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Abstract

Let Φ(z), z ∈ Z, be the set of all connected graphs whose difference of the second
and the first Zagreb index is equal to z. We show that Φ(z) contains exactly one
element, a star, for z < −2, while it is infinite for z ≥ −2. Moreover, all elements
of Φ(−2) and Φ(−1) are trees, while Φ(0), besides trees, contains the cycles only.
Constructions of new elements of Φ(z) from the existing ones are based on the
existence of vertices of degree two. We further show that the only elements of
∪z≤0Φ(z), which do not contain vertices of degree two, are stars and the molecular
graphs of 2,3–dimethylbutane and 2,2,3–trimethylbutane.
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1 Introduction

Let G be a connected simple graph with the vertex set V (G), n = |V (G)|, and the edge

set E(G), m = |E(G)|. The first and the second Zagreb index of G are defined as

M1(G) =
∑

u∈V (G)

d2(u) and M2(G) =
∑

uv∈E(G)

d(u)d(v)

where d(u) denotes the degree of a vertex u ∈ V (G). The Zagreb indices are among

the oldest and most famous topological indices—they were introduced by Gutman and

Trinajstić in 1972, while the recent surveys of their chemical importance andmathematical

properties appear in [1, 2].

Comparing the values of the Zagreb indices of the same graph, Hansen and Vukičević

initially conjectured in [3] that
M1(G)

n
≤ M2(G)

m
(1)

with equality attained for complete graphs. This conjecture generated a lot of research,

and for a survey on its developments the reader is referred to [4]. While the conjecture does

not hold in general, it does hold for chemically important classes of trees, unicyclic graphs

and graphs with maximum vertex degree four. In the case of trees, the inequality (1) has

been proved first by Vukičević and Graovac [5], and new proofs has been found recently

by Andova, Cohen and Škrekovski [6], and by Stevanović and Milanič [7].

We pursue here a direct approach to comparing the Zagreb indices of the same graph.

Let

ZD(G) = M2(G)−M1(G)

and define the set Φ(z), for z ∈ Z, as

Φ(z) = {G : G is connected and ZD(G) = z}.

If G ∈ Φ(z), we will also say that G is z-Zagreb-balanced.

Basic examples and constructions of new elements of Φ(z) from the existing ones,

based on the existence of vertices of degree two, are given in Section 2. While Φ(z) is

infinite for z ≥ −2, in Section 3 we show that, for z < −2, Φ(z) contains exactly one

element, a star. Further, in Section 4 all elements of Φ(−2) and Φ(−1) are shown to be

trees, while Φ(0), besides trees, contains the cycles only. Some further properties of the

elements of Φ(−2), Φ(−1) and Φ(0) also given in this section. Finally, in Section 5 we
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show that, for −2 ≤ z ≤ 0, each element of Φ(z) has vertices of degree two, except for

two molecular graphs (of 2,3-dimethylbutane and of 2,2,3-trimethylbutane) that do not

have vertices of degree two.

This direct approach to comparing Zagreb indices has been pursued in [8] previously,

where Caporossi, Hansen and Vukičević showed that:

(i) if m ≤ 6n/5 then ZD(G) ≥ 6(m − n), with equality attained if and only if G is

a graph with vertices of degree 2 and 3 only and the vertices of degree 3 form an

independent set, and

(ii) if m ≥ n then ZD(G) ≥ 11m − 12n, with equality attained if G is a graph with

vertices of degree 2 and 3 only and, when m ≥ 6n/5, no pair of vertices of degree 2

are adjacent.

2 Basic examples and construction

We start with two examples which, together, show that Φ(z) is nonempty for each z ∈ Z.

Example 1 For a star K1,z, z ≥ 1, we have that M1(K1,z) = z2 + z and M2(K1,z) = z2,

so that ZD(K1,z) = −z.

Example 2 For z ≥ 0, let P2z+3 be a path on 2z + 3 vertices, having the vertex set

V (P2z+3) = {v1, . . . , v2z+3}. We construct the graph PC(z) on n = 3z + 3 vertices by

adding a pendant edge to vertices v3, v5, . . . , v2z+1 (Fig. 1). From M1(PC(z)) = 14z + 6

and M2(PC(z)) = 15z + 4, we have ZD(PC(z)) = z − 2.

Figure 1: Graph PC(3).

Hence, Φ(z) contains a star K1,−z for z ≤ −1, while it contains PC(z+2) for z ≥ −2.

Next, we present two constructions of new elements of Φ(z) from the existing ones.

Proposition 3 Let G be a graph with vertex w of degree two, and let Gk be the graph

obtained from G by replacing w with the path on k vertices, as in Fig. 2. Then ZD(Gk) =

ZD(G).
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Figure 2: Graphs G (left) and Gk (right).

Proof Note that the first Zagreb index may be written in an alternative form:

M1(G) =
∑

v∈V (G)

d2(v) =
∑

uv∈E(G)

(d(u) + d(v)) . (2)

Hence,

ZD(G) = M2(G)−M1(G) =
∑

uv∈E(G)

(d(u)d(v)− d(u)− d(v)) . (3)

Now, let x and y denote the degrees of the neighbors of w, and let E ′ denote the edges

of G which are not incident with w. Then

ZD(G) = (2x− x− 2) + (2y − y − 2) +
∑
uv∈E′

(d(u)d(v)− d(u)− d(v))

= (x− 2) + (y − 2) + (k − 1)(2 · 2− 2− 2) +
∑
uv∈E′

(d(u)d(v)− d(u)− d(v))

= ZD(Gk) .

Proposition 4 Let G be a graph with vertex w of degree two, adjacent to vertex z of

degree one, and let Gk be the graph obtained by G by attaching k pendant vertices to z,

as in Fig. 3. Then ZD(Gk) = ZD(G).

x x1 k+12 2

Figure 3: Graphs G (left) and Gk (right).

Proof Let x denote the degree of the other neighbor of w, and let E ′ denote the edges

of G which are not incident with w. Then

ZD(Gk) = (2x− x− 2) + [2(k + 1)− (k + 1)− 2] + k[(k + 1) · 1− (k + 1)− 1]

+
∑
uv∈E′

(d(u)d(v)− d(u)− d(v))
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= (x− 2)− 1 +
∑
uv∈E′

(d(u)d(v)− d(u)− d(v))

= ZD(G).

Apparently, both Propositions 3 and 4 may be applied to the graph PC(z+2) ∈ Φ(z)

for z ≥ −2. Since the numbers of new vertices added to an existing graph in Φ(z) by

these propositions are arbitrary, we conclude that each set Φ(z), z ≥ −2, is infinite.

3 Φ(z) contains a unique element for z < −2

Unlike the case for z ≥ −2, here we show that Φ(z) for z < −2 contains the star K1,−z

only. The following useful lemma was proved by Vukičević and Pisanski in [9].

Lemma 5 ([9]) If G is a simple connected graph, then

ZD(G) = p3(G) + 3t(G)−m (4)

where p3(G) is the number of 3–paths and t(G) is the number of triangles in G.

The next lemma establishes the monotonicity of ZD under particular conditions.

Lemma 6 Let H0, . . . , Hk be the sequence of connected graphs, such that Hi = Hi−1 + ei

for i = 1, . . . , k. If H0 is not a star, then

ZD(H0) ≤ . . . ≤ ZD(Hk) .

Proof We show that ZD(Hi−1) ≤ ZD(Hi) for each i = 1, . . . , k. From Lemma 5 we

have

ZD(Hi)− ZD(Hi−1) = [p3(Hi)− p3(Hi−1)] + 3[t(Hi)− t(Hi−1)]− 1 .

Suppose first that the edge ei = Hi − Hi−1 joins two vertices p and q of Hi−1. The

degrees of p and q in Hi−1 are at least one, as Hi−1 is connected. Thus, ei forms in Hi

either at least one new 3-path in which it is a middle edge or at least one new triangle;

in either case, ZD(Hi−1) ≤ ZD(Hi).

Otherwise, suppose that ei joins a vertex p that does not belong to Hi−1 with a vertex q

of Hi−1. The degree of q in Hi−1 is at least one, and since Hi−1 is not a star (with a center

at q), at least one neighbor r of q in Hi−1 has degree at least two. If s is a neighbor of r

different from q, then ei forms a new 3-path pqrs in Hi, hence ZD(Hi−1) ≤ ZD(Hi).
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Proposition 7 If a connected graph G is not a star, then

ZD(G) ≥ −2 .

Proof Let u be the vertex of G having maximal degree d(u) = Δ, and let N(u) =

{v1, . . . , vΔ} be the set of neighbors of u. Since G is not a star, there exists a neighbor

of u with degree at least two. Suppose, without loss of generality, that d(v1) ≥ 2 and let

w ∈ N(v1) \ {u}. Let H be the subgraph of G on the subset of vertices {u, v1, . . . , vΔ, w},
with the subset of edges {uv1, uv2, . . . , uvΔ, v1w}. There are two possible cases for H,

depending on whether or not w ∈ {v2, . . . , vk}, as shown in Fig. 4. In the former case

ZD(H) = Δ− 2 > −2, while in the latter case ZD(H) = −2.

Figure 4: Subgraph H: case w ∈ {v2, . . . , vk} at the left, case w �∈ {v2, . . . , vk} at the
right.

Next, note that the edges of E(G) \E(H) can be ordered as {e1, . . . , em−Δ−1} in such

a way that all subgraphs in the sequence

H0 = H, Hi = Hi−1 + ei for i = 1, . . . ,m−Δ− 1

are connected. For example, such ordering can be obtained by choosing as ei an edge from

E(G)\E(Hi−1) which joins two vertices of Hi−1, whenever such edge exists; otherwise, by

choosing as ei an edge which joins a vertex of Hi−1 with a vertex from V (G) \ V (Hi−1).

From Lemma 6 we now have

−2 ≤ ZD(H) = ZD(H0) ≤ . . . ≤ ZD(Hm−Δ−1) = ZD(G) .

The previous proposition shows that Φ(z), for z < −2, cannot contain any element

other than the star K1,−z. Moreover, this proposition improves the inequality

M2(G)−M1(G) ≥ −δ2(G)

where δ2(G) is the second smallest vertex degree of G, which has appeared earlier in [5, 7].

This inequality is valid only for trees.
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4 Elements of Φ(−2), Φ(−1) and Φ(0)

and their properties

From the previous section, we see that the first nontrivial sets Φ(z) are Φ(−2), Φ(−1) and

Φ(0). They share further property that all of their elements are trees, with the exception

of the cycles Cn being the sole nontree elements of Φ(0).

Proposition 8 If G is a connected graph that is neither a tree nor a cycle, then

ZD(G) ≥ 1 .

Proof Since G is not a tree, it contains a cycle C = {v1, . . . , vk}, 3 ≤ k ≤ n, as a

subgraph. Further, since G is not a cycle, at least one vertex from C has degree at

least three. Suppose, without loss of generality, that d(v1) ≥ 3 and let w be a neighbor

of u different from v2 and vk. Let H be the subgraph of G on the subset of vertices

{v1, . . . , vk, w}. The possible cases forH are shown in Fig. 5, where e denotes the edge v1w.

It is straightforward to check that, in each of these cases, ZD(H) ≥ 1 holds.

e

( )a ( )b ( )c ( )d ( )e

e

e

e

e

Figure 5: Ways to add an edge to a cycle.

Similarly as in the proof of Proposition 7, the edges of E(G) \ E(H) can be ordered

as {e1, . . . , em−k−1} in such a way that all subgraphs in the sequence

H0 = H, Hi = Hi−1 + ei for i = 1, . . . ,m− k − 1

are connected. From Lemma 6 we now have

1 ≤ ZD(H) = ZD(H0) ≤ . . . ≤ ZD(Hm−k−1) = ZD(G) .

Using the computer search, we found that the smallest elements of Φ(−2), Φ(−1) and

Φ(0). Up to six vertices, the set Φ(−2) contains only paths Pn, n ≥ 3 and brooms—a

path with a star attached to one of path’s end vertices. The smallest tree in Φ(−2) that

is neither a path nor a broom is shown in Fig. 6.
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Figure 6: The smallest tree (the graph of 2,4-dimethylpentane) in Φ(−2), which is neither
a path nor a broom.

Other than K2, the set Φ(−1) does not contain other trees up to five vertices, while it

contains two trees on six vertices, representing 2,3–dimethylbutane and 3–methylpentane

(Fig. 7).

Figure 7: The trees with at most 6 vertices in Φ(−1).

The set Φ(0) does not contain trees up to six vertices, while it contains four trees on

seven vertices, representing 3–ethylpentane, 2,3–dimethylpentane, 3,3–dimethylpentane

and 2,2,3–trimethylbutane (Fig. 8).

Figure 8: The trees with at most 7 vertices in Φ(0).

Some further properties of the elements of Φ(−2), Φ(−1) and Φ(0) are given in the

following paragraphs.

All cycles Cn belong to Φ(0), as M1(Cn) = M2(Cn) = 4n. It is interesting that the

trees in Φ(−2) ∪ Φ(−1) ∪ Φ(0), other than paths, also satisfy that the value of their

first Zagreb index is at least four times the number of edges: Horoldagva proved in his

thesis [10, Theorem 2.5] that, for a connected graph G with n vertices and maximum

vertex degree Δ holds

M1(G) ≥ 4n+ (Δ− 1)(Δ− 2)− 6
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with equality if and only if G is a starlike tree or a path. For any tree T holds m = n− 1,

so that

M1(T ) ≥ 4m+Δ(Δ− 3) .

If Δ ≥ 3 then M1(T ) ≥ 4m. if Δ = 1 or Δ = 2, then T is a path (on two vertices if

Δ = 1), in which case M1(T ) = 4m− 2.

Next, the sets Φ(−2), Φ(−1) and Φ(0) contain only paths and 2,3-dimethylbutane as

bidegreed graphs, in which the degree of each vertex v ∈ V (G) is either δ or Δ, δ < Δ.

Namely, if G ∈ Φ(−2) ∪ Φ(−1) ∪ Φ(0) and it is not regular, then G cannot be a cycle

and it has to be a tree, hence δ = 1. Now, if there are k vertices of degree one and n− k

vertices of degree Δ, then

M1(G) = k + (n− k)Δ2 M2(G) = kΔ+ (m− k)Δ2 = kΔ+ (n− 1− k)Δ2 .

From M2(G)−M1(G) ∈ {−2,−1, 0} we get

k(Δ− 1)−Δ2 ∈ {−2,−1, 0}.

In the first case, k = Δ+ 1− 1
Δ−1

is an integer, and this is possible if and only if Δ = 2

and k = 2, i.e., if and only if G is a path. In the second case, k = Δ + 1 and let v be a

vertex of degree Δ. Obviously, Δ ≥ 3, as paths are only trees with Δ = 2 and do not have

three leaves. Each of Δ branches of tree G attached at v contains at least one leaf, and

since the number of leaves is Δ+1, then exactly one of these branches has to contain two

leaves. However, that branch must also contain at least one further vertex of degree Δ,

which shows that the number of leaves in this branch is at least Δ− 1. Since this branch

contains exactly two leaves, we get Δ = 3 and the only 3,1-bidegreed tree with four leaves

is that of 2,3-dimethylbutane. In the third case, k = Δ+ 1 + 1
Δ−1

is an integer, which is

possible if and only if Δ = 2 and k = 4, however, this is impossible as paths do not have

four leaves.

Recently, Vukičević, Gutman, Furtula, Andova and Dimitrov [11] considered the sets

of graphs for which strict inequality holds in (1). The trees in Φ(−2)∪Φ(−1)∪Φ(0), other
than the paths P2 and P3, provide further examples of such graphs (having arbitrarily large

maximum vertex degree). Namely, if T ∈ Φ(0) then from M1(T ) = M2(T ) and n > m,

the strict inequality in (1) follows immediately. If T ∈ Φ(−1), the strict inequality in (1)

reduces to n < M1(T ), which is satisfied by any tree having at least three vertices. If
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T ∈ Φ(−2), the strict inequality in (1) reduces to 2n < M1(T ). However, the inequality

between arithmetic and quadratic means

2m

n
=

∑
u∈V (T ) d(u)

n
≤

√∑
u∈V (T ) d

2(u)

n
=

√
M1(T )

n

implies that M1(T ) ≥ 4(n−1)2

n
> 2n whenever n ≥ 4 (and the only tree in Φ(−2) with less

than four vertices is P3).

5 Trees with no vertices of degree two in Φ(z), z ≤ 0

Constructions given by Propositions 3 and 4 exploit the existence of degree two vertices

to provide new examples of elements in Φ(z). Here we show that, for each z ≤ 0, at

most one element of Φ(z) does not contain degree two vertices. This is trivially satisfied

for one-element sets Φ(z) containing the star K1,−z for z < −2, so we concentrate on

nonstars.

Proposition 9 If T ∈ Φ(z) for z ≤ 0 is not a star and does not contain degree two ver-

tices, then T is a molecular graph of either 2,3–dimethylbutane or 2,2,3–trimethylbutane.

Proof From Proposition 8 we conclude that T is a tree. As it is not a star, there exists

an edge e = uv ∈ E(T ), such that d(u) = s+1 and d(v) = t+1 with s, t ≥ 2. Assume that

s ≤ t. Denote the neighbors of u by v, u1, . . . , us, and the neighbors of v by u, v1, . . . , vt,

and letH be the subgraph of T induced by the subset {u, v, u1, . . . , us, v1, . . . , vt} (Fig. 9).
It holds ZD(H) = st− s− t− 1.

u v

u1 v1

u2 v2

us vt

... ...

Figure 9: An induced subgraph of T.

Similarly as in the proof of Proposition 7, the edges of E(T ) \ E(H) can be ordered

as {e1, . . . , em−s−t−1} in such a way that all subgraphs in the sequence

H0 = H, Hi = Hi−1 + ei for i = 1, . . . ,m− s− t− 1
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are connected. For example, such ordering can be obtained by choosing as ei an edge

which joins a vertex of Hi−1 with a vertex from V (T )\V (Hi−1). From Lemma 6, we have

0 ≥ z = ZD(T ) = ZD(Hm−s−t−1) ≥ . . . ≥ ZD(H0) = ZD(H) = st− s− t− 1 .

Since 2 ≤ s ≤ t, the inequality 0 ≥ st− s− t− 1 holds only if

(s, t) ∈ {(2, 2), (2, 3)} .

Now suppose that d(ui) ≥ 3 for some 1 ≤ i ≤ s. Let u′
1 and u′

2 be two neighbors

of ui different from u, and let H ′ be the induced tree of T obtained by adding edges uiu
′
1

and uiu
′
2 to H. It is easy to see that ZD(H ′) = st + s − t − 3, and ZD(H ′) > 0 holds

for both cases (s, t) = (2, 2) and (s, t) = (2, 3). Using the same argument as above, we

then conclude that ZD(T ) ≥ ZD(H ′) > 0, a contradiction. Hence, d(ui) = 1 for each

1 ≤ i ≤ s.

Analogous argument shows that d(vj) = 1 for each 1 ≤ j ≤ t.

Thus, T is in fact equal to H, and it is the molecular graph of 2,3–dimethylbutane in

case (s, t) = (2, 2) and the molecular graph of 2,2,3–trimethylbutane in case (s, t) = (2, 3).
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