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(Received November 30, 2011)

Abstract

For a simple graph G with n vertices and m edges, let M1 and M2 denote the
first and the second Zagreb index of G. The inequality M1/n ≤ M2/m in the
case of trees has been proved first by Vukičević and Graovac [MATCH Commun.
Math. Comput. Chem. 57 (2007), 587–590], and a new proof has been found
recently by Andova, Cohen and Škrekovski [Ars Math. Contemp. 5 (2012), 73–
76]. Here we improve this inequality by showing that, if T is not a star, then
nM2 −mM1 ≥ 2(n− 3) + (Δ− 1)(Δ− 2), where Δ is the maximum vertex degree
in T .

1 Introduction

Let G be a simple graph with the set of vertices V (G), n = |V (G)|, and the set of edges

E(G), m = |E(G)|. The first and the second Zagreb indices of G are defined as M1(G) =∑
u∈V (G) dG(u)

2 and M2(G) =
∑

uv∈E(G) dG(u)dG(v), where dG(u) denotes the degree of a

vertex u in G. The Zagreb indices are among the oldest and most famous topological

indices—they were introduced by Gutman and Trinajstić in [1] in 1972, while the recent

surveys of their chemical importance and mathematical properties appear in [2, 3].
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Comparing the values of the Zagreb indices of the same graph, Hansen and Vukičević

initially conjectured in [4] that

M1(G)

n
≤ M2(G)

m
, (1)

with equality attained for complete graphs. This conjecture generated a lot of research,

and for a survey on its developments the reader is referred to [5]. While the conjecture

does not hold in general, it does hold for chemically important classes of trees, unicyclic

graphs and graphs with maximum vertex degree four.

In the case of trees, the inequality (1) has been proved first by Vukičević and Grao-

vac [6], and a new proof has been found recently by Andova, Cohen and Škrekovski [7].

Our goal here is to improve the inequality (1) by providing a positive lower bound for the

value of nM2(T )−mM1(T ), when T is not a star.

2 The first bound

Theorem 1 For a tree T with n ≥ 3 vertices and m edges, let w denote a vertex of T

having the smallest vertex degree larger than one:

dT (w) = min{dT (v) | v ∈ V (T ) ∧ dT (v) ≥ 2} .

Then

nM2(T )−mM1(T )

⎧⎨
⎩

= 0, if T is a star;

≥ 2
∑

x∈V (T )\{w} (dT (x)− 1) , otherwise.
(2)

Moreover,

M2(T )−M1(T ) ≥ −dT (w) . (3)

Proof Recall first that m = n− 1 for every tree with n vertices. We prove (2) and (3)

simultaneously by induction on the number of vertices n.

If n = 3, then T is a star and it is straightforward to verify that (2) and (3) hold.

Suppose now that the theorem holds for all trees with less than n vertices for some

n > 3, and let T be a tree with n vertices. If T is a star, then

M1(T ) = n(n− 1), M2(T ) = (n− 1)2, dT (w) = n− 1,

and, consequently,

nM2(T )−mM1(T ) = 0 and M2(T )−M1(T ) = −(n− 1) = −dT (w),
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showing that (2) and (3) hold in this case.

If T is not a star, let l be a leaf farthest from w in T . As T is not a star, l is at

distance at least two from w. Let v be the unique neighbor of l. By the choice of l, all

neighbors of v are leaves, except for its neighbor u on the unique (w, v)-path in T with

dT (u) ≥ 2. Let p = dT (v)− 1.

w v

}
p

u

T

Let T ′ be the tree obtained from T by deleting the p leaves adjacent to v. Note that

dT ′(w) = dT (w) ≤ dT (v) and v �= w. Denote by M ′
1 and M ′

2 the first and the second

Zagreb index of T ′. Since v itself is a leaf in T ′, we have

M1(T ) = M ′
1 − 12 + (p+ 1)2 + p · 12 = M ′

1 + p2 + 3p

and

M2(T ) = M ′
2 − 1 · dT (u) + (p+ 1) · dT (u) + p · (p+ 1) · 1 = M ′

2 + p2 + p · dT (u) + p .

Since T ′ has at least three vertices, it satisfies (2) and (3) by the inductive hypothesis:

(n− p)M ′
2 − (n− p− 1)M ′

1

⎧⎨
⎩

= 0, if T ′ is a star;

≥ 2
∑

x∈V (T ′)\{w} (dT ′(x)− 1) , otherwise.
(4)

and

M ′
2 −M ′

1 ≥ −dT ′(w) . (5)

This implies that

M2(T )−M1(T ) = (M ′
2 + p2 + p · dT (u) + p)− (M ′

1 + p2 + 3p)

= (M ′
2 −M ′

1) + p (dT (u)− 2)

≥ −dT ′(w) = −dT (w),

since dT (u) ≥ 2, showing that T satisfies (3) as well.
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Next,

nM2(T )− (n− 1)M1(T )

= n(M ′
2 + p2 + p · dT (u) + p)− (n− 1)(M ′

1 + p2 + 3p)

= ((n− p)M ′
2 − (n− p− 1)M ′

1)

+ p (M ′
2 −M ′

1 + np+ n · dT (u) + n− (n− 1)p− 3(n− 1))

≥ ((n− p)M ′
2 − (n− p− 1)M ′

1) + p (−dT ′(w) + p+ n · (dT (u)− 2) + 3)

= ((n− p)M ′
2 − (n− p− 1)M ′

1) + p (−dT (w) + dT (v)− 1 + n · (dT (u)− 2) + 3)

≥ ((n− p)M ′
2 − (n− p− 1)M ′

1) + p (n · (dT (u)− 2) + 2)

≥ ((n− p)M ′
2 − (n− p− 1)M ′

1) + 2p

= ((n− p)M ′
2 − (n− p− 1)M ′

1) + 2(dT (v)− 1) .

Now, if T ′ is a star, (n− p)M ′
2 − (n− p− 1)M ′

1 = 0 by (4). Further, u = w and v are

then the only vertices of T of degree at least two, so that

nM2(T )− (n− 1)M1(T ) ≥ 2(dT (v)− 1) = 2
∑

x∈V (T )\{w}
(dT (x)− 1) ,

proving (2) in this case.

In case T ′ is not a star, we have by (4)

(n− p)M ′
2 − (n− p− 1)M ′

1 ≥ 2
∑

x∈V (T ′)\{w}
(dT ′(x)− 1) ,

and consequently,

nM2(T )− (n− 1)M1(T ) ≥ 2
∑

x∈V (T ′)\{w}
(dT ′(x)− 1) + 2(dT (v)− 1)

= 2
∑

x∈V (T )\{w,v}
(dT (x)− 1) + 2(dT (v)− 1)

= 2
∑

x∈V (T )\{w}
(dT (x)− 1) ,

proving (2) in this case as well.

Corollary 2 Let T be a tree with n ≥ 3 vertices and m = n − 1 edges and let δ2 be the

smallest vertex degree of T larger than one. Then

nM2(T )−mM1(T ) ≥ 2(n− 1− δ2) , (6)

with equality attained if and only if T is either a star K1,n−1 or a path Pn.
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Proof Since
∑

x∈V (T ) dT (x) = 2m, we immediately have

2
∑

x∈V (T )\{w}
(dT (x)− 1) = 2(2m− dT (w))− 2(n− 1) = 2(n− 1− dT (w)).

Suppose now that equality holds in (6), and that T is not a star. From the proof of

Theorem 1, keeping the same notation, we can see that in such case the following equality

has to hold as well:

nM2(T )−mM1(T ) = ((n− p)M ′
2 + (n− p− 1)M ′

1) + 2(dT (v)− 1)

at each step at which the leaves adjacent to v are deleted from T to obtain T ′. In

particular, this implies that

M ′
2 −M ′

1 = −dT ′(w),

dT (v) = dT (w),

dT (u) = 2.

Since dT (w) ≤ dT (u), we have dT (w) = 2 and, consequently, dT (v) = 2. Following the

inductive descend towards the case of T ′ becoming a star, we see that each non-leaf vertex

of T has to have degree 2, hence, T has to be a path on n vertices.

Remarks Similarly as above, from the proof of Theorem 1 we can see that the equality

holds in (3) if and only if dT (u) = 2 at each step at which the leaves adjacent to v are

deleted from T to obtain T ′. In particular, this implies dT (w) = 2. Since this does not

put additional constraints on the degree of v, we can conclude that the equality holds

in (3) if and only if T is either a star, a path, a broom (obtained from a star and a path

by identifying a leaf of a star and a leaf of a path) or a double comet (obtained from two

stars and a path by identifying a leaf of one star with one end vertex of a path and a leaf

of another star with another end vertex of a path).

We also note that the inequality (3) has appeared in [6] as well, but proved in a different

way. Further, it has been observed in [8] that for a connected triangle-free graph G holds

M2(G)−M1(G) = p3(G)−m,

where p3(G) is the number of paths of length three in G.
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3 The second bound

After Theorem 1 has been proved, Réti Tamás informed us of Batmend Horoldagva’s

recent PhD thesis [9] (and accompanying paper [10]), in which many new results on the

Zagreb indices of trees, unicyclic and bicyclic graphs have been found. Among other

results, Horoldagva proved that, if T is not a star, then

nM2(T )−mM1(T ) ≥ 2(n− 3), (7)

which is better than (6) whenever δ2 ≥ 3. This motivated us to improve (7) and by

exploiting computer search for trees extremal with respect to nM2(T ) − mM1(T ), we

observed that, if T is not a star, then

nM2(T )−mM1(T ) ≥ 2(n− 3) + (Δ− 1)(Δ− 2), (8)

where Δ denotes the maximum vertex degree in T .

Recall that a broom is a tree obtained from a star with at least two leaves by replacing

one of its edges with a path having at least two edges. Notice that according to this

definition, the only star that is also a broom is the star on three vertices.

Theorem 3 Let T be a tree with n vertices, m = n − 1 edges and maximum degree Δ.

Then

nM2(T )−mM1(T )

{
= 0, if T is a star;
≥ 2(n− 3) + (Δ− 1)(Δ− 2), otherwise.

(9)

The equality is attained in (9) if and only if T is a broom.

Proof Let us denote j(T ) = nM2(T ) − mM1(T ). A routine calculation shows that

j(T ) = 0 if T is a star, and j(T ) = 2(n− 3) + (Δ− 1)(Δ− 2) if T is a broom.

Next, suppose that T is not a star. We construct a finite sequence of trees T0, T1, . . . , Tk,

each with n vertices, m edges, and maximum degree Δ, satisfying the following properties:

(a) T = T0;

(b) Tk is a broom;

(c) for all i ∈ {0, 1, . . . , k − 1}, it holds that j(Ti) ≥ j(Ti+1);
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Assuming properties (a)–(c), it follows that

j(T ) = j(T0) ≥ j(T1) ≥ . . . ≥ j(Tk) = 2(n− 3) + (Δ− 1)(Δ− 2) ,

proving (9).

The sequence (Ti)
k
i=0 is constructed as follows: let u be a maximum degree vertex of T ,

and fix a longest path P = (u, u1, . . . , ur) in T starting at u. As T is not a star, P has

length at least two and, clearly, ur is a leaf of T . Intuitively, the sequence of trees Ti will

be obtained by iteratively applying the following tranformation, until a broom is obtained:

delete a leaf not on P and not adjacent to u, and subdivide the first edge of P .

Let us now describe the sequence construction formally. To each tree Ti, we will also

associate a longest path Pi starting at u in Ti, and denote by wi the neighbor of u on Pi.

We proceed inductively. For i = 0, we set T0 := T and P0 := P , where P = (u, u1, . . . , ur)

is a path defined as above. Denote also w0 := u1. Suppose that we have already defined

Ti and Pi = (u, wi, wi−1, . . . , w1, w0 = u1, . . . , ur), for some i ≥ 0. If Ti is a broom, then

we set k := i and the sequence construction is complete. Otherwise, let � be a leaf of Ti

not in Pi and not adjacent to u. The existence of such a leaf, if Ti is not a broom, can be

established according to the following two cases:

– if there exists an internal vertex y in Pi of degree at least three, we can take � to be

any leaf of Ti not on Pi and such that y belongs to the �–u path in Ti;

– otherwise (all internal vertices of Pi are of degree exactly two), the graph Ti−V (Pi)

has at least one component T ′ with |V (T ′)| ≥ 2, and � can be chosen to be any leaf

in T ′ that is also a leaf in Ti.

Having chosen leaf �, let us define Ti+1 to be the tree obtained from Ti by deleting � and

subdividing the edge uwi. That is, vertex � and edge uwi are deleted from Ti, and a new

vertex wi+1 is introduced that is made adjacent only to u and wi. Also, set Pi+1 to be the

path (u, wi+1, wi, . . . , w1, w0 = u1, . . . , ur).

Let us now verify that the above properties are satisfied. Observe that |V (Ti)| = n

and |E(Ti)| = m for all i. This immediately implies that the sequence is finite: since

|V (Pi)| = |V (P )|+ i for all i and the number of vertices is unchanged, the procedure must

eventually stop.

The transformation mapping Ti to Ti+1 preserves the maximum degree. Properties

(a) and (b) are satisfied by definition. If Δ = 2 then T is a path, which implies k = 0
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and property (c) is trivially satisfied in this case. Hence, in what follows, we assume that

Δ > 2, unless specified otherwise.

Fix i ≥ 0. Let us write M1 :=M1(Ti), M
′
1 :=M1(Ti+1), M2 :=M2(Ti), M

′
2 :=M2(Ti+1),

let x denote the unique neighbor of � in Ti, and let NTi
(x) \ {�} = {x1, . . . , xp}. Let us

also write d(y) := dTi
(y) for y ∈ V (Ti), and similarly d′(y) := dTi+1

(y) for y ∈ V (Ti+1).

First, we analyze the effect of the above transformation on M1. We have

M ′
1 = M1 − d(x)2 − d(�)2 + d′(x)2 + d′(wi+1)

2 = M1 − 2d(x) + 4 ,

where the last equality follows from relations: d′(x) = d(x)−1, d(�) = 1 and d′(wi+1) = 2.

Further, we have

M ′
2 = M2 − d(u) · d(wi)− d(�) · d(x)−

p∑
j=1

d(x) · d(xj)

+ d′(u) · d′(wi+1) + d′(wi+1) · d′(wi) +
p∑

j=1

d′(x) · d′(xj)

= M2 −Δ · d(wi)− 1 · d(x)− d(x) ·
p∑

j=1

d(xj)

+ Δ · 2 + 2 · d(wi) + (d(x)− 1) ·
p∑

j=1

d(xj)

= M2 − (Δ− 2) (d(wi)− 2) + 4− d(x)−
p∑

j=1

d(xj) .

Note that d(wi) = 2 as Pi has length at least 2, and d(x) ≥ 2. Moreover,
∑p

j=1 d(xj) ≥ 2,

since at least one neighbor of x is not a leaf.

Now, let us prove (c) by considering the relation between j(Ti) and j(Ti+1). We have

j(Ti)− j(Ti+1) = nM2 −mM1 − (nM ′
2 −mM ′

1)

= n(M2 −M ′
2)− (n− 1)(M1 −M ′

1)

= n
(
(Δ− 2) (d(wi)− 2)− 4 + d(x) +

p∑
j=1

d(xj)
)

− (n− 1) (2d(x)− 4)

= n (Δ− 2) (d(wi)− 2) + 2 (d(x)− 2) + n
( p∑

j=1

d(xj)− d(x)
)
.

Notice that d(wi) = 2 and d(x) ≥ 2. Moreover, since not all of x1, . . . , xp are leaves, we

have
∑p

j=1 d(xj) ≥ p+ 1 = d(x) and consequently
∑p

j=1 d(xj) ≥ d(x). This implies that

j(Ti)− j(Ti+1) ≥ 0, (10)
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proving (c). Moreover,

j(Ti+1) = j(Ti) ⇔ d(x) = d(x1) = 2. (11)

It remains to show that j(T ) = 2(n− 3) + (Δ− 1)(Δ− 2) implies that T is a broom.

Suppose that j(T ) = 2(n−3)+(Δ−1)(Δ−2) holds for a tree T . If T is a star, then j(T ) = 0

and Δ = n−1 imply n = 3, hence T is a broom. If Δ = 2, then T is a path, hence a broom.

Suppose, therefore, that T is not a broom. Then for the above constructed sequence of

trees T = T0, T1, . . . , Tk holds k ≥ 1. From j(T ) = j(Tk) = 2(n − 3) + (Δ − 1)(Δ − 2)

and inequality (10) we get that j(Ti) = 2(n− 3)+ (Δ− 1)(Δ− 2) for each i = 0, 1, . . . , k.

Let us focus, in particular, on j(Tk−1) = j(Tk). From (11) we see that the leaf � chosen

in Tk−1 has to be adjacent to a vertex x of degree two, whose other neighbor x1 also has

degree two. Since the broom Tk is obtained by deleting the leaf � from Tk−1, which is not

on Pk−1, and subdividing an edge incident with the maximum degree vertex u, we see

that there are only two possibilities for �:

– � is adjacent to an internal vertex x of path Pk−1, in which case x has degree three;

– � is adjacent to a vertex x of degree two, which is adjacent to a vertex x1 = u which

has degree Δ > 2.

In both cases we reach a contradiction to the condition of (11) that both x and x1 have

degree two. Thus, T has to be a broom.

Remarks Using the same transformation and analogous approach as above, it can be

further shown that

M1(T ) ≥ 4n+ (Δ− 4)(Δ + 1) ,

with equality if and only if T is a subdivision of a star, and

M2(T )

⎧⎨
⎩

= (n− 1)2, if T is a star;

≥ 4(n− 2) + (Δ− 1)(Δ− 2), otherwise.

with equality if and only if T is a broom. These lower bounds, however, have been

already obtained by Horoldagva in his PhD thesis [9], so we skip their proofs here. At

the end, note that the last two bounds, regardless of the similarity in extremal graphs,

cannot be directly used to prove (9) due to opposite signs of M1 and M2 in the expression

nM2 −mM1.
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