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Abstract

Fullerene graphs are 3-connected 3-regular planar graphs with only pentagonal
and hexagonal faces. We show that the diameter of a fullerene graph G of order n is

at least
√
24n−15−3

6 and at most n/5 + 1. Moreover, if G is not a (5, 0)-nanotube its
diameter is at most n/6+5/2. As a consequence, we improve the upper bound on the
saturation number of fullerene graphs. We also report an improved lower bound on
the independence number and an upper bound on the smallest eigenvalue of fullerene
graphs, confirming some conjectures for large fullerene graphs.

1 Introduction

Fullerenes are polyhedral molecules made entirely of carbon atoms. They come in wide

variety of sizes and shapes. The most symmetric is the famous buckminsterfullerene, C60,

whose discovery in 1985 marked the birth of fullerene chemistry [24]. The name was a
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homage to Richard Buckminster Fuller, whose geodetic dome it resembles. In 1991, the

buckminsterfullerene was pronounced the “Molecule of the year” by the Science magazine.

From the very beginning, fullerenes have been attracting attention of diverse research

communities. The experimental work was paralleled by theoretical investigations, apply-

ing the methods of graph theory to the mathematical models of fullerene molecules called

fullerene graphs. One of the main driving forces behind that work has been a desire to

identify structural properties characteristic for stable fullerenes, i.e., for fullerene isomers

verified in macroscopic quantities. A number of graph-theoretical invariants were exam-

ined as potential stability predictors with various degrees of success [1, 11, 6]. As a result,

we have achieved a fairly thorough understanding of fullerene graphs and their proper-

ties. However, some problems and questions still remain open [3, 25, 14]. Special place

among them have several interesting conjectures made by Graffiti, a conjecture making

software [10]. The main goal of this paper is to consider several of those open questions

starting from our results on the fullerene diameters and a recent result on the bipartite

edge frustration [9].

2 Definitions and preliminaries

A fullerene graph is a 3-connected 3-regular planar graph with only pentagonal and hexag-

onal faces. By Euler’s formula, it follows that the number of pentagonal faces is always

twelve. Grűnbaum and Motzkin [19] showed that fullerene graphs with n vertices exist

for all even n ≥ 24 and for n = 20. Although the number of pentagonal faces is negligi-

ble compared to the number of hexagonal faces, their layout is crucial for the shape of a

fullerene graph. If all pentagonal faces are equally distributed, we obtain fullerene graphs

of icosahedral symmetry, whose smallest representative is the dodecahedron. On the other

hand, there is a class of fullerene graphs of tubular shapes, called nanotubes.

Nanotubical graphs or simply nanotubes are fullerene graphs with additional structural

properties. They are cylindrical in shape, with the two ends capped with a subgraph

containing six pentagons and possibly some hexagons. The cylindrical part of the nanotube

can be obtained from a planar hexagonal grid by identifying objects lying on two parallel

lines. The way the grid is wrapped is represented by a pair of integers (p1, p2). The numbers
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p1 and p2 denote the coefficients of the linear combination of the unit vectors a1 and a2

such that the vector p1a1 + p2a2 joins pairs of identified points, i.e., the integers p1 and p2

denote the number of unit vectors along two directions in the honeycomb crystal lattice

of the nanotube. Nanotubes with p2 = 0 are called zig-zag nanotubes, and the ones with

p1 = p2 are called armchair nanotubes.

=

+

+

Figure 1: Buckminsterfullerene is the smallest nanotube of type (5, 5).

The distance between two vertices u, v ∈ V (G) in a connected graph G is the length

of any shortest path between these vertices, and it is denoted by d(u, v). A diameter

of connected graph G, diam(G), is the maximum distance between two vertices of G,

i.e., diam(G) = max{d(u, v) |u, v ∈ V (G)}. While the diameter of fullerene graphs having

icosahedral symmetry is small, the diameter of nanotubes is linear in the number of vertices.

In this paper we establish lower and upper bounds for the diameter of fullerene graphs and

use the results to improve the upper bound on their saturation number and settling the

relationship between the independence number and the diameter.

The important definitions for dealing with lower and upper bounds are the O, Ω and

Θ notations.

O-notation: For non-negative functions, f(n) and g(n), if there exists an integer n0 and a

constant c > 0 such that for all integers n > n0, f(n) ≤ c ·g(n), then f(n) = O(g(n)).

Ω-notation: For non-negative functions, f(n) and g(n), if there exists an integer n0 and a

constant c > 0 such that for all integers n > n0, f(n) ≥ c ·g(n), then f(n) = Ω(g(n)).
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Θ-notation: For non-negative functions, f(n) and g(n), f(n) is theta of g(n) if and only

if f(n) = O(g(n)) and f(n) = Ω(g(n)). This is denoted as f(n) = Θ(g(n)).

We have mentioned that the study of fullerene graphs has been motivated by a search

for invariants that will correlate with their stability. Among the more promising candidates

were the three that we introduce next.

The bipartite edge frustration of a graph G, denoted by ϕ(G), is the smallest cardinality

of a set of edges of G that need to be removed from G in order to obtain a bipartite

spanning subgraph. It was shown [7] that the bipartite edge frustration of a fullerene

graph G can be efficiently computed by finding a minimum-weight perfect matching in

the pentagon-distance graph of G. In the same reference it was shown that ϕ(G) ≥ 6 for

any fullerene graph G and that this bound is sharp. Furthermore, it was shown that the

bipartite edge frustration of fullerene graphs with icosahedral symmetry is proportional

to the square root of the number of vertices ([7], Proposition 11 and Corollary 12). The

numerical computations reported there suggested that it cannot behave worse than that,

and prompted the authors to state the following conjecture.

Conjecture 1. Let G be a fullerene graph with n vertices. Then ϕ(G) ≤
√

12
5
n.

Recently, Dvořák, Lidický, and Škrekovski [9] proved a theorem with a weaker multi-

plicative constant.

Theorem 1. Let G be a fullerene graph with n vertices. Then ϕ(G) ≤ 39.29
√
n.

Another invariant investigated for its stability-predicting potential is the smallest eigen-

value of a fullerene graph. Recall that a real number λ is an eigenvalue of a graph G if λ is

an eigenvalue of its adjacency matrix A(G). In [13] it was proven that the dodecahedron

has maximum smallest eigenvalue among all fullerene graphs and it is equal to −
√
5. It

was also shown that the buckminsterfullerene C60 has the maximum smallest eigenvalue

among all IP fullerene graphs. This observation lead the authors to state the following

conjecture on the smallest eigenvalue of fullerene graphs with at least 60 vertices.

Conjecture 2. Among all fullerene graphs with at least 60 vertices, the buckminster-

fullerene has the maximum smallest eigenvalue.

-112-



The Conjectures 1 and 2 are connected via a result on Laplacian eigenvalues from the

monograph by Godsil and Royle ([16, p. 293]).

Theorem 2. Let G be a graph with n vertices. Then bip(G) ≤ n
4
μ∞(G).

Here bip(G) denotes the maximum number of edges in a bipartite spanning subgraph

of G (hence the number of edges in G minus the bipartite edge frustration), and μ∞(G)

is the largest Laplacian eigenvalue of G. We refer the reader to Chapter 13 of the above

monograph for more on Laplacian eigenvalues; it suffices for our purposes to note that for

3-regular graphs μ∞(G) = 3− λn(G), where λn(G) is the smallest eigenvalue of G.

Another invariant tested as a possible stability predictor is the independence number

[11]. A set I ⊆ V (G) is independent if no two vertices from I are adjacent in G. The

cardinality of any largest independent set in G is called the independence number of G and

denoted by α(G). A sharp upper bound on the independence number of fullerene graphs

was established in [5] as α(G) ≤ n
2
− 2. It was obtained using the fact that all fullerene

graphs are 2-extendable. No sharp lower bound on the independence numbers has been

reported so far – the best known result α(G) ≥ 3
8
n [20] is no better than the lower bound

for triangle-free planar cubic graphs, and numerical evidence suggests that it is far from

being sharp. In fact, numerical results suggest a bound of the type α(G) ≥ n
2
− C

√
n.

Those observations were formalized in a pair of conjectures in a recent Ph.D. thesis by

S. Daugherty ([3, p. 96]). The first one states that the minimum possible independence

number is achieved on the icosahedral fullerenes that also figure prominently in Conjec-

ture 1. The second one [3, Conjecture 5.5.2] states the precise form of the conjectured

lower bound. Notice that the constant 3/
√
15 is exactly one half of the constant

√
12/5 of

Conjecture 1.

Conjecture 3. Let G be a fullerene graph with n vertices. Then α(G) ≥ n
2
− 3

√
n/15.

The relations between diameter and the independence number of fullerenes appear in

Conjecture 912 of Graffiti [14]:

Conjecture 4. For every fullerene graph G, it holds that α(G) ≥ 2(diam(G)− 1).

For more on independence in fullerenes and in particular in icosahedral fullerenes we

refer the reader to [17, 18].
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The last invariant considered here, the saturation number, is related to matchings.

Recall that a matching in G is a collection M of edges of G such that no two edges from

M have a vertex in common. If a matching M covers all vertices of G we say that M is

a perfect matching. Every perfect matching is also a maximum matching, i.e., a matching

of maximum cardinality. The existence of perfect (and hence maximum) matchings in

fullerene graphs has been established long time ago, and there are many papers concerned

with their structural and enumerative properties [5, 21, 23]. Another class of matchings, the

maximal matchings, have received much less attention so far, in spite of being potentially

useful as mathematical models of dimer absorption. A matching M is maximal if it cannot

be extended to a larger matching of G. The saturation number of G is the cardinality of

any smallest maximal matching of G. We denote it by s(G). The saturation number of

fullerene graph was studied in [5, 8], where the following bounds were established.

Theorem 3. There exists an absolute constant C such that

3n

10
≤ s(G) ≤ n

2
− C log2 n ,

for any fullerene graph G with n vertices.

The upper bound of the above theorem will be improved using the results of Section 3.

3 Lower bound on the diameter

A well known result on the degree-diameter problem states that the number of vertices in

a planar graph with maximum degree 3 grows at most exponentially with diameter [15].

Proposition 4. Let G be a planar graph with maximum degree 3 and a given diameter

diam(G). Then, G has at most 2diam(G)+1 − 1 vertices.

This results in a logarithmic lower bound on the diameter in terms of the number of

vertices.

Corollary 5. Let G be a planar cubic graph with n vertices. Then,

diam(G) ≥ 	log2(n+ 1)
 − 1 .
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Figure 2: An example of Ψ3.

To illustrate corollary 5, we will now show an example of family of graphs Ψ with

logarithmic diameter. A full balanced binary tree Tn on n layers is defined as V (Tn) =

{t1, t2, ..., t2n−1}, E(Tn) =
{
(ti, t�i/2�); 1 < i < 2n

}
. Now take three full balanced binary

trees An, Bn, Cn with vertices ai, bi, ci; 0 < i < 2n, respectively and edges as defined above.

For any n ∈ N, the graph Ψn is defined on vertices V (Ψn) = V (An)∪V (Bn)∪V (Cn)∪
{ψ} and on edges

E(Ψn) = E(An) ∪ E(Bn) ∪ E(Cn)

∪ {(ψ, a1), (ψ, b1), (ψ, c1)}

∪
{
(ai−1, ai); 2

n−1 < i < 2n
}

∪
{
(bi−1, bi); 2

n−1 < i < 2n
}

∪
{
(ci−1, ci); 2

n−1 < i < 2n
}

∪ {(a2n−1, b2n−1), (b2n−1, c2n−1), (c2n−1, a2n−1)} .

It is easy to see, that when n is big enough, the diameter of Ψn is 2n, which is logarithmic

in terms of |V (Ψn)|. Figure 2 shows an example of Ψ3. Note that for n > 3, the distance

between a2n−1, b2n−1 is logarithmic.

The logarithmic character of the bound can be attributed to the presence of faces of

large size. It would be reasonable to expect that better lower bounds exist for polyhedral

graphs with bounded face size. Surprisingly, no such bounds seem to be available in the

literature.

However, as mentioned above, fullerene graphs only have pentagonal and hexagonal

faces, and we use this fact to show that the diameter is at least of order Ω(
√
n). Crucial
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for our result is a simple observation that in an infinite hexagonal grid, the number of

vertices at equal distance from a selected vertex grows linearly with the distance. In what

follows we investigate how that behavior is affected by the presence of pentagonal defects.

The basic idea is intuitively clear, but in order to formalize it we first introduce some

terminology.

Let G be a fullerene graph and let Nk(x) = {v ∈ V (G) | d(v, x) = k} be a set of vertices

at distance k from a vertex x. We call Nk(x) a k-ring and a vertex in a k-ring is a k-ring

vertex. It is easy to see that for k ≥ 1 it holds

v ∈ Nk(x) ⇒ N(v) ⊂ Nk−1(x) ∪Nk(x) ∪Nk+1(x) ,

where N(x) is the set of all neighbors of x and N0(x) = x. For a chosen x and an arbitrary

k-ring vertex v �= x, we define the value of v as

μ(v) =
∑

u∈N(v)∩Nk+1(x)

1

|N(u) ∩Nk(x)|
,

where k = d(v, x). Observe that the value μ(v) represents a measure of the number of

vertices that v contributes to the (k + 1)-ring. Hence, the number of vertices at distance

k from x is

|Nk(x)| =
∑

v∈Nk−1(x)

μ(v) . (1)

Notice that a (k + 1)-ring vertex u adjacent to two k-ring vertices contributes 1
2
to the

value of each neighbor in the k-ring.

Lemma 6. Let G be a fullerene graph and let x ∈ V (G). Then,

|Nk(x)| ≤ |Nk−1(x)|+ 3 ,

for k ≥ 1.

Proof. The lemma obviously holds for k = 1, so we assume that k > 2 in the sequel. Let

G be a fullerene graph embedded in the plane and x an arbitrary vertex of G. By (1), the

statement of the lemma is equivalent to

|Nk(x)| =
∑

u∈Nk−1(x)

μ(u) ≤ |Nk−1(x)|+ 3 .
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In the proof we will make use of the following observation. Let P = uvwz be an induced

path in G such that u is an (i+ 3)-ring vertex, v an (i+ 2)-, w an (i+ 1)-, and z an i-ring

vertex, respectively. Moreover, let P be incident with a face f . Then, the vertex z has

another (i+1)-ring neighbor w′, and the vertex u has another (i+2)-ring neighbor v′ such

that v′ is adjacent to w′, for otherwise the length of f would be at least 7 (see Fig. 3). We

say that u and z are extreme for f .

u

v

w

z

w′

v′

f

Figure 3: A face incident with the vertices from four distinct rings.

Since every k-ring vertex has at least one neighbor in the (k − 1)-ring, its value is at

most 2. We show that only the neighbors of x may have value 2.

Claim 1. Let v be a vertex such that μ(v) = 2. Then d(v, x) = 1.

Suppose, to the contrary, that v is a k-ring vertex, for k > 1, with μ(v) = 2. Then, v has

precisely two neighbors u1, u2 in the (k + 1)-ring, and v is the only k-ring neighbor of u1

and u2. Let w be the (k − 1)-ring neighbor of v. Consider the other two neighbors of w,

z1 and z2. At least one of them, say z1, is in the (k − 2)-ring. Now, consider the face f

incident to the vertices v, w, and z1. Notice that either u1 or u2, say u1, is also incident

with f . Hence, u1 and z1 are extreme for f , thus u1 has another k-ring neighbor incident

with f , a contradiction. This establishes Claim 1.

By Claim 1, the maximum value of a k-ring vertex in G, for k > 1, is at most 1+ 1
2
= 3

2
.

We call a vertex v with 1 < μ(v) ≤ 3
2
expansive. Furthermore, Claim 1 also implies that an

expansive k-ring vertex, for k > 1, has at most one expansive (k + 1)-ring neighbor. The

following claims show that every expansive vertex has a unique expansive predecessor and

at most one expansive successor. The only exception are the vertices in the 2-ring, since

the vertices of the 1-ring are not expansive.
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Claim 2. An expansive k-ring vertex v has an expansive (k − 1)-ring neighbor or there is

an expansive (k − 2)-ring vertex z such that d(v, z) = 2.

Suppose that the unique (k − 1)-ring neighbor w of v is not expansive. Let u1, u2 be the

(k+1)-ring neighbors of v. By Claim 1, we may assume that u1, say, is adjacent to another

k-ring vertex, while u2 is not. Next, let z1, z2 be the other two neighbors of w and, without

loss of generality, we assume that z1 is a (k − 2)-ring vertex. Since u2 has only one k-ring

neighbor it follows that z2 is not a (k− 2)-ring vertex and the vertices u1, v, w, and z1 are

all incident to some face f . Since z1 is an extreme vertex for f it has another (k − 1)-ring

neighbor, which means that it is expansive.

Claim 3. An expansive k-ring vertex v has at most one expansive (k + 2)-ring vertex at

distance 2.

Suppose, to the contrary, that v has two expansive (k + 2)-ring vertices at distance 2. Let

u1 and u2 be the two (k+1)-ring neighbors of v. By Claim 1, at least one of u1 and u2, say

u2, has another k-ring neighbor v′. Now, we consider the (k + 2)-ring neighbors of u1 and

u2. If u2 has no (k + 2)-ring neighbor, we are done, since u1 cannot have two expansive

(k+2)-ring neighbors by Claim 1. Hence, we may assume that u2 has an expansive (k+2)-

ring neighbor t. Then, it has two (k + 3)-ring neighbors y1 and y2. However, they are the

extreme vertices of the two faces incident with t, u2, v, and t, u2, v
′, respectively. That

means that y1 and y2 both have two (k+2)-ring neighbors and the value of t is at most 1,

hence t is not expansive. Recall that u1 has at most one expansive (k + 2)-ring neighbor,

so Claim 3 holds.

Observe that all six vertices in the 2-ring may be expansive, therefore, by Claims 2 and 3,

it follows that there are at most six expansive vertices in every ring. Hence,

|Nk(x)| =
∑

u∈Nk−1(x)

μ(u) ≤ 6 · 3
2
+ (|Nk−1(x)| − 6) · 1 = |Nk−1(x)|+ 3 ,

which concludes the proof.

The following theorem gives the lower bound for the diameter of fullerenes.

Theorem 7. Let G be a fullerene graph. Then,

diam(G) ≥
√
24n− 15− 3

6
.
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Proof. Let G be a fullerene graph with n vertices. For every vertex x ∈ V (G) there exists

an integer k such that there is no vertex at distance at least k + 1 from x, while a vertex

at distance k from x exists. By Lemma 6, it is easy to see that the following inequality

holds:

n =
k∑

i=0

|Ni(x)| ≤ 1 + 3 +
k∑

i=2

|Ni(x)| =
3

2
k(k + 1) + 1 .

Since the diameter of G is at least k, we have that

diam(G) ≥ k ≥
√
24n− 15− 3

6
.

The function of the fullerene diameter is in Ω(
√
n). However, there are many fullerene

graphs with the diameter of order Θ(n), e.g., nanotubes. We discuss this in the next

section.

4 Upper bound on the diameter

In this section we determine the upper bound on the diameter in fullerene graphs. We

prove the following theorem.

Theorem 8. Let F be a fullerene graph with n vertices. Then,

diam(F ) ≤ n

6
+

5

2
,

unless F is a (5, 0)-nanotube. In that case, we have n = 10 k, k ∈ N and

diam(F ) =

⎧⎨
⎩

n
5
+ 1, k = 2;

n
5
, k ∈ {3, 4} ;

n
5
− 1, k ≥ 5.

Before we continue, we present some additional notation and definitions. Let F be a

fullerene graph and let v be an arbitrary vertex in F . We define Lv
0 = {v} as an initial

layer and F v
0 as a set of faces incident with v. Inductively, having defined the sets Lv

i−1

and F v
i−1, L

v
i is the set of vertices incident with F v

i−1, not contained in Lv
i−1. Furthermore,

F v
i is the set of faces incident with Lv

i that are not contained in F v
i−1. For an edge e = uw,

where u, w ∈ V (F ), we say that it is an incoming edge to Lv
i if u ∈ Lv

i−1 and w ∈ Lv
i . If e is

an incoming edge to Lv
i , then we also say that e is an outgoing edge from Lv

i−1. The vertex
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u is an outgoing vertex, and w is an incoming vertex, respectively. Notice that a vertex

cannot be outgoing and incoming at the same time, and also that the vertices in the last

layer are never outgoing (it may also happen that such a vertex is neither incoming).

An edge-cut of graph G is a set of edges C ⊂ E(G) such that G − C is disconnected.

A graph G is k-edge-connected if G cannot be separated into two components by removing

less than k edges. An edge-cut C of G is cyclic if each component of G−C contains a cycle.

A graph is cyclically k-edge-connected if at least k edges must be removed to disconnect

it into two components such that each contains a cycle. For fullerene graphs, Došlić [4]

proved the following theorem.

Theorem 9. Every fullerene graph F is cyclically 5-edge-connected.

Additionally, Kardoš and Škrekovski [22] proved that the cyclically 5-edge-connected fulle-

renes are of unique type.

Theorem 10. If F is a fullerene graph which is not a (5, 0)-nanotube, it is cyclically

6-edge-connected.

As every face in F is of length 5 or 6 and every vertex has degree 3, we immediately

infer that:

Lemma 11. For every vertex x ∈ Lv
i+1, i ≥ 1, there exists a vertex y ∈ Lv

i such that

d(x, y) ≤ 2.

The inequality in Lemma 11 is tight only when x is an outgoing vertex, otherwise there

is a vertex y ∈ Lv
i adjacent to x. Also, note that if x ∈ Lv

1, then d(x, v) could be 3 (see

Figure 4). This together with Lemma 11 gives:

Lemma 12. Let x ∈ Lv
i . Then d(v, x) ≤ 2i + 1. Furthermore, if d(v, x) = 2i + 1, then v

is adjacent with at least one hexagon.

Now, we show that when Lv
i is small enough, Lv

i+2 is empty, or in other words we reach

the “end” of the fullerene.

Lemma 13. Let i ≥ 2 and |Lv
i | < 12. Then, Lv

i+2 = ∅.
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v

x

Figure 4: The vertex v is a starting vertex and Lv
0 = {v}. Faces incident to v belong to

the set F v
0 . The vertices incident to F v

0 different from v form the fist layer Lv
1. Distance

between v and x ∈ Lv
1 is three.

Proof. Suppose first that Lv
i induces an acyclic graph. Then, F v

i = ∅ and therefore also

Lv
i+1 = Lv

i+2 = ∅. Hence, we may assume that there exists a cycle C in the graph induced

by Lv
i . By Theorem 9, there are at least five incoming edges to Lv

i . If the number of

incoming edges is precisely five, C is a 5-face, for otherwise F is a (5, 0)-nanotube. It

follows that Lv
i+1 = Lv

i+2 = ∅.
On the other hand, if there are at least six incoming edges to Lv

i and since |Lv
i | < 12

we have at most five outgoing edges from Lv
i , witch also means, that there is at most five

incoming vertices to Lv
i+1. By the same argumentation we infer that the graph induced by

Lv
i+1 is either acyclic or it contains a cycle C ′ which is a 5-face in F . Either way, Lv

i+2 is

empty.

The following lemma will determine the maximal distance from the last layer with at

least 12 vertices Lv
k−1 to the vertices in the last layer.

Lemma 14. Let x be a vertex from the last layer in our graph and let k be the smallest

number, such that k ≥ 2 and |Lv
k| < 12. Then, there exists a vertex z ∈ Lv

k−1 such that

d(z, x) ≤ 3.

Proof. If Lv
k is the last layer in our graph, we know that by Lemma 11 that d(z, x) ≤ 2.

Now consider Lv
k+1 �= ∅. By Lemma 13, Lv

k+2 is an empty set. It follows that there is

no outgoing vertices from Lv
k+1. Hence, every vertex in Lv

k+1 is adjacent to some vertex y

in Lv
k. Moreover, by Lemma 11 there is a vertex z in Lv

k−1 such that d(y, z) ≤ 2, hence

d(x, z) ≤ 3. Note that the vertex y is an outgoing vertex.

Now we are ready to prove Theorem 8.
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Proof of Theorem 8. Let F be a fullerene graph. We divide the proof in two parts. In the

first, we prove that the diameter of F is at most n
6
+ 5

2
, if F is not a (5, 0)-nanotube. In

the latter part, we prove the bound for (5, 0)-nanotubes.

So, assume that F is not a (5, 0)-nanotube. Let v be an arbitrary vertex of F . We will

prove that d(u, v) ≤ n
6
+ 5

2
for every vertex u ∈ V (F ), which will establish the first part of

the theorem.

Let Cm be the number of vertices in Lv
k∪Lv

k+1 and let Lv
k be the first layer that contains

less then 12 vertices (according to the vertex v), where k ≥ 2. By Lemma 13, Lv
k or Lv

k+1

is the last layer of the fullerene. Then, the order n of fullerene F is

n = |Lv
0|+ |Lv

1|+
k−1∑
i=2

|Lv
i |+ |Lv

k ∪ Lv
k+1| ≥ 1 + |Lv

1|+ 12(k − 2) + Cm ,

or

k ≤ 1

12
(n+ 23− |Lv

1| − Cm) . (2)

We will now determine the distance from v to an outgoing vertex x ∈ Lv
k−1. According to

the choice of vertex v, there are two cases:

1. Let v be adjacent to pentagons only.

Obviously, |Lv
1| = 9. It also follows from Lemma 12 and from (2), that:

d(v, x) ≤ 2k − 2 ≤ 1

6
(n+ 2− Cm) (3)

Later we will see, that this case gives us better bound, but it may happen, that there

is no such possible choice of v.

2. Let v be adjacent to at least one hexagon.

Obviously |Lv
1| ≥ 10. It also follows from Lemma 12 and from (2), that:

d(v, x) ≤ 2k − 1 ≤ 1

6
(n+ 7− Cm) (4)

So now we have the distance from v to the last layer with at least 12 vertices for both

cases above. Determining the distance from an outgoing vertex of this layer to the “end”

will establish the proof.
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Let dM be the maximal distance between the vertices in the last layer and the outgoing

vertices of layer Lv
k−1. By Lemmma 14 it follows, that 1 ≤ dM ≤ 3. We will now consider

all three cases, to bound the number of vertices in the last layers:

• dM = 3: By Lemma 11, we immediately infer that Lv
k+1 �= ∅, so |Lv

k+1| ≥ 1. Moreover,

since Lv
k+1 �= ∅, Lv

k is not acyclic. Now, by Theorem 10 there are at least six incoming

vertices in Lk. Since there is at least one vertex in Lv
k+1 there are also at least three

outgoing vertices in Lk. Hence, we have Cm = |Lv
k ∪ Lv

k+1| ≥ 10.

• dM = 2: It is obvious that in this case Lv
k+1 = ∅. Let x ∈ Lv

k be such a vertex that

the distance to the closest vertex in Lv
k−1 is two. Since x cannot be outgoing vertex

and since deg(x) = 3 it follows that N(x) ⊆ Lv
k, so we have Cm = |Lv

k| ≥ 4.

• dM = 1: In this case it is obvious that in the last layer there is at least one vertex,

i.e., Cm = |Lv
k| ≥ 1.

Finally, we compute the upper bound of the distance between v and a vertex in the

last layer and we use that result to compute the bound of the diameter of F .

diam(F ) ≤ d(v, x) + dM , (5)

where x is an outgoing vertex of Lv
k−1. By (3), (4) and (5) we again have two cases,

depending on the choice of v.

diam(F ) ≤ 1

6
(n+ 2− Cm) + dM =

n

6
+ C1 (6)

diam(F ) ≤ 1

6
(n+ 7− Cm) + dM =

n

6
+ C2 (7)

Now, we determine the upper bound of the constants C1, C2 by plugging the values com-

puted above in (6) and (7), respectively. We infer that C1 ≤ 5
3
and C2 ≤ 5

2
. This establishes

the first part of Theorem 8. Note, that if our fullerene contains diametral vertex, adjacent

only to pentagons, then we can use the bound from (6) with constant C1, which is better

than C2.

Suppose now that F is a (5, 0)-nanotube with n vertices. Notice that n ≡ 0 (mod 10)

or n = 10 k, k ∈ N. The diameter of the graph is determined by the most distanced

vertices, and in this case they belong to the different caps and are incident only to 5-faces.
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Now, it is easy to compute that the theorem holds for k ∈ {2, 3, 4, 5}. For k > 5, we

prove the theorem by induction on the number of vertices. Let k ≥ 5 and assume that

the theorem holds for (5, 0)-nanotubes on 10k vertices. A (5, 0)-nanotube F ′ on 10(k + 1)

vertices can be constructed easily by adding an extra layer of hexagons between already

existing hexagonal layers. This construction gives us a (5, 0)-nanotube with additional 10

vertices (see Figure 5). By Lemma 11 and the comment after it, we have that the diameter

Figure 5: A (5, 0)-nanotube.

increases by 2, i.e.,

diam(F ′) = diam(F ) + 2 =
10k

5
− 1 + 2 =

10(k + 1)

5
− 1 ,

and this completes the proof.

5 New bounds on some related invariants

5.1 Improved lower bound on the independence number

Independence number of fullerene graphs attracted a lot of attention not only as a potential

stability predictor [11], but also in the context of study of independent sets as possible

models for addition of bulky segregated groups such as free radicals or halogen atoms [2].

Sharp upper bounds on the independence number of n/2 − 2 for general fullerenes and

n/2− 4 for those with isolated pentagons follow by simple counting argument [12]. Lower

bounds were gradually improved from (almost) trivial α(G) ≥ n/3 valid for all 3-chromatic

graphs to α(G) ≥ 3
8
n mentioned in section 2 [20]. A better lower bound of type α(G) ≥
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n
2
− C

√
n, for some constant C, was established for icosahedral fullerenes [17]. Using

Theorem 1, it can be shown that such bound holds for all fullerene graphs, which goes in

favour to Conjecture 3.

Theorem 15. Let G be a fullerene graph with n vertices. Then,

α(G) ≥ n

2
− 78.58

√
n .

Proof. LetG be a fullerene graph with n vertices. By the upper bound ϕ(G) ≤ 39.29
√
n [9],

it follows that the removal of at most 39.29
√
n edges from G results in a bipartite spanning

subgraph G′. At least one of the two partition classes of G′, call it W ′, is of size at least

n
2
, and it is an independent set in G′. We know that the set M of removed edges forms

a matching [7], and that each edge from M connects two vertices from the same partition

class of G′. Even if each edge of M connects two vertices from W ′ in G, there are at most

39.29
√
n edges in M , and hence the vertices of W ′ not incident to any edge from M form

an independent set in G of cardinality at least n
2
− 2 · 39.29√n = n

2
− 78.58

√
n.

Theorem 8 and Theorem 15 imply the next corollary.

Corollary 16. Let G be a fullerene graph with n vertices. If n is sufficiently large, then

α(G) ≥ 2(diam(G)− 1) .

Proof. Using the bounds in Theorem 8 and Theorem 15 it is not hard to compute that

when n ≥ 617 502, the following series of inequalities holds:

α(G) ≥ n

2
− 78.58

√
n ≥ 2

(n
5
+ 1

)
− 1 ≥ 2(diam(G)− 1) .

Hence, Corollary 16 settles Conjecture 4, for all fullerenes of sufficiently large order.

5.2 Improved upper bound on the smallest eigenvalue

Recall that the smallest eigenvalue λn(G) of a 3-regular graph G and the largest Laplacian

eigenvalue μ∞(G) of G are related via the following relation ([16, p. 280]):

λn(G) = 3− μ∞(G).
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By plugging this into Theorem 2 and noting that bip(G) = 3
2
n−ϕ(G) we obtain an upper

bound on λn(G) in terms of the bipartite edge frustration of G of the form λn(G) ≤
−3 + 4

n
ϕ(G). By taking into account an upper bound on ϕ(G) we immediately obtain the

following upper bound on the smallest eigenvalue of a fullerene graph with n vertices.

Theorem 17. Let G be a fullerene graph with n vertices. Then,

λn(G) ≤ −3 +
157.16√

n
.

Since the smallest eigenvalue of C60 is −φ2, where φ is the golden ratio 1+
√
5

2
, an

immediate consequence is that Conjecture 2 is true for all fullerene graphs with at least

169 291 vertices.

5.3 Improved upper bound on the saturation number

In this subsection we improve the upper bound on the saturation number in fullerene

graphs. Using the obtained lower bound on the diameter we are able to improve the

logarithmic additive correction of Theorem 3 and to prove the following result.

Theorem 18. Let G be a fullerene graph with n vertices. Then,

s(G) ≤ n

2
− 1

4
(diam(G)− 2) .

In particular,

s(G) ≤ n

2
−

√
24n− 15− 15

24
.

Proof. Let G be a fullerene graph with n vertices and diameter k. Let x and y be a pair

of diametral vertices of G, i.e., d(x, y) = k. By Theorem 7, we have that k ≥
√
24n−15−3

6
.

Let P = xv1v2 · · · vk−1y be a shortest path between x and y. Notice that the vertices vi,

for every even i such that 1 ≤ i < k, form an independent set I. We call a vertex v even

if v ∈ I, and odd if v ∈ V (P )\I. In what follows, we will construct a maximal matching

M in G − I such that it will cover all the vertices adjacent to I. The idea is to choose a

set of independent edges covering all the neighbors of I with no vertex of I being covered

and then extend it to a maximal matching M .

For i ∈ {1, 2, . . . , k − 1}, let ui be the third neighbor of vi distinct from vi−1 and vi+1

(for convenience, we define v0 = x and vk = y), and let w1
i , w

2
i be the two neighbors of ui

distinct from vi.

-126-



x yv2 v4 v6v1 v3 v5 v7

u2

w1
2 w2

2 w1
4 w2

6

u4 u6

u1 u3 u5 u7

Figure 6: An independent set with three unmatched vertices v2, v4, and v6.

First, we show that all the vertices ui are distinct. It is easy to see that we obtain a

cycle of length less than 5 if ui is adjacent to vj, for j ∈ {i− 2, i− 1, i+ 1, i+ 2}, which
violates the girth condition of fullerene graphs. Moreover, since the vertices vi are on the

shortest path between x and y, we have that i − 1 ≤ d(x, ui) ≤ i + 1, and so ui is not

adjacent to vj, if |j− i| > 2. Hence, all ui are distinct and the edges uivi independent. We

add the edges viui, for every odd vi, to the matching M .

In order to match all the neighbors of the even vertices, it remains to add either the

edge uiw
1
i or the edge uiw

2
i to M , for all even vi. First, notice that a vertex ui may be

adjacent to some uj, for j ∈ {i− 3, i+ 3}, that means the edge uiuj cannot be in M , since

uj is already covered. Fortunately, since P is a shortest path, both edges uiui−3 and uiui+3

cannot appear in G. Therefore, for all such ui, let wi ∈ {w1
i , w

2
i } be distinct from uj and

add the edge uiwi to M .

Now, let H be the subgraph of G induced by the edges uiw
j
i , where i is even, j ∈ {1, 2},

and wj
i �= ui±3 (observe, that it may happen, that wj

i = ui±2, see figure 6). We claim that

H has the following properties:

(1) Δ(H) ≤ 2.

(2) No path component of H starts and ends with ui’s.

We prove each claim separately. Observe that the vertex ui cannot be of degree 3, since

it is adjacent to vi which is not a vertex of H. So, suppose that some wj
i is of degree 3 in

H. Then, wj
i must be adjacent to ui−2, ui, and ui+2 as P is a shortest path. But, since no

separating cycles of size 5 or 6 exist in fullerene graphs, we infer that wj
i is of degree at

most 2. This proves (1).
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Now we show claim (2). Suppose that P ′ is a path that starts with a vertex ua and ends

with a vertex ub, for some a, b ∈ {1, 2, . . . , k − 1} and let a < b. A vertex ui has degree 1

in H only if it is adjacent to ui−3 or ui+3 in G. Thus ua is adjacent to ua−3 or ua+3. Since

G has no separating cycles of length at least 6, we conclude that ua must be adjacent to

ua−3. Similarly, ub must be adjacent to ub+3. So, the path va−3ua−3P
′ub+3vb+3 is shorter

than the path va−3va−2 . . . vb+3, contradicting the fact that the path P is a shortest path

between x and y.

Finally, we find a matching M ′ in H that covers all ui’s in H. We consider every

component C of H separately. By (1), they are only paths and cycles. If C is a path in H

that does not start nor end with ui, we add every second edge of C to M ′. Otherwise, we

start with the edge incident to the ui with which C starts or ends. By (2), it follows that

all ui’s of C are covered. If C is an even cycle, we simply add every second edge of C to

M ′. In case when C is an odd cycle, it contains an edge uiui+2 for some i. We add uiui+2

to M ′ and choose the edges of the path C − uiui+2 as described above.

In this way, every ui in H is matched and we add the edges of M ′ to M . Hence, we have

matched all the neighbors of the even vertices. Next, extend M to a maximal matching in

G. Since no even vertex is matched by the edges in M , its size is at most

|M | ≤ n− |I|
2

=
n

2
− 1

2

⌈
diam(G)− 2

2

⌉
≤ n

2
− diam(G)− 2

4
≤ n

2
−

√
24n− 15− 15

24
,

what establishes the theorem.

6 Concluding remarks

We have established new lower and upper bounds on the diameter of fullerene graphs

and combined it with recently established upper bounds on the bipartite edge frustration

to derive improved bounds on the independence number, the smallest eigenvalue, and

the saturation number of fullerene graphs. It is very likely that the new bounds on the

diameter will also be useful in studying other distance-based invariants of fullerene graphs,

such as, e.g., the eccentricity and distance sums. The techniques used here can be also

applied to other classes of polyhedral graphs, in particular to generalized fullerenes, to

their boron-nitrogen analogues, and to other polyhedral graphs with bounded face size.
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One of the more immediate goals should be confirming the exact values of constants in

Conjectures 1 and 3. An important conjecture on the closed-shell independence number of

fullerenes ([3, Conjecture 7.7.1]) will follow immediately from Conjecture 3 if the numerical

value of C is confirmed. (The closed-shell independence number α−(G) is the maximum

cardinality of an independent set whose complement has exactly half of its eigenvalues

positive. It is conjectured that there are exactly three fullerene graphs whose independence

number and closed-shell independence number coincide. At the moment we have a weaker

result stating that the number of such fullerenes is finite.) There is some evidence that the

closed-shell property is relevant for the stability of fullerenes. A more detailed discussion

and a number of open questions can be found in Chapter 7 of [3].
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