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Abstract

The structure of trees with a single high-degree vertex and smallest ABC index is determined.

1. Introduction

The atom–bond connectivity (ABC) index is a vertex–degree-based graph invariant,

that found chemical applications [1, 2]. Recently a long series of mathematical investiga-

tions of the ABC index was communicated [3–9,11–14]. It could be easily shown [3,10,12]

that the n-vertex graph and the n-vertex tree with maximal ABC index are, respectively,

the complete graph and the star. On the other hand, the structure of the n-vertex tree with

minimal ABC (which also is the connected n-vertex graph with minimal ABC [10, 12])

remained obscure.

In a recent work [13] a combination of computer search and mathematical analysis was

undertaken, aimed at elucidating the structure of the minimum-ABC trees. In [13] the n-

vertex minimum-ABC tree(s) were determined up to n = 30. By inspecting the structure

of these trees it could be seen that these consist of a central, high-degree vertex to which

branches of the type B1 , B2 , and B3 are attached, see Fig. 1. It was also proven [13]

that a minimum-ABC tree may possess at most one external path with (exactly) three

vertices of degree two.
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Fig. 1. Branches taken into account in the search for the the minimum-ABC trees.

It is imaginable that for n > 30 also branches similar to B2 and B3 could occur in

the minimum-ABC trees. Therefore we have considered also the branches B4 and B5

depicted in Fig. 1.

Let xi be the numbers of branches of the type Bi , i = 1, 2, 3, 4, 5, attached to the

central vertex, possessing 2, 5, 7, 9, and 11 vertices, respectively.

Then the minimum-ABC tree has

n = 1 + 2 x1 + 5 x2 + 7 x3 + 9 x4 + 11 x5 + x6 (1)

vertices, where x6 ∈ {0, 1} counts the external paths with three vertices of degree 2.

The parameters n, x1, x2, x3, x4, x5, x6 in Eq. (1) are non-negative integers. Therefore,

for a given value of n, formula (1) can be viewed as a Diophantine equation in the

unknowns xi , i = 1, 2, . . . , 6. The solutions of this equation are not too numerous,

and could be easily determined. Then the respective ABC-values were calculated and the

tree(s) with smallest ABC identified. That our guess was reasonable is seen from the fact

that for all examined values of n we found x5 = 0, i. e., the branch B5 was never present.

Calculations were done until n = 700, and the respective minimum-ABC tree(s)

identified. It was found that initially the structures of the so determined minimum-ABC

trees are quite irregular, but after n becoming sufficiently large, the following simple

regularities emerge.

If n ≡ 0 (mod 7), k ≥ 21, and n = 7k + 28, then the minimum-ABC tree has the

structure shown in Fig. 2.

-132-



B

B

B

B

B

B

3

3

3

4

4

4

}k

Fig. 2. Minimum-ABC trees with 7k + 28 vertices, for k ≥ 21. The smallest such tree
has n = 175 vertices. The form of the branches B3 and B4 is shown in Fig. 1.

If n ≡ 1 (mod 7), k ≥ 9, and n = 7k + 1, then the minimum-ABC tree has the

structure shown in Fig. 3.
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Fig. 3. Minimum-ABC trees with 7k+ 1 vertices, for k ≥ 9. The smallest such tree has
n = 64 vertices. The form of the branch B3 is shown in Fig. 1.

If n ≡ 2 (mod 7), k ≥ 23, and n = 7k + 9, then the minimum-ABC tree has the

structure shown in Fig. 4.
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Fig. 4. Minimum-ABC trees with 7k + 9 vertices, for k ≥ 23. The smallest such tree
has n = 170 vertices. The form of the branches B3 and B∗

3 is shown in Fig. 1.

If n ≡ 3 (mod 7), k ≥ 10, and n = 7k + 10, then the minimum-ABC tree has the

structure shown in Fig. 5.
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Fig. 5. Minimum-ABC trees with 7k + 10 vertices, for k ≥ 10. The smallest such tree
has n = 80 vertices. The form of the branches B3 and B4 is shown in Fig. 1.

If n ≡ 4 (mod 7), k ≥ 6, and n = 7k + 11, then the minimum-ABC tree has the

structure shown in Fig. 6.
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Fig. 6. Minimum-ABC trees with 7k + 11 vertices, for k ≥ 6. The smallest such tree
has n = 53 vertices. The form of the branches B2 and B3 is shown in Fig. 1.

If n ≡ 5 (mod 7), k ≥ 14, and n = 7k + 19, then the minimum-ABC tree has the

structure shown in Fig. 7.
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Fig. 7. Minimum-ABC trees with 7k + 19 vertices, for k ≥ 14. The smallest such tree
has n = 117 vertices. The form of the branches B3 and B4 is shown in Fig. 1.

If n ≡ 6 (mod 7), k ≥ 8, and n = 7k + 6, then the minimum-ABC tree has the

structure shown in Fig. 8.
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Fig. 8. Minimum-ABC trees with 7k+ 6 vertices, for k ≥ 8. The smallest such tree has
n = 62 vertices. The form of the branches B2 and B3 is shown in Fig. 1.

The above results are valid under the assumption that the central vertex of the

minimum-ABC tree is unique.
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[1] E. Estrada, L. Torres, L. Rodŕıguez, I. Gutman, An atom–bond connectivity index:

Modelling the enthalpy of formation of alkanes, Indian J. Chem. 37A (1998) 849–855.

[2] E. Estrada, Atom–bond connectivity and the energetic of branched alkanes, Chem.

Phys. Lett. 463 (2008) 422–425.
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