertex. Then Sn,α is a tree of order n with independence number α. If α = n−1,

then Sn,α
∼= K1,n−1 . If T is a tree of order n, such that Δ = α, then T ∼= Sn,α.

By direct calculation:

M1(Sn,α) = α2 − 3α + 4n− 4 and M2(Sn,α) = nα− 3α + 2n− 2 .

The paper is organized as follows. In Section 2, we present an upper bound on M1(T )

of a tree T in terms of n and Δ. Using this result, we prove that M1(T ) > M1(T ) for

T � K1,n−1. In Section 3, we obtain a lower bound on 2M2(T ) +
1
2
M1(T ) also in terms

of n and Δ. In addition, we compare the second Zagreb index and the second Zagreb

coindex for trees.

2 Comparing the first Zagreb index and coindex of

trees

Theorem 2.1. Let T be a tree with n vertices and maximum degree Δ . Then

M1(T ) ≤ n2 − 3n+ 2(Δ + 1) (1)

with equality holding if and only if T ∼= K1,n−1 or T ∼= P4 .

Proof: If T = K1,n−1 , then M1(T ) = n2 − 3n + 2(Δ + 1) = n(n − 1) , the equality

holds in (1). If T = Pn , then M1(T ) = 4n − 6 < n2 − 3n + 2(Δ + 1) for n > 4 and

M1(T ) = 4n−6 = n2−3n+2(Δ+1) for n = 4. We therefore assume that T �= K1,n−1, Pn ,

that is, 3 ≤ Δ ≤ n− 2.

In this case we have to show that the inequality in (1) is strict. Let vi be the maximum

degree vertex of degree Δ in T . Also let vk be a vertex of degree one, adjacent to vertex

vj of degree dj, j �= i in T . We transform T into another tree T ∗ by deleting the edge

vkvj , and joining the vertices vi and vk by an edge. Let the new degree sequence be

d∗1 , d
∗
2 , . . . , d

∗
n . Therefore d∗t = dt for t �= i, j whereas d∗i = Δ+ 1 and d∗j = dj − 1. Thus

M1(T )−M1(T
∗) = Δ2 + d2j − (Δ + 1)2 − (dj − 1)2 = −2(Δ− dj + 1) ≤ −2

because Δ − dj ≥ 0. Therefore we have M1(T ) ≤ M1(T
∗) − 2, with equality holding if

and only if Δ = dj .

By the above described construction we have increased the value of M1(T ) . If T ∗ is

the star, then T ∼= Sn,n−1, Δ = n− 2 and hence M1(Sn,n−1) = n2− 3n+6 < n2−n− 2 as
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n > 4 (T �= K1,n−1, Pn). Otherwise, we continue the construction as follows. We choose

one pendent vertex, which is not adjacent to vi , from T ∗ . Repeating the above procedure

sufficient number of times, we arrive at a tree in which the vertex vi is of degree n − 1 ,

i. e., we arrive at K1,n−1 . Thus

M1(T ) ≤ M1(T
∗)−2 < M1(T

∗∗)−4 < · · · < M1(K1,n−1)−2(n−Δ−1) = n2−3n+2(Δ+1)

that is,

M1(T ) < n2 − 3n+ 2(Δ + 1) .

This completes the proof. �

For the star K1,n−1, one can easily see that M1(K1,n−1) = n(n− 1) > (n− 1)(n− 2) =

M1(K1,n−1). Also we have M1(P4) = 10 > 8 = M1(P4). For all other tree we have the

following:

Theorem 2.2. Let T be a tree of order n (n ≥ 5). If T � K1,n−1 , then

M1(T ) > M1(T ) .

Proof: Since T � K1,n−1 , we must have Δ ≤ n − 2. Then there exist a vertex vi of

degree di ≥ 2. Since T is a tree, there are n(n− 1)/2− (n− 1) = (n− 1)(n− 2)/2 pairs

of non-adjacent vertices. For each such pair (vi, vj), the condition di + dj ≥ 2 is satisfied.

Thus we have

M1(T ) ≥ (n− 1)(n− 2) + (Δ− 1)(n−Δ− 1) + (di − 1)(n− di − 1) . (2)

For Δ = n− 2, it must be di = 2 and then from (2) and the fact that n ≥ 5 follows

M1(T ) ≥ n2 − n− 4 ≥ n2 − 3n+ 6 = M1(T ) .

Otherwise, Δ ≤ n− 3. Consider the function

f(x) = (x− 1)(n− x− 1) for 2 ≤ x ≤ n− 3

for which f ′(x) = n− 2x.

Since f(x) is an increasing function on [2, n/2] and a decreasing function on [n/2, n−3],

we have (x − 1)(n − x − 1) ≥ n − 3 as n ≥ 5. From (2), in view of Theorem 2.1 and

Δ ≤ n− 3 it follows
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M1(T ) ≥ (n− 1)(n− 2) + 2(n− 3) = n2 − n− 4 ≥ n2 − 3n+ 2(Δ + 1) > M1(T )

which completes the proof. �

3 Comparing the second Zagreb index and coindex

of trees

Denote by TΔ,n−Δ−1 the tree constructed by joining a pendent vertex of the star K1,Δ

with an end vertex of the path Pn−Δ−1 . This tree is sometimes referred to as the broom

[13, 33, 34]. For this tree,

M1(TΔ,n−Δ−1) = Δ2 + 4n− 3Δ− 4

M2(TΔ,n−Δ−1) = 4n+ (Δ− 1)(Δ− 2)− 8 .

Therefore

2M2(TΔ,n−Δ−1) +
1

2
M1(TΔ,n−Δ−1) =

5

2
Δ2 − 15

2
Δ + 10n− 14 .

Now we give a lower bound on 2M2(T ) +
1
2
M1(T ) in terms of n and Δ.

Theorem 3.1. Let T be a tree of order n with maximum degree Δ, different from the

star K1,n−1 . Then

2M2(T ) +
1

2
M1(T ) ≥

5

2
Δ2 − 15

2
Δ + 10n− 14 (3)

with equality if and only if T ∼= TΔ,n−Δ−1 .

Proof: If T = TΔ,n−Δ−1 , then the equality holds in (3). Therefore we need to consider

the trees T � K1,n−1, TΔ,n−Δ−1 .

Assume that vi is the maximum degree vertex of degree Δ in T . Now we find the

longest path from the vertex vi and denote it by Pj : vivi+1vi+2 . . . vi+j . Its length is

j. Let vk (k �= i + j) be a vertex of degree one, adjacent to vertex v� , � �= i , that is,

vkv� ∈ E , vkvi /∈ E . We transform T into another tree T ∗ by deleting the edges vkv� ,

-193-



vivi+1 , and by joining the vertices vi and vi+1 to vk, by edges. Let the new degree sequence

be d∗1 , d
∗
2 , . . . , d

∗
n . Therefore d∗t = dt for t �= � , k whereas d∗� = d� − 1 and d∗k = 2 . Now,[

2M2(T ) +
1

2
M1(T )

]
−
[
2M2(T

∗) +
1

2
M1(T

∗)
]

= 2
[
M2(T )−M2(T

∗)
]
+

1

2

[
M1(T )−M1(T

∗)
]

= 2

⎡
⎣didi+1 − 2di − 2di+1 + d� +

∑
v�rv�∈E,v�r �=vk

d�r

⎤
⎦+

1

2

[
d2� + 1− (d� − 1)2 − 4

]

= 2

⎡
⎣(di − 2)(di+1 − 2) + d� − 4 +

∑
v�rv�∈E,v�r �=vk

d�r

⎤
⎦+ (d� − 2) ≥ 0 (4)

as di, di+1, d� ≥ 2. We thus obtained

2M2(T ) +
1

2
M1(T ) ≥ 2M2(T

∗) +
1

2
M1(T

∗) . (5)

If v� = vi+1 , then one can see easily that relation (5) also holds.

By the above described construction, the value of 2M2(T )+
1
2
M1(T ) has not increased.

If T ∗ is the tree TΔ,n−Δ−1 , then (5) remains valid. Otherwise, we continue the construction

as follows. We choose one pendent vertex from T ∗, different from vi+j. Repeating the

above procedure sufficient number of times, we arrive at TΔ,n−Δ−1 . Thus

2M2(T ) +
1

2
M1(T ) ≥ 2M2(T

∗) +
1

2
M1(T

∗) ≥ 2M2(T
∗∗) +

1

2
M1(T

∗∗)

≥ · · · > 2M2(TΔ,n−Δ−1) +
1

2
M1(TΔ,n−Δ−1) =

5

2
Δ2 − 15

2
Δ + 10n− 14 .

The inequality in the last step is strict, because in that case the pendent neighbor vl is

adjacent to vi or the pendent neighbor v� lies on the longest path from vertex vi to vertex

vi+j . Consequently, the inequality in (4) is strict.

Thus, it is

2M2(T ) +
1

2
M1(T ) =

5

2
Δ2 − 15

2
Δ + 10n− 14

if and only if T ∼= TΔ,n−Δ−1 . This completes the proof. �

The next result is equivalent to what earlier was obtained in [11] by two of the present

authors:
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Lemma 3.2. Let G be a simple graph on n vertices and m edges. Then

M2(G) = 2m2 −M2(G)− 1

2
M1(G) .

For the path Pn (n ≥ 5),

M2(Pn) = 2n2 − 10n+ 13 > 4n− 8 = M2(Pn) .

Note that Δ(Pn) = 2. For trees with Δ-values greater than 2 we have:

Theorem 3.3. Let T be a tree of order n with maximum degree Δ. If Δ ≥ 1.5 +√
4
5
n2 − 28

5
n+ 173

20
, then

M2(T ) ≤ M2(T ) .

Proof: From Lemma 3.2,

M2(T )−M2(T ) = 2(n− 1)2 − 2M2(T )−
1

2
M1(T )

≤ 2
(
n2 − 2n+ 1)− (

5

2
Δ2 − 15

2
Δ + 10n− 14

)

= 2n2 − 14n− 5

2
Δ2 +

15

2
Δ + 16 ≤ 0

as Δ ≥ 1.5 +
√

4
5
n2 − 28

5
n+ 173

20
. �

In the following two results we give upper bounds on the first and second Zagreb

indices of trees in terms of n and α.

Lemma 3.4. [12] Let T be a tree of order n with independence number α. Then

M1(T ) ≤ α2 − 3α + 4n− 4

with equality holding if and only if T ∼= Sn,α .

Lemma 3.5. [12] Let T be a tree of order n with independence number α. Then

M2(T ) ≤ nα− 3α + 2n− 2

with equality holding if and only if T ∼= Sn,α .
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For the star K1,n−1,

M2(K1,n−1) = (n− 1)2 >
1

2
(n− 1)(n− 2) = M2(K1,n−1) .

Also, for Sn,α,

M2(Sn,n−2) = (n− 1)(n− 2) + 2 >
1

2
(n2 − 2n− 1) = M2(Sn,n−2) .

But we have the following result:

Theorem 3.6. Let T be a tree of order n with independence number α. If

n ≥ 1
2

[
α + 5 +

√
2α2 − 5α + 9

]
, then

M2(T ) > M2(T ) .

Proof: By Lemma 3.2,

M2(T )−M2(T ) = 2(n− 1)2 − 2M2(T )−
1

2
M1(T )

≥ 2(n− 1)2 − 2(nα− 3α + 2n− 2)− 1

2
(α2 − 3α + 4n− 4)

= 2n2 − 1

2
α2 − 2nα− 10n+

15

2
α + 8 .

Now we have to show that M2(T ) ≥ M2(T ), that is,

n2 − n(α + 5)− 1

4
α2 +

15

4
α + 4 ≥ 0

which, evidently, is always obeyed as n ≥ 1
2

[
α + 5 +

√
2α2 − 5α + 9

]
. This completes

the proof. �
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[22] D. J. Klein, T. Došlić, D. Bonchev, Vertex-weightings for distance moments and

thorny graphs, Discr. Appl. Math. 155 (2007) 2294–2302.

[23] B. Liu, Z. You, A survey on comparing Zagreb indices, in: I. Gutman, B. Furtula

(Eds.), Novel Molecular Structure Descriptors – Theory and Applications I , Univ.

Kragujevac, Kragujevac, 2010, pp. 227–239.

[24] B. Liu, Z. You, A survey on comparing Zagreb indices, MATCH Commun. Math.

Comput. Chem. 65 (2011) 581–593.

[25] B. Liu, M. Zhang, Y. Huang, Comparing variable Zagreb indices of graphs, MATCH

Commun. Math. Comput. Chem. 65 (2011) 671–684.
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[32] D. Vukičević, N. Trinajstić, On the discriminatory power of the Zagreb indices for

molecular graphs, MATCH Commun. Math. Comput. Chem. 53 (2005) 111–138.

[33] W. Yan, L. Ye, On the minimal energy of trees with a given diameter, Appl. Math.

Lett. 18 (2005) 1046–1052.

[34] L. Ye, X. Yuan, On the minimal energy of trees with a given number of pendent

vertices, MATCH Commun. Math. Comput. Chem. 57 (2007) 193–201.

[35] M. Zhang, B. Liu, On comparing variable Zagreb indices for unicyclic graphs,

MATCH Commun. Math. Comput. Chem. 63 (2010) 461–468.

[36] Q. Zhao, S. Li, On the maximum Zagreb indices of graphs with k cut vertices, Acta

Appl. Math. 111 (2010) 93–106.

-198-




