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Abstract: The atom–bond connectivity index of a graph G is defined as

ABC(G) =
∑

uv∈E(G)

√
d(u) + d(v) − 2

d(u) d(v)

where E(G) is the edge set and d(u), d(v) are the degrees of the vertices u and v in G,

respectively. We characterize the trees with given degree sequences, extremal w. r. t. the

ABC index.

1 Introduction

Topological indices play a prominent role in chemistry, pharmacology, etc. Among them,

one of the best known and widely used is the connectivity index, χ, introduced in 1975 by

Randić [8, 9]. Estrada et al. proposed a new index, known as the atom–bond connectivity

(ABC) [4]. This index is defined as

ABC(G) =
∑

uv∈E(G)

√
d(u) + d(v) − 2

d(u) d(v)

where E(G) is the edge set and d(u), d(v) are the degrees of u and v in G, respectively.

Furtula et al. [5] showed that the star (S n) is the unique tree with the maximal ABC

index. The characterization of trees with minimal ABC index is still unsolved [7]. Among
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all graphs of order n, the complete graph Kn has maximal ABC index [2]. For other recent

studies of the ABC index see [1–3, 6, 7].

Molecular graphs of the practical interest have natural restriction on their degrees cor-

responding to the valences of the atoms. Therefore it is reasonable to consider a tree with

given degree sequence. In this paper we discuss some properties of the extremal trees and

construct the trees which have the maximum or minimum ABC index with given degree

sequences.

For any vertex v ∈ V(T ), let d(v) denote the degree of v, i. e., the number of edges

incident to v. The degree sequence of a tree is the sequence of the degrees (in descending

order) of non-leaf vertices. We call a tree maximum (minimum) optimal tree if it maximizes

(minimizes) the ABC index among all trees with given degree sequence. In a tree T there

is a unique path connecting two vertices u and v, denoted by PT (u, v). The distance dT (u, v)

between them is the number of edges on the path PT (u, v). Let Tr be a rooted tree with root

r. The height of a vertex v in Tr is hT (v) = dT (r, v). In Tr, if the vertex u is adjacent to

the vertex v and dT (r, u) = dT (r, v) − 1, then we call v a child of u. Through this paper, for

convenience, we let i j =
√

(i + j − 2)/(i j), where 1 ≤ i ≤ j ≤ Δ.

2 Some Lemmas

Lemma 2.1 Let xy =
√

x+y−2

xy . If x ≤ y, then 1x ≤ 1y .

Proof. If x ≤ y, then
y−1

y −
x−1

x =
y−x
xy ≥ 0. Hence 1y − 1x =

√
y−1

y −
√

x−1
x ≥ 0. �

Lemma 2.2 ( [11]) Let

f (x, y) =

√
x + y − 2

xy
=

√
1

x
+

1

y
−

2

xy

where x, y ≥ 1. If y ≥ 2 is fixed, then f (x, y) is decreasing for x.

Lemma 2.3 Let a, b, and x be the positive integers with a, b, x ≥ 2. Denote f (x) =
√

x+a−2
ax −√

x+b−2
bx . If a ≤ b, then f (x) is increasing for x; if a > b, then f (x) is decreasing for x.

Proof. Note that

f ′(x) =

√
x

2x2

⎛⎜⎜⎜⎜⎝ 2 − a
√

x + a − 2
√

a
−

2 − b
√

x + b − 2
√

b

⎞⎟⎟⎟⎟⎠
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and consider the function g(y) =
2−y√

x+y−2
√

y
(y ≥ 2). Note that

g′(y) =
−xy − 2x − 2y + 4

2(xy + y2 − 2y)
3
2

< 0 .

Hence, if a ≤ b, then g(a) ≥ g(b). Thus f ′(x) ≥ 0, i. e., f (x) is monotonously increasing for

x. Similarly, if a > b, then f (x) is decreasing for x. �

3 Tree with given degree sequence with minimum
ABC index

For a tree T , suppose that v0v1 · · · vtvt+1 is a path, where v0 and vt+1 are leaves. Let T ′ denote

a new tree obtained from T by reversing the order of the components attached to vi · · · vk.

We denote such operation by J(vi, vk). (Fig.1 and Fig.2)

� � � � � � � � � �· · · · · ·· · ·

� � � � � � � �

v0 v1 vi−1 vi vi+1 vk−1 vk vk+1 vt vt+1

Fig. 1: A path v0v1 · · · vtvt+1 in T .

� � � � � � � � � �· · · · · ·· · ·

� � � � � � � �

v0 v1 vi−1 vk vk−1 vi+1 vi vk+1 vt vt+1

Fig. 2: A new path obtained by J(vi, vk) on a path v0v1 · · · vtvt+1.

Lemma 3.1 In a minimum optimal tree T , every path v0v1 · · · vtvt+1, where v0 and vt+1 are

leaves, has the properties:

1) if t is odd, then

d(v1) ≤ d(vt) ≤ d(v2) ≤ d(vt−1) ≤ · · · ≤ d(v t−1
2

) ≤ d(v t+3
2

) ≤ d(v t+1
2

)

2) if t is even, then

d(v1) ≤ d(vt) ≤ d(v2) ≤ d(vt−1) ≤ · · · ≤ d(v t+4
2

) ≤ d(v t
2
) ≤ d(v t+2

2
) .

Proof. It clearly suffices to prove that d(vi) ≤ d(vt+1−i) ≤ d(vk), (i + 1 ≤ k ≤ t + 1 − i, i =

1, 2, . . . , �(t + 1)/2	).

By induction on i. For i = 1, we should show that d(v1) ≤ d(vt) ≤ d(vk) (2 ≤ k ≤ t). By

the way of contradiction, suppose that d(vk) < d(v1) for some 2 ≤ k ≤ t. Then we get T ′ by
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using J(v1, vk) on T . Note that the edges v0v1 and vkvk+1 in T are transformed to the edges

v0vk and v1vk+1 in T ′, respectively. Moreover, no other edges are changed. By Lemmas 2.1

and 2.2,

ABC(T ′) − ABC(T ) = (1d(vk) − 1d(v1)) + (d(v1) d(vk+1) − d(vk) d(vk+1)) < 0 .

It is contradicted to the minimum optimality of T . Hence we have d(v1) ≤ d(vk) (1 ≤ k ≤ t).

At the same time, we easily have d(v1) ≤ d(vt). Similarly, we can verify the d(vt) ≤ d(vk).

Then we have

d(v1) ≤ d(vt) ≤ d(vk) (2 ≤ k ≤ t) .

We now assume Lemma 3.1 holds for any l ≤ i − 1. In other words, we have d(vl) ≤

d(vt+1−l) ≤ d(vk) (l + 1 ≤ k ≤ t + 1 − l, l = 1, 2, . . . , 
(t + 1)/2�). We should prove that

d(vi) ≤ d(vt+1−i) ≤ d(vk) (i+1 ≤ k ≤ t+1−i, i = 1, 2, . . . , 
(t+1)/2�). Suppose d(vi) > d(vk)

for some i + 1 ≤ k ≤ t + 1 − i. We obtain a new T ′ by applying J(vi, vk) on T . Note that the

edges vi−1vi and vkvk+1 in T are transformed to the edges vi−1vk and vivk+1 in T ′, respectively.

And no other edges are changed. By the inductive hypothesis, we have d(vi−1) ≤ d(vk+1).

Let

f (x) =

√
x + d(vk+1) − 2

xd(vk+1)
−

√
x + d(vi−1) − 2

xd(vi−1)
.

By Lemma 2.3, f (x) is decreasing for x. Then,

ABC(T ′) − ABC(T ) = d(vi−1) d(vk) + d(vi) d(vk+1) − d(vi−1) d(vi)

− d(vk) d(vk+1) = f (d(vi)) − f (d(vk)) < 0 .

It is contradicted to the minimum optimality of T . Thus we have d(vi) ≤ d(vk) (i + 1 ≤

k ≤ t + 1 − i). Clearly, d(vi) ≤ d(vt+1−i). We can also prove that d(vt+1−i) ≤ d(vk) with the

same methods present in the former discussion for i + 1 ≤ k ≤ t + 1 − i. Hence, we have

d(vi) ≤ d(vt+1−i) ≤ d(vk) (i ≤ k ≤ t + 1 − i). �

Definition 3.2 ( [10]) Suppose the degrees of the non-leaf vertices are given, the greedy

tree is achieved by the following ’greedy algorithm’:

1) Label the vertex with the largest degree as v (the root).

2) Label the neighbors of v as v1, v2, . . . , assign the largest degree available to them such

that d(v1) ≥ d(v2) ≥ . . .

3) Label the neighbors of v1 (except v) as v11, v12, . . . such that they take all the largest
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degrees available and that d(v11) ≥ d(v12) ≥ . . . then do the same for v2, v3, . . .

4) Repeat (3) for all newly labeled vertices, always starting with the neighbors of the labeled

vertex with largest whose neighbors are not labeled yet.

Theorem 3.3 Given the degree sequence, the greedy tree minimizes the ABC index.

Proof. The greedy tree obviously satisfies the conditions in Lemma 3.1. However, there

are many trees for which these conditions hold. Now we only show that the ABC index of

the greedy tree achieves the minimum among these trees. First, we observe the followings

hold: (1) When d(vi) > d(v j) and vi is not adjacent to a leaf, the v j is also not adjacent to

a leaf, for otherwise the ABC index decreases. (2) When d(vi) > d(v j) > d(vk) and vi is

not adjacent to v j, then vi is not adjacent to vk, for which d(vi)d(v j) < d(vi)d(vk). The tree

which possesses the above properties is the greedy tree. Hence, the greedy tree minimizes

the ABC index. �

Example 1 We present an example which is a minimum optimal tree obtained by the greedy

algorithm with degree sequence π = (4, 4, 3, 3, 3, 3, 3, 2, 2). Also it is a greedy tree.

�

�

�

�

�

�

��

�

�� � �

�

�

� � � � � �

�

� � �

4

4 3 3 3

3 3 2 2

Fig. 3: A greedy tree with degree sequence (4,4,3,3,3,3,3,2,2).

4 Tree with given degree sequence with maximum
ABC index

Theorem 4.1 In a maximum optimal tree, every path v0v1 · · · vtvt+1, where v0 and vt+1 are

leaves, has the properties:

1) if i is odd, then d(vi) ≥ d(vt+1−i) ≥ d(vk) for i ≤ k ≤ t + 1 − i;

2) if i is even, then d(vi) ≤ d(vt+1−i) ≤ d(vk) for i ≤ k ≤ t + 1 − i.

Proof. By induction on i. For i = 1, we prove that d(v1) ≥ d(vt) ≥ d(vk) (2 ≤ k ≤ t).

By contradiction, suppose that d(vk) > d(v1) for some 2 ≤ k ≤ t. Then we get T ′ by using
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J(v1, vk) on T . Note that the edges v0v1 and vkvk+1 in T are transformed to the edges v0vk

and v1vk+1 in T ′. And no other edges are changed. Thus combining Lemmas 2.1 and 2.2,

we have

ABC(T ′) − ABC(T ) = 1d(vk) − 1d(v1) + d(v1) d(vk+1) − d(vk) d(vk+1) > 0 .

This contradicts to the maximum optimality of T . Hence we have d(v1) ≥ d(vk) (2 ≤ k ≤ t).

At the same time, we have d(v1) ≥ d(vt). The proof of d(vt) ≥ d(vk) is carried out in the

same way. Hence we have

d(v1) ≥ d(vt) ≥ d(vk) (1 ≤ k ≤ t) .

Now, assume that Lemma 3.1 holds for smaller values. We divide the proof into the next

two cases.

Case 1: When i ≥ 2 is even, we have d(vi−1) ≥ d(vt+1−i) ≥ d(vk) (i + 1 ≤ k ≤ t + 1 − i).

By contradiction suppose that d(vi) > d(vk) for some i + 1 ≤ k ≤ t + 1 − i. Then we get

T ′ by applying J(vi, vk) on T . The edges vi−1vi and vkvk+1 in T are transformed to the edges

vi−1vk and vivk+1 in T ′, respectively. Moreover, no other edges are changed. By the inductive

hypothesis, d(vi−1) ≥ d(vk+1). Let

f (x) =

√
x + d(vi−1) − 2

xd(vi−1)
−

√
x + d(vk+1) − 2

xd(vk+1)
.

By Lemma 2.3, f (x) is decreasing. We have

ABC(T ′) − ABC(T ) = d(vi−1) d(vk) + d(vi) d(vk+1) − d(vi−1) d(vi)

− d(vk) d(vk+1) = f (d(vk)) − f (d(vi)) > 0 .

This contradicts to the maximum optimality of T . Then we immediately get d(vi) ≤ d(vk)

for any i ≤ k ≤ t + 1 − i. Obviously d(vi) ≤ d(vt+1−i). Using the same way, we can prove

d(vt+1−i) ≤ d(vk) for i ≤ k ≤ t + 1 − i.

Case 2: When i ≥ 2 is odd, we can similarly verify d(vi) ≥ d(vt+1−i) ≥ d(vk) by the above

argument. �

Operation 1 Suppose that C is the set of vertices that are adjacent to the leaves in some

tree T . Let d∗ = min{d(u), u ∈ C}. Let C∗ be the set of leaves whose adjacent vertices have

degree d∗ in the tree T . For a tree Ti rooted at ri, T (i) is obtained from T by identifying the

root ri of Ti with a vertex v in C∗.
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Theorem 4.2 Let C̃ denote the set of leaves which do not belong to C∗ in the tree T .

For a tree T , we obtain T ∗1 and T ∗2 from T by identifying the root ri of Ti with v′ and v′′,

respectively, where v′ ∈ C∗, v′′ ∈ C̃. Then ABC(T ∗1) ≥ ABC(T ∗2).

Proof. Suppose v1 and v2 are adjacent to v′ and v′′, respectively. Obviously, d(v1) ≤

d(v2) holds. By Lemma 2.1, ABC(T ∗1) − ABC(T ∗2) = d(v1)(d(ri) + 1) + 1d(v2) − 1d(v1) −

d(v2) (d(ri) + 1) ≥ 0. �

By Theorem 4.2, the maximum optimal tree is obtained by attaching a tree Ti to a vertex

in T . Now we construct the extremal tree of the maximum ABC index with given degree

sequence by the following ’adopting algorithm’.

Definition 4.3 Suppose the degrees of the non-leaf vertices are (d1, d2, . . . , dm). Then the

tree with maximum ABC index is obtained by the following ’adopting algorithm’.

1) We produce some subtrees Ti as follows: T1 rooted at r1 are assigned dm − 1 children

whose degrees are d1, d2, . . . , ddm−1. T2 rooted at r2 are assigned dm−1 − 1 children whose

degrees are ddm , ddm+1, . . . , ddm+dm−1−2. Do the same to get T3, T4, . . ..

2) Until Tl rooted at rl with less dm−l+1 − 1 children, or there is no degree available

to choose for Tl+1. Then we get some subtrees T1, T2, . . . ,Tl. Especially, we should have

d(rl) = dm−l+1 .

3) Let r = rl and T = Tl. We obtain T (l−1) from T and Tl−1 rooted at rl−1 by Operation

1. Then let T = T (l−1). We obtain T (l−2) from T and Tl−2 rooted at rl−2 . Do the same for

Tl−3 , . . . ,T1 .

4) Let T = T 1. Then T is the extremal tree.

Example 2 We present an example which are maximum optimal trees with given degree

sequence (6, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 2, 2).

T and T̃ are obtained by the ’adopting algorithm’. It is obvious that ABC(T ) = ABC(T̃ )

and they are satisfied with Theorem 4.1. They are both maximum trees with degree sequence

(6, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 2, 2). This means that the extremal tree is not unique. But it does

if the degrees of non-leaf vertices are different from each other.
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�

� � � �

� � � � � � �

r

r1

r2 r3 r4

Fig. 4: A maximum optimal tree T with degree sequence (6,5,5,5,4,4,4,4,4,4,3,2,2).

T2 T3 T4

T1

�

� � � �

� �

� � � � � �

� � � �

�

� �

� � � �

�

� � � �

r

r1r2

r3

r4

Fig. 5: A maximum optimal tree T̃ with degree sequence (6,5,5,5,4,4,4,4,4,4,3,2,2).

T2

T3

T4T1
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