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Abstract. Apoptosis proteins play a crucial role in the development and home-
ostasis of an organism. Obtaining information about subcellular location of these
proteins is very important to understand the mechanism of programmed cell
death. In this paper, based on the hydropathy characteristics, we introduce the
frequency of 2-blocks and pK value of the α-NH+

3 group of 2-blocks. By using
the new representation for apoptosis protein sequence and support vector ma-
chine, we predict subcellular location of 317 apoptosis proteins in jackknife test.
The overall prediction accuracy is 91.80% which is higher than other existing
algorithms. Furthermore, another dataset containing 98 apoptosis proteins is ex-
amined in the same method. The overall predicted successful rate is 94.85%. The
promising results indicate that our method may play a complementary role for
predicting subcellular location of apoptosis protein.

1 Introduction

Apoptosis proteins play an important role in the growth and dynamic equilibrium of

an organism. It can regulate the balance between cell proliferation and death [1]. A

range of diseases may outbreak when apoptosis proteins are out of tune, such as cancer

[2, 3], autoimmune diseases [4] and neurodegenerative disease [5]. Since the function

of an apoptosis protein is closely related with its subcellular location [5, 6], prediction of

subcellular location is very necessary. However, for large protein sequences, it is both time

consuming and costly to predict subcellular location by doing biochemical experiments.
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It demonstrates that using information of protein primary structure to predict subcellular

location of apoptosis proteins will be more economic and fast.

Many efforts have been made to develop prediction methods of subcellular location

of proteins. However, research for predicting subcellular location of apoptosis proteins

appears relatively late [7–15]. With the number of known apoptosis proteins increasing,

developing a faster and accurate prediction method is necessary. Recently, more and

more scholars began to engage in research in this area. Zhou and Doctor [16] firstly pro-

vided a method (covariant discriminant algorithm) for predicting subcellular location of

apoptosis proteins. Their data set only consisted of 98 protein sequences with four kinds

of subcellular locations. The overall accuracy achieved 72.5% in jackknife test. Zhang et

al. [17] proposed a novel approach (group weight coding method, EBGW SVM) in the

expanded 151 and 225 protein sequences data set with other four kinds of subcellular

locations. The overall accuracies achieved 91.4% and 83.1% in jackknife test separately.

Later, many methods were proposed using support vector machine. Chen and Li [18]

combined the increment of diversity algorithm with support vector machine (ID SVM)

in the new 317 protein sequences data set provided into six kinds of subcellular loca-

tions. Their prediction accuracy was 84.2% by jackknife test. Zhang et al. [19] proposed

a novel approach (DF SVM) by combining the distance frequency and support vector

machine using the same data set and test method with Chen and Li. They got an overall

predictive accuracy of 88.0%. Lin et al. [20] utilized the Chou’s pseudo amino acid com-

position and achieved the accuracy of 91.1%. Though the overall predictive accuracies

have been improved for apoptosis proteins using existed methods, the representation of

protein sequence was mainly composed of the amino acid frequency [21] or sequence-order

information [19]. PseAAC can represent a protein sequence with a discrete model yet

without completely losing its sequence order information, but the calculation is a little

complicated.

In this paper, based on the hydropathy distribution information, the frequency and

pK value of the α-NH+
3 group of 2-blocks are proposed. With the novel representation in-

cluding the frequencies and pK values of 20 native amino acids and the relative frequencies

and pK values of 16 2-blocks, a protein sequence can be converted into fixed-dimensional

feature vector and each element in it is calculated using the frequency multiplied by the

corresponding pK value of the α-NH+
3 group. Although there are lots of classifiers which
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can solve the protein classification problem [22,23] and here we choose the support vector

machine which can get higher prediction accuracy [24–28]. The support vector machine

is utilized to solve the multiple classification problem and the jackknife cross-validation

is applied to examine the predictive ability of method. Two data sets, CL317 and ZD98

are used to examine our method. The overall prediction accuracies are improved, which

imply that the proposed method is a simple but efficient model for predicting apoptosis

protein subcellular location .

2 DataSet

The 317 apoptosis proteins (CL317) extracted from Swiss-Prot 49.0 can be classified into

six subcellular locations: 112 cytoplasmic proteins, 55 membrane proteins, 34 mitochon-

drial proteins, 17 secreted proteins, 52 nuclear proteins and 47 endoplasmic reticulum

proteins. The distribution of the sequence identity percentage is 40.1% with ≤ 40% se-

quence identity, 15.5% with sequence identity from 41% to 80%, 18.9% with sequence

identity from 81% to 90% and 25.6% with ≥ 91% sequence identity [29].

In addition, the 98 apoptosis proteins (ZD98) extracted from SWISS-PROT data

bank containing 43 cytoplasmic proteins, 30 plasma membrane–bound proteins, 13 mito-

chondrial proteins and 12 other proteins [16] is also used to estimate the effectiveness of

the method.

3 Methods

The accuracy of predicting apoptosis protein subcellular localization is mainly depended

on the following two aspects. The first is the representation vector of a protein sequence

and the second is the classifier for prediction. Our new representation for apoptosis pro-

tein is a 36-dimensional vector. Each element in the first 20-dimensional vector contains

the frequency and the pK value of the α-NH+
3 group of the 20 native amino acids while

each element in the last 16-dimensional vector contains the frequency and pK value of

the α-NH+
3 group of hydropathy blocks. Then, we apply the feature vector to predict

apoptosis proteins with support vector machine on two datasets.
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3.1 Representation of protein sequence

It was demonstrated that the patterns of hydrophobic and hydrophilic residues play an

important part in the definition of global protein structure [30]. Among all the physico-

chemical properties of amino acids in protein sequences, such as polarity, solubility, hy-

dropathy, and so forth, hydropathy (the patterns of hydrophilicity and hydrophobicity) is

known to be well conserved during the evolution process. Furthermore, the hydropathy

patterns presenting in the protein sequences are used to develop reduced amino acid al-

phabets for protein secondary structure prediction [31,32]. A protein sequence of length

n can be defined as a linear succession of n symbols from the 20-letter amino acid al-

phabet {R, D, E, N, Q, K, H, L, I, V, A, M, F, S, Y, T, W, P, G, C}. According to

the hydropathy scale, we divide the 20 basic amino acids into four groups [33]. Each

group is denoted with a letter. Let L, B and W denote strongly hydrophilic amino acids,

strongly hydrophobic amino acids and weakly hydrophilic or weakly hydrophobic amino

acids, respectively. As the amino acids P, G and C have unique backbone properties, we

divide them into a single group, denoted by P. In this way, a protein primary sequence

can be converted into a four-letter sequence just like DNA sequence without considering

the differences of representative letter. The four-letter sequence may be regarded as a

simplification of the protein primary sequence which makes it easier to extract features

from the sequence. We show the classifications of 20 amino acids in table 1.

Table 1: Classification of basic amino acids

Classification Group Amino acids

Strongly hydrophilic or polar L R, D, E, N, Q, K, H

Strongly hydrophobic B L, I, V, A, M, F

Weakly hydrophilic or weakly hydrophobic (ambiguous) W S, T, Y, W

Proline or Glycine or Cysteine P P, G, C

For a protein sequence S, suppose the size of L be LL, the size of B be LB, the size of

W be LW , and the size of P be LP . Actually, from the above table, we can see that LL

is 7, LB is 6, LW is 4, LP is 3 and LL+LB +LW +LP is 20. Before simplifying a protein

sequence, we can obtain the number and frequency of the 20 amino acids denoted by nj
i

and f j
i , with

f j
i = nj

i/n
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where i represents the class L, B, W or P, nj
1 or f

j
1 (j = 1, . . . , LL) represents the number

or frequency of the jth amino acids of Class L occurring in sequence S, nj
2 or f j

2 (j =

1, . . . , LB) represents the number or frequency of the jth amino acids of Class B occurring

in sequence S, nj
3 or f j

3 (j = 1, . . . , LW ) represents the number or frequency of the jth

amino acids of Class W occurring in sequence S, nj
4 or f j

4 (j = 1, . . . , LP ) represents the

number or frequency of the jth amino acids of Class P occurring in sequence S. Also, we

can define the the frequencies of L, B, W, P labeled as fi with

fi =
1

n

(
ni∑
j=1

nj
i

)

where i = 1, . . . , 4, n1 = LL, n2 = LB, n3 = LW , n4 = LP .

By considering the successive groups in a simplified four-letter protein sequence just

like the dinucleotide in DNA [34–36], we can obtain sixteen binary groups (We call it 2-

blocks){LL, LB, LW, LP, BL, BB, BW, BP, WL, WB, WW, WP, PL, PB, PW, PP}. We

can count the number of the occurrences of linear succession 2-blocks by taking a 2-letter

sliding window that is run through the sequences, from position 1 to n-1. Consequently,

the number of occurrences of the 2-blocks in protein sequence S can be represented as:

{n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44}

Every elements in the above vector divided by n-1, we can get the frequency of 2-blocks

as follows:

fij = nij/(n− 1), i, j = 1, 2, 3, 4

where n-1 is the total number of 2-blocks in protein S.

The value of pK of the α-NH+
3 group is one of the important physicochemical prop-

erties of amino acids. We use pKi(i = 1, . . . , 20) to represent pK values of the α-NH+
3

group of the 20 amino acids in the sequence R, D, E, N, Q, K, H, L, I, V, A, M, F, S, Y,

T, W, P, G, C. We define the pK values of the α-NH+
3 group of class L,B,P,W as follows:

pKL =

LL∑
i=1

pKi/LL, pKB =

LL+LB∑
i=LL+1

pKi/LB

pKW =

LL+LB+LW∑
i=LL+LB+1

pKi/LW , pKP =

LL+LB+LW+LP∑
i=LL+LB+LW+1

pKi/LP
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where pKL, pKB, pKW , pKP represent the average pK values of the α-NH+
3 group in class

L,B,P,W separately. In the same way, we can get the pK values of the α-NH+
3 group of

the sixteen binary groups (2-blocks) as follows:

pK11 = (pKL + pKL)/2, pK12 = pK21 = (pKL + pKB)/2

pK22 = (pKB + pKB)/2, pK23 = pK32 = (pKB + pKW )/2

pK24 = pK42 = (pKB + pKP )/2, pK33 = (pKW + pKW )/2

pK34 = pK43 = (pKW + pKP )/2, pK44 = (pKP + pKP )/2

pK13 = pK31 = (pKL + pKW )/2, pK14 = pK41 = (pKL + pKP )/2

Consequently, the protein sequence S can be converted into a 36-dimensional vector:

V = [pK1 ∗ f 1
1 , ..., pK7 ∗ f 7

1 , pK8 ∗ f 1
2 , ..., pK13 ∗ f 6

2 , pK14 ∗ f 1
3 , ..., pK17 ∗ f 4

3 , pK18 ∗
f 1
4 , ..., pK20 ∗ f 3

4 , pK11 ∗ f11, ..., pK14 ∗ f14, pK21 ∗ f21, ..., pK24 ∗ f24, pK31 ∗ f31, ..., pK34 ∗
f34, pK41 ∗ f41, ..., pK44 ∗ f44]

where every part of the fixed-dimensional vector is the pK value multiplied by the

corresponding frequency.

Finally, we get a feature vector including 20 native amino acids frequency, 16 2-blocks

frequency, pK values of the α-NH+
3 group of 20 native amino acids and pK values of 16 2-

blocks, which is simple but has enough information. In this way, all the proteins are 36-D

and we need not consider the influence of the different lengths of the protein sequences.

3.2 Support vector machine

SVM is not only a kind of machine learning method based on statistical learning theory

[37] but is also superior in practical applications. As a supervised machine learning

technology, it has been successfully used in wide fields of bioinformatics by transforming

the input vector into a high-dimension Hilbert space and to seek a separating hyperplane

in this space.

In general, One-Versus-Rest (OVR) and One-Versus-One (OVO) are the most com-

monly used approach for solving multi-class problems by reducing a single multiclass

problem into multiple binary problems. This paper use the OVO strategy. For a k-

classification problem, the OVO strategy constructs k × (k − 1)/2 classifiers with each

one trained with the data from two different classes. The software used to implement
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SVM is LibSVM written by Lins lab and can be freely downloaded from:

http://www.csie.ntu.edu.tw/*cjlin/libsvm [38].

There are some common kernel functions, including polynomial kernel, radial basis

function, Gaussian radial basis function and sigmoid function. Here, the RBF is used for

all our calculations. The regularization parameter C and the kernel parameter γ of the

RBF must be determined in advance, which will be discussed in results and discussion

section.

3.3 Assessment of prediction performance

In order to evaluate a predictive algorithm, selecting a test method is an important issue.

There are three cross-validation tests often used in evaluating the prediction performance:

independent dataset test, sub-sampling (such fivefold or tenfold sub-sampling) test, and

jackknife test. Of these three examine method, the jackknife test is deemed the most

rigorous and objective one [39]. The jackknife test reflects ability of the

extrapolation of a prediction method. For each test sequence, the rule parameters are

extracted from the remaining sequences. Every time the tested sequence should be put

into the data set and single out another one to test. Therefore, we explore the jackknife

test to examine proposed method.

The individual sensitivity Sin, individual specificity Sip, Matthew’s correlation co-

efficient MCCi, and overall prediction accuracy Ac are used to measure the prediction

performance of our work. The definition is shown as follows:

Sin = TPi/(TPi + FNi)

Sip = TPi/(TPi + FPi)

MCCi =
(TPi × TNi)− (FPi × FNi)√

(TPi + FPi)× (TNi + FNi)× (TPi + FNi)× (TNi + FPi)

Ac =
n∑

i=1

TPi/N

where TPi denotes the number of true positives in ith subcellular location, TNi denotes

the number of true negatives in ith subcellular location, FPi denotes the number of false

positive, FNi denotes the number of false negative in ith subcellular location and N is

the number of all the protein sequences.
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4 Results and discussion

Chen and Li constructed the 317 data set and predicted the subcellular location of the

apoptosis proteins by increment of diversity method (ID) [29] and ID with support vector

machine (ID SVM) [18]. The overall success rates were 82.7 % and 84.2 % for jackknife

test, respectively. Zhang et al. [19] achieved the overall accuracy of 88.0% with the

distance frequency and support vector machine method. Lin et al. [20] got the accuracy

of 91.1% by use of Chou’s pseudo amino acid composition (PseAAC). In our method, we

examine a great deal of parameters of SVM (C and γ) by using jackknife cross-validation.

For the current study, we found that, when C=1000 and γ=0.99, the predicted successful

rate is 91.8% which is the highest. The results on dataset CL317 are listed in Table 2.

The compared results with other methods are shown in Table 3. Especially, for membrane

protein, mitochondrial protein, nuclear protein and endoplasmic protein, sensitivities are

higher than other methods. The results of comparison with other results on dataset

ZD98 [16] are exhibited in Table 4. By lots of examination, we select C=30 and γ=0.29

for this prediction. However, one protein is missing now and we use the rest 97 proteins

to test. The results show that the predictive successful rate of our method is 94.9%. The

results of comparison with different methods on different datasets indicate that our our

method is effective for predicting the subcellular localization of apoptosis protein.

Table 2: The prediction results on dataset CL317 in Jack-
knife test

Subbcellular location Jackknife test
Sn(%) Sp(%) MCC

Cytoplasmic 92.9 92.0 0.88
Membrane 94.6 88.1 0.89
Mitochondrial 88.2 90.9 0.88
Secreted 70.6 92.3 0.80
Nuclear 92.3 92.3 0.91
Endoplasmic 95.7 95.7 0.95
Ac(%) 91.8

SVM: C=1000, γ=0.99.

5 Conclusion

A good representation of protein and powerful classifier are important for predicting

apoptosis protein subcellular localization. Hydropathy is one of important physicochemi-
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Table 3: Comparison of predicting results on the 317 apoptosis
proteins data set with a jackknife test

Algorithm Sn%
Cyto Memb Mito Secr Nucl Endo Overall

IDa 81.3 81.8 85.3 88.2 82.7 83.0 82.7
ID SVMb 91.1 89.1 79.4 58.8 73.1 87.2 84.2
FKNNc 92.0 89.1 85.3 76.5 92.3 93.7 90.2
FKNNd 93.8 92.7 82.4 76.5 90.4 93.6 90.9
PseAACe 93.8 90.9 85.3 76.5 90.4 95.7 91.1
DF SVMf 92.9 85.5 76.5 76.5 86.5 93.6 88.0
Our method 92.9 94.6 88.2 70.6 92.3 95.7 91.8

a Comes from [29].
b Comes from [18].
c Comes from [40].
d Comes from [41].
e Comes from [20].
f Comes from [19].

Table 4: Comparison of predicting results on the 98 apoptosis proteins data set with a
jackknife test

Algorithm Sn(%)
Cyto Memo Mito Other Overall

Covariant a 42/43 = 97.7 22/30 = 73.3 4/13 = 30.8 3/12 = 25.0 71/98 = 72.5
20 sqrt-AAC b 37/43 = 86.0 27/30 = 90.0 13/13 = 100 12/12 = 100 89/98 = 90.8
EBGW SVM c 42/43 = 97.7 27/30 = 90.0 12/13 = 92.3 10/12 = 83.3 91/98 = 92.9
BCd 39/43 = 90.7 27/30 = 90.0 12/13 = 92.3 6/12 = 50.0 84/98 = 85.7
HensBCe 41/43 = 95.3 27/30 = 90.0 12/13 = 92.3 8/12 = 66.7 88/98 = 89.8
Dual-layer f 41/43 = 95.3 29/30 = 96.7 12/13 = 92.3 11/12 = 91.7 93/98 = 94.9
IDg 39/43 = 90.7 27/30 = 90.0 12/13 = 92.3 11/12 = 91.7 89/98 = 90.8
ID SVMh 41/43 = 95.3 28/30 = 93.3 11/13 = 84.6 7/12 = 58.3 87/98 = 88.8
HHTi 41/43 = 95.3 29/30 = 96.7 12/13 = 92.3 9/12 = 75.7 91/98 = 92.9
FKNNj 41/43 = 95.3 29/30 = 96.7 13/13 = 100 11/12 = 91.7 94/98 = 95.9
PseAACk 41/43 = 95.3 28/30 = 93.3 12/13 = 92.3 10/12 = 83.3 91/98 = 92.9
DF SVMl 42/43 = 97.7 29/30 = 96.7 12/13 = 92.3 9/12 = 75.0 92/98 = 93.9
Our method 42/43 = 97.7 29/30 = 96.7 11/12 = 91.7 10/12 = 83.3 92/97 = 94.9

SVM: C=30, γ=0.29. One protein sequence is missing now.
a Comes from [16], by using covariant discriminant function.
b Comes from [28], by using 20 sqrt-amino acid composition and SVM.
c Comes from [17], by using group weight coding method.
d Comes from [42], by using single Bayesian classifier.
e Comes from [42], by using hierarchical ensemble of Bayesian classifiers.
f Comes from [43], by using Dual-layer SVM.
g Comes from [29], by using increment of diversity method.
h Comes from [18], by using increment of diversity combined with support vector machine.
i Comes from [44], by using Hilbert Huang transform.
j Comes from [41], by using fuzzy K-nearest neighbor classifier.
k Comes from [20], by using Chou’s pseudo amino acid composition (PseAAC) and SVM.
l Comes from [19], by using the distance frequency and support vector machine method.
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cal properties of amino acids, and is better conserved than protein sequences in evolution.

Based on it, we introduce the frequency of 2-blocks and pK value of the α-NH+
3 group

of 2-blocks. Combining them with the frequency and pK value of native amino acids, a

novel representative for protein is proposed to predict subcellular location. Using the new

feature extraction method and support vector machine, we can reduce dimension of in-

putting vector, improve calculating efficiency and extract important classify information.

Compared with other existed approaches in two datasets, we can see that our method is

convenient, effective and powerful in improving the overall predicting accuracy.
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