MATCH Communications in Mathematical and in Computer Chemistry

Trees with Smallest Atom–Bond Connectivity Index

Ivan Gutman, Boris Furtula

Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia, gutman@kg.ac.rs , furtula@kg.ac.rs

(Received February 7, 2012)

Abstract

The structure of trees with a single high-degree vertex and smallest ABC index is determined.

1. Introduction

The atom-bond connectivity (ABC) index is a vertex-degree-based graph invariant, that found chemical applications [1,2]. Recently a long series of mathematical investigations of the ABC index was communicated [3–9,11–14]. It could be easily shown [3,10,12] that the *n*-vertex graph and the *n*-vertex tree with maximal ABC index are, respectively, the complete graph and the star. On the other hand, the structure of the *n*-vertex tree with minimal ABC (which also is the connected *n*-vertex graph with minimal ABC [10,12]) remained obscure.

In a recent work [13] a combination of computer search and mathematical analysis was undertaken, aimed at elucidating the structure of the minimum-ABC trees. In [13] the *n*vertex minimum-ABC tree(s) were determined up to n = 30. By inspecting the structure of these trees it could be seen that these consist of a central, high-degree vertex to which branches of the type B_1 , B_2 , and B_3 are attached, see Fig. 1. It was also proven [13] that a minimum-ABC tree may possess at most one external path with (exactly) three vertices of degree two.

Fig. 1. Branches taken into account in the search for the the minimum-ABC trees.

It is imaginable that for n > 30 also branches similar to B_2 and B_3 could occur in the minimum-*ABC* trees. Therefore we have considered also the branches B_4 and B_5 depicted in Fig. 1.

Let x_i be the numbers of branches of the type B_i , i = 1, 2, 3, 4, 5, attached to the central vertex, possessing 2, 5, 7, 9, and 11 vertices, respectively.

Then the minimum-ABC tree has

$$n = 1 + 2x_1 + 5x_2 + 7x_3 + 9x_4 + 11x_5 + x_6 \tag{1}$$

vertices, where $x_6 \in \{0, 1\}$ counts the external paths with three vertices of degree 2.

The parameters $n, x_1, x_2, x_3, x_4, x_5, x_6$ in Eq. (1) are non-negative integers. Therefore, for a given value of n, formula (1) can be viewed as a Diophantine equation in the unknowns x_i , i = 1, 2, ..., 6. The solutions of this equation are not too numerous, and could be easily determined. Then the respective ABC-values were calculated and the tree(s) with smallest ABC identified. That our guess was reasonable is seen from the fact that for all examined values of n we found $x_5 = 0$, i. e., the branch B_5 was never present.

Calculations were done until n = 700, and the respective minimum-ABC tree(s) identified. It was found that initially the structures of the so determined minimum-ABC trees are quite irregular, but after n becoming sufficiently large, the following simple regularities emerge.

If $n \equiv 0 \pmod{7}$, $k \geq 21$, and n = 7k + 28, then the minimum-ABC tree has the structure shown in Fig. 2.

Fig. 2. Minimum-ABC trees with 7k + 28 vertices, for $k \ge 21$. The smallest such tree has n = 175 vertices. The form of the branches B_3 and B_4 is shown in Fig. 1.

If $n \equiv 1 \pmod{7}$, $k \geq 9$, and n = 7k + 1, then the minimum-ABC tree has the structure shown in Fig. 3.

Fig. 3. Minimum-*ABC* trees with 7k + 1 vertices, for $k \ge 9$. The smallest such tree has n = 64 vertices. The form of the branch B_3 is shown in Fig. 1.

If $n \equiv 2 \pmod{7}$, $k \geq 23$, and n = 7k + 9, then the minimum-ABC tree has the structure shown in Fig. 4.

Fig. 4. Minimum-ABC trees with 7k + 9 vertices, for $k \ge 23$. The smallest such tree has n = 170 vertices. The form of the branches B_3 and B_3^* is shown in Fig. 1.

If $n \equiv 3 \pmod{7}$, $k \ge 10$, and n = 7k + 10, then the minimum-ABC tree has the structure shown in Fig. 5.

Fig. 5. Minimum-ABC trees with 7k + 10 vertices, for $k \ge 10$. The smallest such tree has n = 80 vertices. The form of the branches B_3 and B_4 is shown in Fig. 1.

If $n \equiv 4 \pmod{7}$, $k \geq 6$, and n = 7k + 11, then the minimum-ABC tree has the structure shown in Fig. 6.

Fig. 6. Minimum-ABC trees with 7k + 11 vertices, for $k \ge 6$. The smallest such tree has n = 53 vertices. The form of the branches B_2 and B_3 is shown in Fig. 1.

If $n \equiv 5 \pmod{7}$, $k \ge 14$, and n = 7k + 19, then the minimum-ABC tree has the structure shown in Fig. 7.

Fig. 7. Minimum-ABC trees with 7k + 19 vertices, for $k \ge 14$. The smallest such tree has n = 117 vertices. The form of the branches B_3 and B_4 is shown in Fig. 1.

If $n \equiv 6 \pmod{7}$, $k \geq 8$, and n = 7k + 6, then the minimum-ABC tree has the structure shown in Fig. 8.

Fig. 8. Minimum-*ABC* trees with 7k + 6 vertices, for $k \ge 8$. The smallest such tree has n = 62 vertices. The form of the branches B_2 and B_3 is shown in Fig. 1.

The above results are valid under the assumption that the central vertex of the minimum-ABC tree is unique.

Acknowledgement: This work was supported in part by the Serbian Ministry of Science and Education, through Grant no. 174033.

References

- E. Estrada, L. Torres, L. Rodríguez, I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, *Indian J. Chem.* 37A (1998) 849–855.
- [2] E. Estrada, Atom-bond connectivity and the energetic of branched alkanes, *Chem. Phys. Lett.* 463 (2008) 422–425.
- [3] B. Furtula, A. Graovac, D. Vukičević, Atom-bond connectivity index of trees, *Discr. Appl. Math.* 157 (2009) 2828–2835.
- [4] K. C. Das, Atom-bond connectivity index of graphs, Discr. Appl. Math. 158 (2010) 1181–1188.
- [5] R. Xing, B. Zhou, Z. Du, Further results on atom-bond connectivity index of trees, *Discr. Appl. Math.* 158 (2010) 1536–1545.
- [6] K. C. Das, N. Trinajstić, Comparison between first geometric-arithmetic index and atom-bond connectivity index, *Chem. Phys. Lett.* 497 (2010) 149–151.
- [7] G. A. Fath-Tabar, B. Vaez-Zadah, A. R. Ashrafi, A. Graovac, Some inequalities for the atom-bond connectivity index of graph operations, *Discr. Appl. Math.* 159 (2011) 1323–1330.

- [8] R. Xing, B. Zhou, F. Dong, On atom-bond connectivity index of connected graphs, Discr. Appl. Math. 159 (2011) 1617–1630.
- [9] B. Zhou, R. Xing, On atom-bond connectivity index, Z. Naturforsch. 66a (2011) 61–66.
- [10] J. Chen, X. Guo, Extreme atom-bond connectivity index of graphs, MATCH Commun. Math. Comput. Chem. 65 (2011) 713–722.
- [11] L. Gan, H. Hou, B. Liu, Some results on atom-bond connectivity index of graphs, MATCH Commun. Math. Comput. Chem. 66 (2011) 669–680.
- [12] K. C. Das, I. Gutman, B. Furtula, On atom-bond connectivity index, *Chem. Phys. Lett.* 511 (2011) 452–454.
- [13] I. Gutman, B. Furtula, M. Ivanović, Notes on trees with minimal atom-bond connectivity index, MATCH Commun. Math. Comput. Chem. 67 (2012) 467–482.
- [14] L. Gan, B. Liu, Z. You, The ABC index of trees with given degree sequence, MATCH Commun. Math. Comput. Chem. 68 (2012) 137–145.