
  

 
 
 
 
 
 
 
 
 

On the Relationships between the 
First and Second Zagreb Indices 

 

Tamás Réti  
 

Széchenyi István University, Egyetem tér 1, H-9026 Győr, Hungary 
reti@sze.hu 

(Received September 1, 2011) 

 
Abstract  
The Zagreb indices introduced by Gutman and Trinajstić more than thirty years ago are 
graph-based molecular structure descriptors. The research and application of the Zagreb 
indices appears mainly in mathematical chemistry. In this paper we present some new 
inequalities related to the first and the second Zagreb indices. By introducing the notions of P-
dominant graphs, and of the valency-functions of a graph, correspondences with the novel 
inequalities presented are discussed. In addition, we find examples characterizing the validity 
of Zagreb indices inequality and equalities for some particular classes of connected biregular 
graphs. 
 
1. Introduction 
 
The graph based molecular descriptors called Zagreb indices were introduced more than thirty 

years ago by Gutman and Trinajstić [1]. Since then, several results concerning both Zagreb 

indices have been communicated in the chemical and mathematical literature [2,3]. 

 

In this study some novel inequalities established between the first and the second Zagreb 

indices will be presented. This work was motivated primarily by the intensive research 

focused on the comparison of Zagreb indices M1 and M2 [4-14]. 

 

This paper is organized as follows. In section 2 graph theoretical notions and relations are 

introduced. In section 3 some known results based on the comparative study of Zagreb indices 
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are summarized. In section 4, novel relationships between M1 and M2 are presented. In section 

5, a possible reformulation of the Zagreb indices inequalities is given. Finally, in section 6, 

open problems and conjectures are outlined. 
 
2. Basic notions and relations 
 
We consider only finite connected graphs without loops and multiple edges. For a connected 

graph G, V(G) and E(G) denote the set of vertices and edges, and n= V  and m= E  the 

numbers of vertices and edges, respectively. An edge of G connecting vertices u and v is 

denoted by (u,v). A vertex u is called an r-vertex if the degree d(u) of u is equal to r. The 

number of r-vertices in G is denoted by nr . 
 

We denote by D(G) the finite set of degrees of G, and by Δ= Δ(G) and δ= δ(G) the maximum 

and the minimum degrees, respectively, of vertices of G. To avoid trivialities we always 

assume that n≥3, and d(u)≥1. A graph is called R-regular if all its vertices have the same 

degree R. 
 

We distinguish between two types of connected simple graphs: Connected graphs of class 1 

have the property that no two vertices of the same degree are adjacent. In connected graphs of 

class 2 at least one edge connects vertices of equal degree. Connected regular graphs belong 

to class 2.  It follows that a connected graph G belongs to the class 1, if and only if g(r,r)=0 

for any )G(Dr" . In this case it is easy to see that a connected graph G belongs to class 1, if 

and only if  �
#

�
sr

r rn2)s,r(g  holds for any )G(Dr" . 

Based on the considerations in Ref. [15], a graph G denoted by (Δ,δ) is said to be biregular 

(bidegreed) with degrees Δ and δ (Δ>δ≥1), if at least one vertex of G has degree Δ and at least 

one vertex has degree δ, and if no vertex of G has degree different from Δ or δ.  The complete 

bipartite graphs belong to the biregular graphs of class 1. Connected biregular graphs of class 

1, which are necessarily bipartite, are sometimes called semiregular graphs. 

 

Let a, b and c be three positive integers, 1≤ a ≤ b ≤ c ≤ n-1. The graph G denoted by (a,b,c) is 

said to be triregular  if for i=1,2,...n, either di =a or di =b or di =c, and there exists at least one 

vertex of degree a, at least one vertex of degree b, and at least one vertex of degree c.  

A subdivision graph S1(G) of a graph G is obtained by inserting a new vertex (of degree 2) on 

every edge of G. 
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3. Some known results relating to the relations between the first 
and second Zagreb indices 
 
 
The first Zagreb index M1(G) is equal to the sum of squares of the degrees of the vertices, and 

the second Zagreb index M2(G) is equal to the sum of products of the degrees of pairs of 

adjacent vertices of the graph G. 

 

 
���

$"

����
r rs)G(Vu

2
11 )sr)(s,r(g)u(d)G(MM

     

and 

 ���
$"

���
r rs)G(E)v,u(

22 rs)s,r(g)v(d)u(d)G(MM     

 

where g(r,s) is the total number of edges in G with end-vertex degrees r and s, where we do 

not distinguish g(r,s) and g(s,r). The number g(r,s) are sometimes denoted by  mr,s. 

 

In the past few years several research studies have been focused on the comparisons of the 

Zagreb indices M1(G) and M2(G). 

 

a) One of the open graph theoretical problems concerns the investigation of the topological 

parameter represented by M2/m -M1/n.  Numerous results have been reported on this [4-16]. 

Based on the AutoGraphiX conjecture-generating system it was conjectured [4,15] that for all 

simple connected graphs the inequality  

 

 
m

M
n

M 21 $          (1) 

 

holds,  and the bound is tight for complete graphs. The relation (1) is usually referred to as the 

Zagreb indices inequality. If the equality case is excluded, then we speak of the strict Zagreb 

indices inequality [15].  
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It was shown in [4,7,9] that this conjecture is not true and counterexamples were given for 

connected and disconnected graphs. Curiously, it was demonstrated that the number of 

connected graphs for which inequality M1/n >M2/m holds is infinite [10-16].  

 

The relation M1/n ≤ M2/m has been proven [4-7] to hold for trees, unicyclic graphs and 

chemical graphs   (i.e. connected graphs in which no vertex has degree greater than 4). 

 

Andova and Cohen [10] verified that Zagreb indices inequality holds for any connected 

biregular graph. Sun and Chen proved the following theorem [8]: If G is connected simple 

graphs with n vertices, and m edges, and i) Δ(G)-δ(G)≤2 or ii) Δ(G)-δ(G)≤3 and δ(G)≠2, then 

M1/n≤ M2/m. 

 

Recently, it was verified [15,16] that the Zagreb indices inequality (1) holds for the 

subdivision graph S1(G) of any graph G, biregular graph of class 1 (strict inequality holds for 

biregular graphs of class 2) , triregular graphs of class 1 (strict inequality holds for connected 

triregular (a,b,c) graphs of class 2). 

 

It is interesting to note that little attention was paid to the equality case, i.e. for which  

 

 
m

M
n

M 21 �          (2) 

 

holds.  In what follows, we call (2) the Zagreb indices equality [15].  

 

It is easy to show that the Zagreb indices equality holds for regular graphs. Hansen and 

Vukičević verified [4] that for a connected biregular graph G, the Zagreb indices equality 

holds if and only if G is a graph of class 1 (i.e. all edges of G have the same pair (Δ,δ) of 

degrees). 

Recently it has been verified [15] that there is no connected triregular graph of class 1 that 

satisfies the Zagreb indices equality. 

   

Moreover it was shown [15] that if a connected graph G has maximal degree 4, then G 

satisfies that Zagreb indices equality if and only if G is regular or biregular graph of class 1.  
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There, it was also verified [15] that there exist infinitely many connected graphs of maximal 

degree Δ=5 that are neither regular nor biregular of class 1, which satisfy the Zagreb indices 

equality. Recently Abdo et al. has proved [16], that there exist infinitely many connected 

graphs of maximal degree Δ≥5 that neither regular nor biregular of class 1 which satisfy the 

Zagreb indices equality.  

 

 

b) For a simple connected graph G (without loops and multiple edges) Das and Gutman 

proved [17] that 

 
2

21 m4M2M $�          

 

with equality if and only if G is the complete graph on n vertices. Moreover, they verified [17] 

that for a simple connected graph G  

 

1
2

2 M)1(
2
1m)1n(m2M �%�%��$        

 

with equality if G is a star graph or a regular graph. 

 

c) Caporossi et al. proved [18] that 

 

 n12m11MM 12 �&�        (3) 

 

holds for simple connected graphs. The bound is tight and attained if G is a simple connected 

graph with vertices Δ=3 and δ=2 only, m≥6n/5 and no pair of vertices of degree 2 are 

adjacent. Inequality (3) holds for polyhedral graphs as well. Because for a polyhedral graph 

GP the inequality m ≥3n/2 is valid, it follows that m≥6n/5. This implies that for GP the 

equality M2 – M1 =11m-12n holds if and only if GP is a simple (3-regular) polyhedral graph.  

 

In what follows some novel relations related to first and second Zagreb indices are presented, 

where in particular cases equalities are fulfilled for regular or biregular graphs of class 1. 
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4. Main results 
 
4.1 Theorems characterizing the relations between M1 and M2  
 
Proposition 1.  If G is a simple connected graph then 

 

 m
M

M 2
1 %�

'
&         (4) 

 

with equality if G is regular. 

 

Proof. Let u and v be vertices with degrees d(u)=r and d(v)=s, and consider the following 

inequalities: 

 

 � �� � 0sr &�'%�          

 

Therefore 

%�
'

&
'

%�'
&�

rssrsr         

 

From the inequalities above, we get 

 

�� ����
$ $

%�
'

&��
r rs r rsr r

1 )s,r(grs)s,r(g1)sr)(s,r(gM     

 

It is easy to see that equality holds in (4) if and only if, G is regular graph.  ▄ 

 

Proposition 2. If G is a simple connected graph then 

 

 mMM 2
1 %�

%
$         (5) 

and 

 mMM 2
1 '�

'
$         (6) 
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In both cases, equality holds if and only if, G is regular or a connected biregular graph of class 

1.  

Proof.  Let u and v be vertices with degrees d(u)=r and d(v)=s, and consider the following 

inequalities: 

 

 � �� � 0sr &%�%�          

 

 � �� � 0sr &�'�'          

Therefore 

 srrs
�&%�

%
          

 

 srrs
�&'�

'
          

 

Based on the previous inequalities, we obtain 

 

 ��� ��
$$

�
�
�

�
�
� %�
%

$���
r rsr r rs

r
2

1
rs)s,r(g)sr)(s,r(gnrM     

Consequently, 

 

 ���� %�
%

�%�
%

$
$$ r

2

rsr rs
1 m

M
)s,r(grs)s,r(g1M      

 

Similarly, we can prove inequality (6). It is trivial that for regular graphs, where δ=Δ=R, 

equality holds in (5) and (6). 

 

Moreover, it is easy to see that quality holds in (5) and (6) if G is a connected  biregular graph 

of class 1. In this case, M1=m(Δ+δ) and M2= mΔδ, consequently,  

 

 1
2 M)(mmmmM

�%�'�%�
%
%'

�%�
%

     

and 
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 1
2 M)(mmmmM

�%�'�'�
'
%'

�'�
'

.     

           ▄ 

Corollary 3. Since δ≤[d]=2m/n≤Δ, from (5) we have 

 

 � �
n
m2MmdMM

2
22

1 �
%

��
%

$        

 

Similarly, from (6) we have 

 

� � m
m2

nM
m

d
M

M 22
1 '��'�$        

 

It is obvious that equality holds for regular graphs.  

Corollary 4.  Using (5) and (6) one obtains directly 

 

� �
 
�
�

�
�
� �

%'
%�'

�
 
�
�

�
�
�

%�'��
�
�

�
�
�

%
�

'
$ mM

2
m11M

2
1M 2

21    (7) 

and  

�
�
�

�
�
� '�
'

�
�
�

�
�
� %�

%
$ mMmMM 22

1       (8) 

 

From the previous considerations it follows that equality holds in (7) and (8) not only for 

regular but for connected biregular graphs of class 1 as well. 

 
 
4.2 Domination degree and the valency function of a graph         
 
Let r and s"D(G) be degrees of graph G with 1≤δ≤s≤r≤Δ. A degree P"D(G) is called a 

domination degree of a connected graph G, if for any r and s degrees, g(r,s)=g(s,r)=0 if r ≠P. 

From this definition it follows that P"D(G) is a domination degree of G, if and only if  

 � � ��
s r

m)P,r(g)s,P(g         
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Since for any R-regular graph g(R,R)=m holds, this implies that each regular graph has only 

one domination degree (P=R), exactly. Moreover, from the definition it follows that the 

number of different domination degrees is at most 2. The connected biregular graphs of class 

1 with vertices of degrees δ and Δ (where Δ>δ≥1) have always 2 distinct domination degrees 

P1=δ and P2 =Δ, for which g(Δ,δ)=g(P2,P1)=m holds.  

 

In order to characterize the “impact” of different degree types on the structure of a graph G, 

we introduced a polynomial function of second degree ZG(X) defined as 

 

 21
2

G MXMmX)X(Z)X(Z ����        

 

The function Z(X) where X ≥0 is called the “valency function” of graph G. In the sequel, we 

will discuss some properties of function Z(X).  

The discriminant of Z(X) is given as DIS= M1*M1 - 4mM2.  If it is negative, there are no real 

roots. If DIS is positive, then Z(X) has two distinct positive roots, X1≤X2, for which 

 

 m/MXX 121 ��          

 m/MXX 221 �          

 

Additionally, Z(0)=M2 >0. 

 

 If DIS=0, then there is exactly one positive root XA, for which XA=X1= X2=M1/(2m). 

Valency function Z(X) has a minimum value at Xmin=M1/(2m) and Z(Xmin)=M2-

M1*M1/(4m)= -DIS/(4m). This means that the value of Z(Xmin) is determined by the 

discriminant.  

 

Proposition 5.  If G is a simple connected graph then 

 

 0MMm)(Z 21
2 &�%�%�%        (9) 

 0MMm)(Z 21
2 &�'�'�'        

 

Proof.  These inequalities are the consequence of equations (5) and (6).     ▄ 

-177-



  

Remark 6.  If function Z(X) has one or two positive roots (where X1≤X2 ), this implies that  
 

 '$$$%$ 21 XX1          

 

Remark 7.  If G is a simple connected graph then 

 

 1
m

)G(M
m

)G(M 21 $�          

 

Since δ≥1 and Z(δ) ≥0, from (9) it follows that  

 

 0MMm)1(Z 12 &���         

 

It is easy to see that equality holds if G is a star graph with n=m+1 vertices where δ=1 and 

Δ=g(Δ,1)=m hold, or G is a path Π1 having only one edge. It should be noted that if G is a 

triangle-free connected graph, then Z(1)= p3(G), where p3(G)  is the number of paths of length 

3 in G [19]. 

 

 Considering the correspondences between the domination degrees and the roots of 

valency function, the following conclusions can be drawn: 

 

i) If the valency function Z(X) of graph G has no real roots (i.e. the discriminant is negative), 

then G has no domination degree. 

 

ii) A necessary condition for the existence of only one domination degree is the fulfillment of 

equality DIS=0. 

 

iii) Similarly, a necessary condition for the existence of two distinct domination degrees is 

that the valency functions have a positive discriminant. 

 

iv) If graph G has domination degrees (one or two), these should be necessarily identical to 

the roots of function Z(X). The converse of this statement is false.  
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v) The quantity Z(Xmin)=M2-M1*M1/(4m)= - DIS/(4m) can be positive, or negative number or 

zero.  Depending on the values Z(Xmin), graphs can be classified into three disjoint sets.  It is 

easy to construct three different connected planar graphs for which Z(Xmin) is equal to 1, 0 

and -1, respectively. 

 
 
4.3   P-dominant graphs 
 
Let P≥1 be a positive integer. A connected graph G is called P-dominant if G has a )G(DP"  

domination degree. 

 

Proposition 8.  If a connected graph G is a P-dominant graph (i.e. G has a domination degree 

P), then  

 

 mP
P

)G(M)G(M 2
1 ��        (10) 

 

Proof.  Since for a graph with a domination degree P, all g(r,s) = 0 if r ≠ P, it follows that 

 

 
mP

P
)G(Mrs)s,r(g

P
1)s,P(gP

)sP)(s,P(g)sr)(s,r(g)G(M

2

s r rs

r rs s
1

���

�����

� ��

�� �

$

$
     

           ▄ 

 

Corollary 9.  The converse of this statement is false. To demonstrate this, consider the 

triregular graph GD having the degree set ( )5,4,3)G(D D �  on Figure 1. For GD, we have 

m(GD)=12,  M1(GD)=86 and M2(GD)=152.  It is easy to check that graph GD has no 

domination degree. In spite of this fact, for degree 4 the equality M1(GD)= M2(GD)/4+4m(GD) 

= 152/4 + 4*12= 86  holds. 
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Figure1. The graph GD demonstrating that the converse of Proposition 8 is false. 
 
 
Corollary 10.  If  S1(G) is a subdivision graph of  G then  

 

 ))G(S(m2
2

))G(S(M))G(S(M 1
12

11 ��       

 

Proof.  Graph S1(G) is a connected 2-dominant graph having a domination degree 2. ▄ 

 
4.4 Construction of 2-dominant graphs of class 1 
 
First of all, we introduce the notions of the K-subdivision graph and of the “bunch graph of 

size K” , where K≥2 is a positive integer. This latter one is a connected multigraph which 

contains K≥2 edges meeting at two vertices. 
 

 
 

Figure 2.  Replacing the edge e(X1,X2) of the parent graph G by a bunch graph 
 of size K (case of K=5) 
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The K-subdivision operation, that is the construction of the K-subdivision graph SK(G) of a 

connected graph G is based on following concept (See Figure 2.). 

 

As a first step, we generate the graph G(K) by replacing each edge of the parent graph G by a 

bunch graph of size K. (See Figure 2.) In the resulting graph G(K), all neighbor vertices are 

joined by K parallel edges. The number of vertices remains the same, but the degrees of every 

vertex will be equal to Kd(u), where d(u) stands for the degree of vertex u in the parent graph 

G. In the second step, we perform a subdivision operation on graph G(K). Consequently, the 

K-subdivison graph SK(G) is obtained from G(K) by inserting a new vertex (of degree 2) on 

every edge of G(K). 

 

Remark 11. From the concept of construction it is obvious that every graph SK(G) is a 

connected 2-dominant graph of class 1. Moreover, it is easy to see that considering the case of 

K=1, the graph S1(G) is identical to the traditional subdivision graph of G. 

 

Lemma 12. [15] If G is a connected biregular graph of class 1, then the Zagreb indices 

equality (2) holds. 

 

Lemma 13.  [9]  For any connected graph G,    

 

 
n
m4)G(M

2

1 &  

 

with equality if and only if G is regular.  

 

Proposition 14. The Zagreb indices inequality is obeyed by the K-subdivision graph SK(G)  

of any connected graph G.  The Zagreb indices equality for SK(G) holds if and only if the 

parent graph G is regular of degree R≥1. 

 

Proof. If G is a regular graph, then SK(G) is biregular of class 1. According to Lemma 12 for 

SKG) the Zagreb indices equality is valid. 
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It remains to verity that if G is not regular, then the strict Zagreb indices inequality holds.  If 

G has n vertices and m edges, then Sk(G)  has n +Km vertices and 2Km edges. If the vertex 

degrees of G are d1, d2...,dn then 

 

 mK4)G(MKmK4)Kd...,KdKd())G(S(M 1
222

n
22

2
22

1K1 �����   (11) 

 

On the other hand, since 2 is a domination degree of SK(G),  from (10) and (11) it follows that   

 

 )G(MK2mK8mK8)G(MK2))G(S(m4))G(S(M2))G(S(M 1
2

1
2

KK1K2 ������  

 

In the case of graph SK(G),  inequality  (1) will hold if 

 

 
Km2

)G(MK2
Kmn

mK4)G(MK 1
2

1
2

$
�

�  

 

which is directly transformed into   

 

 
n
m4)G(M

2

1 &         (12) 

 

According to the Lemma 13, equality holds in (12) if and only if G is regular. This implies 

that inequality (12) and therefore also inequality (1) are strict.    ▄ 

          

Proposition 15. Let G be a connected regular of degree R=3 without bridges. Based on the 

concept of perfect matching, from G it is possible to construct one or more connected 

biregular graph of class 1. 

 

Proof. It is known that every cubic (3-regular) graph G without bridges has a perfect 

matching [20,21]. Consider the finite edge set( ),...e,e 21 of G generated by perfect matching 

and, as a first step, replace all these edges by bunch graphs of size K. As a second step, 

perform a subdivision operation on each edge. The resulting graph will be a 2-dominant 

biregular graph of class 1, having vertices with degrees of δ =2 and Δ= R+K-1=K+2.   

          ▄ 
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 As an example, different perfect matchings of the triangular prism graph are shown in 

Figure 3. Starting with two possible perfect matchings of the triangular prism graph, (Figure 

3a1 and Figure.3b1), both resulting graphs (Figure 3a3 and Figure 3b3) will be non-isomorphic 

biregular graphs of class 1.  
  

 
 

 
Figure 3. Generation of two biregular graphs of class 1 using the perfect matching on the 

triangular prism graph (case of K=2) 
 
5. A possible quantitative characterization (reinterpretation) of 
Zagreb indices inequalities 
 
There are several concepts to characterize the Zagreb indices inequality in a quantitative 

manner.  For example, the topological descriptor W(G) defined as  
  

 
n

)G(M
m

)G(M
nm

)G(mM)G(nM)G(W 1212 ��
�

�      

 

would be a possible solution for this purpose [10-13,16]. Unfortunately, the descriptor W(G) 

is not sensitive enough to discriminate between the behaviors of graphs of different type.  It is 

easy to construct an infinite sequence of connected graphs ( ),..3,2,1q:)q(G � , for which  
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))q(G(mM))q(G(nMlim))q(G(Wlim 12
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holds. It seems that a better choice is: the topological index T(G) defined as 

 

 

 
)G(nM
)G(mM)G(TT

2

1��         (13) 

 

It follows that T≤1 if and only if, M1/n≤ M2/m, and T≥1 if and only if, M1/n≥M2/m. This 

implies that T(G)=1 if and only if the Zagreb indices equality holds. 

Das showed [22] that for a simple connected graph  

 

 ��
""

,��
)G(Vu)G(Vu

2
1 )u()u(d)u(dM        

 

 ��
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,��
)G(Vu

2

)G(E)v,u(
2 )u()u(d

2
1)v(d)u(dM       

where the positive quantity μ(u) stands for the average of the degrees of the vertices adjacent 

to u"V(G). Since δ≤ μ(u) ≤ Δ for any u"V(G), we get 

 

 '$
,

,
�$%

�
�

"

"

)G(Vu

)G(Vu

2

1
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)u()u(d

)u()u(d

M
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From this one obtains 
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�
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[d(G)]
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mM)G(T

n
m2[d(G)]

2
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 It follows that for a polyhedral graph GP (where δ≥3 and [d]<6) the inequality T(GP)<2 

holds. Currently, there is no information on the upper bounds of the topological descriptor 

T(G). It can be verified that the lower bound for T(G) is zero. It is easy to construct a 

connected triregular graph Gt for which T(Gt)≤ε where ε is an arbitrary small positive number. 

6.  Final remarks, open problems, conjectures 
 
As we have already mentioned, complete bipartite graphs -.,K  on α+β vertices for which 

1≤α< β are positive integers, form a subset of connected biregular graphs of class 1. 

 It is easy to show that for any α, β positive integers, (where 2≤α< β) there exist 

infinitely many non-isomorphic 3-connected biregular graphs of class 1 which are not 

complete bipartite graphs. An infinite sequence of such graphs [23] (denoted by Hα,β(J) where 

3J & ,4,5,...) can be easily constructed from J complete bipartite graphs -.,K as it is illustrated 

in Figure 4.    

 
 
 
 

 
 
 

Figure 4.Construction of the biregular non-complete bipartite graph of class 1 denoted by 
H3,4(4) (case of α = 3, β =4 and J=4) 
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It can be easily proved that there exist polyhedral graphs (3-connected planar graphs) with a 

domination degree P for which 3≤P≤10 holds. 
 
 

 
 
       a)         b) 
 

Figure 5.    Polyhedral graphs belonging to the family of connected biregular graphs of 
class 1, the rhombic dodecahedron  graph a) and the rhombic triacontahedron graph b) 

 
Conjectures: 

i) There is no polyhedral graph with a domination degree larger than ten.  

ii) The only polyhedral graph with maximum domination degree 10 is the dual of the 

truncated dodecahedron graph having twenty vertices of degree 3 and twelve vertices 

of degree 10. 

iii) The set of biregular polyhedral graphs of class 1 (graphs having two distinct 

domination degrees) is finite.  

iv) There exist only two polyhedral graphs belonging to the family of connected biregular 

graphs of class 1: the graph of the rhombic dodecahedron and the graph of the 

rhombic triacontahedron. Both of them are non-complete bipartite graphs having 

rhombus faces, only. See Figure 5. 
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