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Abstract 
The problem that how many protein-coding genes exist in Aeropyrum pernix K1 genome has 

confused many scientists since 1999. In this paper, we attempt to re-identify the protein-coding genes 
in this genome by proposing a modified method based on I-TN curve. Consequently, all of the 727 
experimentally validated protein-coding genes and 726 of the corresponding negative samples are 
correctly predicted respectively, then an accuracy of 99.93% of self-test is obtained. In the Jackknife 
test, two positive samples and two negative samples are falsely predicted, respectively, and then the 
accuracy of cross-validation is 99.72%. In the testing set, all of the 132 putative genes are correctly 
predicted as protein-coding and 14 out of the 841 hypothetical genes are predicted as non-coding, the 
number of protein-coding genes is reduced to 1686 instead of 1700. Further analysis shows the 
performance of the reannotating algorithm is comparable to other prevalent programs, and the present 
method is much simple and efficient. We implement the reannotating algorithm trained by Aeropyrum 
pernix K1 to Chlorobium tepidum TLS genome, and 217 hypothetical genes are predicted as 
non-coding. Sufficient sequences analysis indicates most of them are random sequences that are 
falsely predicted as protein-coding genes. In addition, we also perform some significative analysis 
aiming to the influence of artificial parameters on the graphical representation approaches, which may 
provide helpful information for related researches.
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1. INTRODUCTION

The number of sequenced microbial genomes stored in public databases increases 

explosively with the development of sequencing techniques. In most cases, many people take 

it for granted that gene finding in  prokaryotic genomes is relatively easy due to the fact 

lacking of introns, whereas more and more researches indicate the issue of gene finding in 

microbial genomes is far from thoroughly resolved, the annotation quality of microbial 

genomes has been questioned continuously [1, 2]. In most microbial genomes, it is found 

some annotated genes do not encode proteins actually, but rather open reading frames that 

occur by chance [2]. In recent work by Luo et al. [3], 608 protein-coding sequences are 

excluded from current RefSeq annotation by performing reannotation on Escherichia coli 

CFT073 genome. Hence, over-annotation of protein-coding genes in microbial genomes has 

been recognized as a serious problem currently. On the other hand, many users deem that all 

the annotated genes as true, which can lead to wrong conclusions. Then how to improve the 

annotation quality of proteins encoded in each genome is an important task. Fortunately, 

some groups [4-15] have carried out different methods to reannotate protein-coding genes in 

microbial genomes in the past several years. 

Aeropyrum pernix K1 (A. pernix K1) is a kind of Archaea that grows optimally at 90 to 95 

ºC [16].  In the pioneer annotation, 2694 ORFs were predicted as potential genes [17], and its 

remarkable gene density attracts more and more researchers [18]. Since then, the serious 

problem of over-prediction of the protein-coding genes in A. pernix K1 genome was 

commonly recognized, many algorithms have been proposed to estimate the total number of 

its protein-coding genes, and the accepted number of protein-coding genes is estimated from 

1400 to 1871 [4, 6, 9-11]. Afterwards, the NITE researchers modified the annotation of A. 

pernix K1 by proteome analysis in 2006 [14].  As a consequent, 1700 ORFs were annotated 

as potential genes in the current NITE annotation. In 2009, Guo and Lin proposed an 

Aper_ORFs method to re-identify the protein-coding genes in A. pernix K1 genome and they 

predicted 28 ORFs as non-coding from the 1700 annotated ORFs [8]. Among these works, 

similarity search, statistics discrimination and parameter estimation were respectively used. 

Nevertheless, due to the different features of these methods, their results are much different. 
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Therefore, there is still debate on how many protein-coding genes existing in A. pernix K1. In 

this paper, we attempt to put forward an alternative approach for discriminating the falsely 

predicted protein-coding genes in A. pernix K1 genome based on I-TN curve [15]. 

Considering the complexity of archaeal genomes, we derive a 36-D numerical vector to 

demonstrate the specific features of protein-coding genes in A. pernix K1 genome in the 

present work. Consequently, an accuracy of 99.72% for Jackknife test is achieved and 14 

annotated potential protein-coding genes are predicted as non-coding. The present algorithm 

can also provide efficient tools for other microbial genomes.  

  2. MATERIALS AND METHODS 

2.1. The I-TN curve 

Graphical representation is a kind of simple and efficient method that has been extensively 

applied in researches of DNA [19-25], RNA [26] and protein [27-28] sequences. The present 

reannotation algorithm is based on I-TN curve, which is a specifically designed graphical 

representation for protein-coding genes. According to I-TN curve, each kind of trinucleotide 

is uniquely represented by a point (x, y, z) in a 3-D space, where, z = x � y, and (x, y) are 

defined as follows. For a trinucleotide, the signs of x and y are determined by the category of 

the base at the third position, i.e., {+, +}�A, {–,+}�G, {–,–}�C and {+,–}�T, the absolute 

values of x and y are decided by the bases at the first and second positions, respectively, i.e., 

1�A, 2�G, 3�C, 4�T. Thus, each kind of trinucleotide (which is also called codon in 

protein-coding gene) is numerically denoted by a 2-D coordinate (x, y), which helps to 

discriminate each trinucleotide intuitively. Taking (-2, 3) for example, the negative sign of x 

and the positive sign of y denote the base at the third position is G; the absolute values of x 

and y are 2 and 3, which denote the bases at the first and second sites are G and C, 

respectively. Therefore, (-2, 3) represents the trinucleotide of GCG. 

For an arbitrary DNA sequence S = s1s2s3s4…sN with the length of N, we have a map �, 

which can map S into a plot set �(S) = �(s1s2s3) �(s2s3s4)…�(snsn+1sn+2), where 

�(snsn+1sn+2)=(xn, yn, zn), n = 1,2,3,…, N-2. The curve connected all plots of the characteristic 
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plot set in turn is called I-TN curve. It is noted that when z>0, x and y are positive or negative 

simultaneously. As has been introduced in our previous work [20], the 64 trinucleotides can 

be classified into two groups by x, y and z according to the physiochemical properties of the 

third base in three ways, respectively. Defining 
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Where B1, B2 {A, G, C, T} are arbitrary bases at the first and second codon positions, 

respectively, NB1B2B3 is the cumulative occurring numbers of trinucleotide B1B2B3 walking 

along corresponding sequence. Then x'n, y'n and z'n display the cumulative effects of x, y and z, 

respectively. Note that “�” is used instead of “=” here, for the polynomials on both sides of 

“�” are not equivalent quantitatively because of the initial numerical assignments of I-TN 

curve. 

Previous researches suggested the first and second bases determine the category of 

translated amino acid, while the third base is associated with synonymous codon [29, 30]. 

Because of the unevenly distribution of synonymous codons, protein-coding genes are 

different from non-coding sequences in gene structure. This non-random usage of codons can 

be used to find protein-coding sequences [31]. Since many properties of protein-coding genes 

are related to the base at the third position of codon, I-TN curve may play some specific roles 

in related researches of protein-coding gene analysis.  

2.2. Numeric descriptors for protein-coding gene 

How to find efficient quantitative descriptors for protein-coding genes is the core of gene 

prediction programs. The difference between protein-coding genes and non-coding sequences 

lies in the former has regularly specific features such as asymmetric nucleotide distributions 
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at the three codon positions and codon usage bias, while the latter does not. Comparing with 

viral genomes and phage genomes, there are much more functional genes in archaeal 

genomes with diverse gene structures caused by many influence factors such as G+C content, 

gene expressivity, horizontal gene transfer …. Then the numeric descriptors adopted for gene 

prediction must have the ability to demonstrate the universal commonness of protein-coding 

genes. On the other hand, some species-specific genes are likely to be missed by using 

similarity search methods. Therefore, discrimination protein-coding genes from non-coding 

cannot be merely attributed to detect sequence similarity among these ORFs. In our previous 

works, we proposed an approach based on 18-D vector to re-annotate the protein-coding 

genes in viral genomes. Here, considering the complexities of archaeal genome, we attempt 

to deduce a 36-D instead of the 18-D vector to display the specific features of protein-coding 

genes in A. pernix K1 genome. 

As is well known, there are three forward reading frames and three reverse reading frames 

in a protein-coding gene sequence. The six reading frames lead to six possible protein-coding 

sequences, of which usually only one is likely to encode protein sequence. Supposing 

sequence S = s1s2s3s4s5s6s7s8…sN-5sN-4sN-3sN-2sN-1sN is a protein-coding gene, the three forward 

frames are {s1s2s3, s4s5s6, s7s8…}, {s2s3s4, s5s6s7, s8…}, {s3s4s5, s6s7s8, …} and the three 

reverse frames are {sNsN-1sN-2, sN-3sN-4sN-5, …}, {sN-1sN-2sN-3, sN-4sN-5sN-6, …}, {sN-2sN-3sN-4, 

sN-5sN-6sN-7, …}, respectively. For the first forward frame {s1s2s3, s4s5s6, s7s8…}, each 

trinucleotide can be numerically denoted by the following equations in turn,  
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Where i = 1, 2, 3… denote the trnucleotide numbers in the first forward reading frame +0. 

Similarly, defining 
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to represent the cumulative effects of x{+0} , y{+0} and z{+0}, respectively, j=1, 2, 3…, i. In this 

way, a 6-D vector V1 is obtained to quantitatively describe frame +0, i.e. the mean values of 
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x{+0} , y{+0} , z{+0} as well as their cumulative effects x{+0}', y{+0}�, z{+0}�, respectively. 

Thereafter, in the same way, we have 6 � 6 = 36 numeric descriptors for a gene sequence, 

which are denoted as follows. 
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Here, N{+0}, N{+1}, …, N{-2} denotes the total number of trinucleotides in each reading 

frame. Consequently, the 36-D vector V = V1 V2 V3 V4 V5 V6 can be used to 

quantitatively describe a complete protein-coding gene. Comparing with the statistic methods, 

the 36 parameters u1, u2, u3 …u36 are easily calculated by calculating the mean value of each 

variable, which corresponds to the geometric center of each 2-D curve [20], therefore the 

running time should be shortened greatly.  

2.3. The Fisher discriminant algorithm 

The Fisher discriminant algorithm is a simple and efficient method that has been 

extensively used in gene prediction. For detail introductions, refer to [32]. In the present work, 

two groups of samples are required, i.e. positive samples corresponding to true 

protein-coding genes and negative samples corresponding to non-coding ORFs, which are 

used to train the discriminant coefficients. In microbial genomes, the amount of non-coding 

DNA sequences is too few to be used. The negative samples generated by shuffling the 

primary sequences and the complementary sequences of the shuffled sequences are used as 

non-coding sequences [33]. Thus, the coding and the non-coding sequences have the same 

length, but with different base composition. The Fisher linear equation for discriminating the 

positive and negative samples in the 36-D space V represents a super-plane, described by a 

-851-



vector C that has 36 components. To avoid loss of generality, the vector C was determined 

according to the criterion |C|2=1. Based on the training set, an appropriate threshold C0 can be 

obtained by letting the false negative rate and the false positive rate be identical. However, it 

is rather a difficult problem to determine the appropriate threshold C0 because there are so 

many values meeting this demands. In the present work, we calculate C0 by the following 

steps: (1) Removing the minimum point of C·V in the positive samples. (2) Removing the 

maximum point of C·V in the negative samples. In the new point sets for positive samples 

and negative samples, we can obtain the unique threshold C0 by C0 = ( MaxN + MinP ) / 2, 

where MaxN and MinP are the maximum and minimum of the new point sets of negative 

samples and positive samples, respectively. Once the vector C and the threshold C0 are 

determined, each sequence is assigned a T_score= C*V-C0. Then the decision of 

coding/non-coding for each genes in the test set is simply performed by the criterion of 

T_score >0 or T_score <0, where C= (C1, C2, …, C36) and V=(u1, u2 …, u36). 

2.4. Evaluation index 

The accuracy, sensitivity and specificity used in the present study to evaluate the 

performance are the same by Burset and Guigo [34]. Using TP and FN to denote the number 

of coding ORFs that have been predicted as coding and non-coding, respectively, the 

sensitivity sn is defined as sn=TP/(TP+FN). That is, sn is the proportion of the coding ORFs 

that have been predicted correctly as coding sequences. Similarly, TN and FP denote the 

number of non-coding sequences that have been predicted as coding and non-coding 

sequences, respectively. The specificity sp is defined as sp=TN/(TN+FP). That is, sp is the 

proportion of the non-coding sequences that have been correctly predicted as non-coding. The 

accuracy is defined as the average of sn and sp. 
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3. RESULTS AND DISCUSSIONS 

3.1. Assessment of the predicting algorithm and reannotating results of A. pernix K1 
genome 

The detailed annotating information of A. pernix K1 genome was downloaded from RefSeq 

[35]. The G+C content among the 1700 annotated potential protein-coding genes ranges from 

32.6% to 72.4%. Among the 1700 annotated genes, 727 have validated functions, 132 are 

marked as putative genes, and the rest 841 are marked as hypothetical genes. For convenience, 

we divide all the annotated genes into three classes according to their functions, the 727 

function-known genes belong to the first class, the 132 putative genes compose the second 

class and the third class comprises 841 hypothetical genes. The former two classes can be 

regarded as true protein-coding genes, while some in the third class need to be further 

validated. The 727 genes in the first class and their corresponding complementary shuffled 

sequences are used to train the Fisher coefficients, which are also used to evaluate the 

performance of the gene-finding algorithm, this should be regarded as self-consistency test. 

Consequently, the 727 function-known genes and 726 shuffled sequences are correctly 

predicted as coding and non-coding, respectively. Then the sensitivity and specificity of 

self-consistency test are 727/727 = 100%, 726/727=99.86%, respectively, and the accuracy is 

99.93%. Table 1 presents the values of the trained coefficients and the threshold C0. Using the 

Fisher coefficients trained by the first class and the criterion T_score >0 or T_score <0 for 

making the coding/non-coding decision, the genes from the second class are re-identified, 

which should be regarded as cross-validation test. Consequently, all of the 132 putative genes 

are correctly predicted as protein-coding. Afterwards, the present algorithm is used to identify 

the 841 genes in the third class. Consequently, 14 annotated potential protein-coding ORFs in 

the third class are recognized as non-coding, which are presented in column 2 of Table 2. 

Then the number of protein-coding genes in A. pernix K1 is reduced to 1700-14=1686. 

The evaluation mentioned above can be used to check the self-consistency of a predictor, 

especially for its algorithm part. A predictor cannot be deemed a good one if its 

self-consistency rate is poor. However, the self-test is useful but not sufficient for evaluating a 
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predictor effectively in most cases. In statistical prediction, there are three methods usually 

used for cross-validation, namely, the sub-sampling test, independent dataset test and 

Jackknife test. Among these tests, the Jackknife test is deemed the most objective that can 

always yield a unique result for a given benchmark dataset [36], and hence has been 

increasingly and widely used by investigators to examine the accuracy of various predictors. 

In the Jackknife test, each of the positive and negative samples in the training set mentioned 

above is singled out in turn as a tested item, and the remaining genes train the predictor. 

Therefore, both the training dataset and the testing dataset are actually open, and a gene will 

in turn move from one dataset to the other. Thus, the Jackknife test can exclude the memory 

effects that exist in the self-test, and the results obtained in this way always are unique for a 

given dataset. By performing the Jackknife test, two items in the positive and negative 

samples are falsely predicted respectively, the two falsely predicted positive genes are 

APE_1588b and APE_1929.1, then the sensitivity = 725/727 = 99.72% and specificity = 

725/727 = 99.72%, respectively, and the accuracy of Jackknife test is 99.72%. 

Table 1: The trained Fisher coefficients C and the threshold C0. 
Fisher 

coefficients 
values 

Fisher 
coefficients 

values 
Fisher 

coefficients 
values 

Fisher  
coefficients 

values 

C1 -0.135 C11 0.0003 C21 -0.043 C31 0.039 
C2 0.4629 C12 -0.0002 C22 -0.0003 C32 -0.1098 
C3 0.0909 C13 0.0986 C23 -0.0004 C33 -0.0409 
C4 -0.0002 C14 -0.0373 C24 0.0001 C34 0.0001 
C5 -0.0001 C15 0.0086 C25 -0.015 C35 0.0001 
C6 0 C16 0.0004 C26 -0.4528 C36 0 
C7 -0.0454 C17 -0.0002 C27 -0.0823 C0 0.2204 
C8 0.6794 C18 0 C28 0.0005   
C9 0.0636 C19 0.0397 C29 0.0001   
C10 -0.0001 C20 -0.2228 C30 0.0001   

Table 2: The recognized non-coding sequences based on the present method and 
Aper_ORFs method. The items marked with F and P denotes function-known genes and 
putative genes, respectively. The bold items denote the common ORFs obtained by both 
methods. 
Method 36-D vector Aper_ORFs 

ID 
APE_0242.1 APE_1209d APE_0031.1P APE_0471c APE_0996a APE_1909.1 
APE_0416a APE_1275c APE_0047.1F APE_0722c APE_1029F APE_2037.1F 

APE_0470a APE_1473a APE_0054.1 APE_0862.1 APE_1177.1 APE_2065.1 
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APE_0762.1 APE_1882a APE_0156.1 APE_0885b APE_1275c APE_2242a 

APE_0816a.1 APE_2065.1 APE_0270.1F APE_0941F APE_1277 APE_2284a 

APE_0885b APE_2284a APE_0334 APE_0954a APE_1633F APE_2426.1F 

APE_0954a APE_2480a APE_0416a APE_0965.1 APE_1840.1 APE_2567 

3.2. Comparing the present approach with other algorithms 

The original annotation of A. pernix K1 genome did not use statistic methods, but 

employed a similarity search in 1999 that was not nearly as big as it is now. Then it is 

interesting to compare our gene-reannotating algorithm with other statistic programs based on 

A. pernix K1. Among those reported statistic programs, Glimmer [37] and GeneMark [38] are 

the two most popular gene-finding programs that are based on HMM methods, which have 

been broadly used in the annotation systems. After running the two programs (Glimmer 3.02 

and GeneMark.hmm 2.04) on A. pernix K1 genome, 1789 and 1736 ORFs are predicted as 

protein coding genes, respectively. Among the 727 function known genes, Glimmer correctly 

predicts 721 items and GeneMark correctly predicts 726 items, which means that the 

accuracies for Glimmer and GeneMark are 99.17% and 99.86%, respectively. In addition, 

Glimmer products 117 additional genes while GeneMark gives 65 additional genes. Besides, 

many research groups have proposed different methods for reannotation of protein-coding 

genes in A. pernix K1 genome recently. Among these approaches, the Aper_ORFs method 

proposed by Guo and Lin [8] is specially devised for A. pernix K1, which is based on the 

versatile Z curve method, and then its results are more accurate comparing with others. Based 

on the Aper_ORFs method, 28 ORFs are predicted as non-coding. For comparison, in the 

column 3 of Table 2, we present the 28 predicted non-coding ORFs by Aper_ORFs method, 

which is retrieved from http://tubic.tju.edu.cn/Aper/. In our recent work, we have proposed an 

18-D vector to reannotate the protein-coding genes in viral genome [15]. Here, we also 

compare the present modified method with the 18-D vector. In Table 3, we present the 

predicting performances obtained by the present approach and Glimmer, GeneMark, 

Aper_ORFs method and the 18-D vector. Obviously, the present approach can achieve a 

comparable performance level with these eminent algorithms, such as Glimmer, GeneMark, 

and Z curve based method, which indicates the 36-D vector can display the specific gene 
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features excellently. On the other hand, though high accuracies (>99%) can be achieved by 

different approaches, it seems that there are some differences among these prediction results. 

As mentioned above, the accuracy of Glimmer is only 0.7 percent lower that that of 

GeneMark, but its additional genes doubles (117 vs. 65) over the latter. According to the 

results listed in Table 2, there are only six common items obtained by the present approach 

and the Aper_ORFs method. For convenience of comparison, we mark corresponding genes 

with F and P according to their annotation status, which denote the function-known gene and 

the putative gene, respectively. As can be seen, all the function known and putative genes are 

correctly predicted as protein-coding by the present method, while in the results based on 

Aper_ORFs method, seven function known genes and one putative gene are falsely predicted 

as non-coding. Then how to propose much more reliable algorithms especially for 

reannotation of protein coding genes seems to be much necessary in the future, besides the 

high sensitivity. 

Table 3: Comparing the present approach with other programs. 
Methods 36-D vector 18-D vector Aper_ORFs GeneMark Glimmer 
Accuracy (%) 99.93 99.79 99.04 99.86 99.17 

Notations: During the course of the submission of this paper, the careful NITE staffs 

updated the annotation file of A.pernix K1 genome in RefSeq, where 27 putative and 

hypothetical genes are assigned validated functions, then the number of protein coding genes 

is expanded to 754. It is noted that the 27 added function known genes are all correctly 

predicted as protein coding by the present method. 

3.3. Extending the present approach to the C. tepidum TLS Genome 

As have been discussed, the parameters derived from I-TN curve can display the 

information of base distributions at different codon positions and the correlativity of adjacent 

nucleotides in DNA sequences. Therefore, it is conceivable that the present method may be 

extended to other archaeal genomes, especially with similar G+C content to that of the A. 

pernix K1 genome without additional calculations. Here, Chlorobium tepidum TLS (C. 

tepidum TLS), the genomic G+C content of which is also about 56%, is chosen to be 

reannotated by using the coefficients generated from A. pernix K1.  
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Table 4: The 14 ORFs that are falsely recognized as non-coding in the C. tepidum TLS 
genome. The two genes marked with an asterisk have putative functions and the retaining 
ones have known function. 
CT0103 CT0996 CT1289 CT1802 CT2166 
CT0301 CT1040* CT1342* CT2019 CT2224 
CT0409 CT1174 CT1461 CT2024  

Among the 2245 annotated potential protein-coding ORFs in the C. tepidum TLS genome, 

1123 are assigned with known-functions, and the functions of 176 are putative, the others are 

hypothetical genes. Based on the parameters presented in Table 1, the 1123+176=1299 

function-validated genes and 946 hypothetical genes are reannotated. Consequently, 1285 

function-known and putative genes are correctly predicted as coding. That means the 

sensitivity of the cross-validation tests are 98.92%. Names of 14 falsely predicted known 

genes are listed in Table 4. On the other hand, 217 out of the 946 hypothetical ORFs are 

identified as non-coding. Names of the 217 ORFs are presented in Table 5. Guo and Lin [8] 

also performed reannotation in C. tepidum TLS genome based on Aper_ORFs method, 

whereas 30 out of 1296 protein-coding genes are falsely predicted as non-coding, then the 

sensitivity of their work is 1266/1296=97.69%.  

Table 5: The 217 hypothetical ORFs identified as non-coding in C. tepidum TLS genome. 
CT0005 CT0382 CT0573 CT0783 CT0962 CT1210 CT1452 CT1604 CT1872 CT2068 
CT0025 CT0396 CT0579 CT0787 CT0967 CT1216 CT1458 CT1617 CT1875 CT2093 
CT0044 CT0405 CT0582 CT0788 CT0997 CT1217 CT1460 CT1623 CT1884 CT2094 
CT0074 CT0407 CT0583 CT0793 CT1014 CT1223 CT1467 CT1643 CT1902 CT2097 
CT0096 CT0449 CT0584 CT0794 CT1022 CT1230 CT1476 CT1651 CT1904 CT2108 
CT0101 CT0454 CT0585 CT0820 CT1024 CT1233 CT1481 CT1653 CT1905 CT2110 
CT0115 CT0475 CT0596 CT0837 CT1047 CT1251 CT1490 CT1684 CT1911 CT2148 
CT0143 CT0482 CT0608 CT0848 CT1056 CT1254 CT1496 CT1686 CT1912 CT2149 
CT0165 CT0489 CT0627 CT0849 CT1062 CT1262 CT1515 CT1687 CT1916 CT2157 
CT0174 CT0497 CT0628 CT0858 CT1081 CT1264 CT1517 CT1693 CT1917 CT2195 
CT0210 CT0500 CT0639 CT0870 CT1083 CT1282 CT1518 CT1694 CT1926 CT2199 
CT0218 CT0506 CT0645 CT0871 CT1086 CT1319 CT1520 CT1720 CT1927 CT2201 
CT0231 CT0508 CT0671 CT0877 CT1093 CT1354 CT1523 CT1764 CT1933 CT2203 
CT0234 CT0510 CT0673 CT0886 CT1104 CT1355 CT1531 CT1789 CT1941 CT2218 
CT0271 CT0513 CT0688 CT0888 CT1107 CT1363 CT1532 CT1791 CT1944 CT2226 
CT0276 CT0515 CT0692 CT0894 CT1108 CT1370 CT1570 CT1793 CT1952 CT2227 
CT0300 CT0516 CT0715 CT0901 CT1116 CT1372 CT1579 CT1796 CT1980 CT2231 
CT0341 CT0519 CT0723 CT0914 CT1118 CT1389 CT1581 CT1803 CT1984 CT2277 
CT0349 CT0520 CT0728 CT0921 CT1137 CT1390 CT1587 CT1820 CT1996 CT2282 
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CT0365 CT0526 CT0733 CT0925 CT1138 CT1404 CT1593 CT1836 CT2031  
CT0370 CT0533 CT0739 CT0932 CT1140 CT1433 CT1594 CT1858 CT2043  
CT0379 CT0539 CT0752 CT0955 CT1172 CT1449 CT1600 CT1865 CT2063  

3.4. Influence of the artificial assignment on the predicting results 

Artificial assignment natural numbers to different bases or amino acids is common 

phenomenon in graphical representations for biological sequence [20-22, 27]. In this work, 

the four kinds of nucleotides are listed in order of purine (A, G) � pyrimidine (C, T), 1, 2, 3 

and 4 are respectively assigned to A, G, C and T for the purpose of visualization, with which 

one can intuitively discriminate different kind of trinucleotide in 2-D space [20]. Of course, 

we can also assign A, G, C and T with 4, 3, 2 and 1, etc. According to statistical theory, there 

are 4�3�2�1=24 kinds of encoding strategies in total. Then whether these artificial 

assignments can influence the calculating results has been debated at all times. However, in 

despite of which kind of encoding strategy, once the assignment is determined, the relation 

between the established spatial curve and the primary sequence is one to one, and then the 

numerical descriptors derived from these curves are unique to the primary DNA sequence, 

too. To filter the noise caused by the present assigning strategy, six variables are defined, i.e. 

x, y, z, x'n, y'n , z'n. To clarify this issue further, we propose an modified graphical 

representation by substituting the four bases A, G, C and T with their physiochemical 

properties, the electron-ion interaction potential (EIIP), which is unique to the four 

nucleotides [39]. In some recently proposed graphical representations, especially for protein 

sequence [28], the unique physicochemical properties are widely used to numerically 

represent the amino acids in original sequences, which eliminate the argues of the artificial 

assignments mentioned above. In this way, one can also find some intrinsic properties by 

transforming the primary protein sequence into 2-D or 3-D curves. Nevertheless, there are 

much fewer physiochemical properties for nucleotides. EIIP describes the average energy 

states in valence electrons and has been used for encoding DNA sequence in some exon 

identification algorithms [40], where A � 0.1260, G � 0.0806, C � 0.1340 and T � 0.1335. 

Based on this modified graphical representation, we performed reannotation on A. pernix K1 

genome. Consequently, all the 727 function known protein-coding genes as well as their 
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negative samples are all correctly predicted, all the putative genes in the second class are also 

correctly predicted, and 15 hypothetical genes in the third class are predicted as non-coding, 

which are presented in Table 6. Moreover, among the 15 ORFs in Table 8, there are 12 

common items with column 2 of Table 2. Therefore, the accuracy and the number of ORFs 

predicted as non-coding are almost identical with that of I-TN curve. The high consistency 

also validate the numerical assignment cannot influence the predicting results. On the other 

hand, the comparison in this section can also provide useful theoretical support for later 

researches in graphical representations correlated problems. 

Table 6: The recognized non-coding sequences based on the improved method encoding by 
EIIP. The bold items denote the common ORFs with column 2 of table 2. 
APE_0416a APE_0472c APE_0885b APE_1275c APE_2065.1 

APE_0470a APE_0762.1 APE_0954a APE_1473a APE_2284a 

APE_0471c APE_0867b APE_1209d APE_1882a APE_2480a 

3.5. Why most of the ORFs listed in Table 5 do not appear to encode proteins 

Codons usage and nucleotides distribution in protein-coding genes have been studied for 

many years. It was found that the severe restrictions on the base frequencies at the first two 

codon positions are universal in protein-coding genes and are independent of species. It is 

also suggested that purine bases at the first codon position are predominant and the frequency 

of G+C at the synonymous third position of sense codons (GC3s) is related to the 

expressivity of protein-coding genes. Highly expressed genes exhibit higher codon usage bias 

and prefer higher GC3s especially in GC rich genomes [41]. In previous works, the 

researchers mainly paid attention to the base distributions at different codon positions to 

discriminate protein-coding genes from non-coding. Here, we also attempt to associate the 

issue with codons usage bias. The GC content of C. tepidum TLS genome is 56%, while the 

average GC3s value of all the predicted protein-genes is 69.24%. For comparison, we 

calculate the purine/pyrimidine disparity (the difference between purine content and 

pyrimidine content at the first codon position) and GC3s/GC content disparity (the difference 

between GC3s and GC content) of each annotated potential protein-coding gene as shown in 

Fig. 1.  
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Figure 1: The scatter diagram of purine/pyrimidine disparity against GC3s/GC content 

disparity of C. tepidum TLS genome 

In Fig. 1, each point corresponds to one ORF. As can be seen, most of the function-known 

genes are restricted to the first quadrant, which shows that these points have prominent 

content of purine bases at the first codon position and the higher GC3s values, whereas the 

distribution of these identified non-coding ORFs are randomly distributed around origin. 

Then, the base distributions at the first and the synonymous codon position of the 

function-known genes meet the previous observations, whereas that of the ORFs presented in 

Table 5 is not the case. On the other hand, observing the GC3s/GC content disparity, almost 

all the protein-coding gens prefer high GC3s, while most of the identified non-coding ORFs 

locate a region around the origin. The lower GC3s indicates the lower codons usage bias, 

which implies that they are much likely not true protein-coding genes but random sequences. 

Codon adaptation index (CAI) is a useful parameter proposed to measure the gene 

expression level [42]. High CAI genes are presumed to be highly expressed while low CAI 

genes are presumed to be lowly expressed. In this study, CAI value of each gene is calculated 

to display the differences between the protein-coding genes and the predicted as non-coding 

ORFs. The value of relative synonymous codon usage (RSCU) is an index used to examine 

synonymous codons usage without the confounding influence of amino acid composition of 

different gene samples [43]. Correspondence analysis (COA) can be used to investigate the 

major trend in codon usage variation among genes. To display the differences between the 
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protein-coding genes and the predicted non-coding ORFs presented in Table 5, we perform 

COA on the RSCU values of all the potential protein-coding ORFs in C. tepidum TLS 

genome. COA plots RSCU values of all the ORFs in a multidimensional space of 59 axes 

(excluding Met, Trp and termination codons) and identifies a series of new orthogonal axes 

accounting for the greatest variation among genes. In this study, the axis 1 and axis 2 of COA 

account for 14.6% and 4.3% of the total variation among genes. The prominent weight of the 

first principle suggests a strong codon bias trend. The analyses were conducted using 

CodonW version 1.4.2. In Fig. 2, we present the scatter diagram of axis 1 generated by COA 

on RSCU of the ORFs against their corresponding CAI values.  

 
Figure 2: The scatter diagram of axis1 generated by correspondence analysis against their 

CAI values of C. tepidum TLS genome 

Seen from Fig. 2, there are obvious differences between the regions in which the 

protein-coding genes and the predicted as non-coding ORFs distribute. The average value of 

axis 1 and CAI for protein-coding genes is 0.0427 and 0.2824, respectively, while -0.4750 

and 0.2298 for non-coding. For convenience of observation, an axis is drawn in both plots at 

CAI=0.25, which is approximately near the midpoint between centers of protein-coding and 

non-coding (0.2824+0.2298)/2=0.2561. We observed that some highly expressed genes, such 

as ribosomal proteins, ATP synthase, etc., were clustered at the positive along the axis 1. On 

the other hand, axis 1 coordinates of protein-coding genes are significantly positively 

correlated with GC3s (r = 0.9449, P<0.01) and the CAI values (r = 0.5369, P< 0.01), 

respectively. Then, we infer that nucleotide compositions and gene expression level play 
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important roles in shaping codon usage in C. tepidum TLS, genes exhibit a greater degree of 

codon usage bias, and they always prefer for the codons with G/C at the synonymous position, 

which is consistent with the statistical results in Fig. 1. On the contrary, most of those ORFs 

predicted as non-coding locate the region where axis 1<0 and CAI<0.25 in Fig. 2, which 

should indicate their low gene expression level and low condon usage bias, which may be 

caused by random sequences. Therefore, the analysis in Fig. 2 is highly consistent with Fig. 1, 

based on which we infer that most of the 217 hypothetical ORFs presented in Table 5 are not 

true protein-coding genes. 

4. CONCLUSIONS 

In summary, Over-annotation of protein-coding genes has been a common phenomenon in 

microbial genomes. The increasing utility of public databanks makes it urgent to confirm the 

coding reliability of hypothetical ORFs. However, it is not practical to validate these 

sequences datum by ‘wet’ experiments because of the expensive cost and time consuming. 

Then computer-aided methods provide a key role in such issues. In this paper, we 

discriminate the falsely annotated protein-coding genes in A.pernix K1 by a 36-vector on the 

basis of graphical representation method. From the present work, three contributions can be 

concluded. 

(1) The problem that how many protein-coding genes exist in A. pernix K1 genome has 

confused many scientists in the past ten years. Based on the present method, we reannotate 

the protein-coding genes in A. pernix K1 genome and a high accuracy is obtained. 

Consequently, 14 annotated hypothetical ORFs are predicted as non-coding. Then the number 

of protein-coding genes is reduced to 1686 instead of 1700 in the current annotation. Further 

analysis show our results are reliable. The identifying results by extension to C. tepidum TLS 

genome show the present approach can be applied to other microbial genomes. 

(2) Although many approaches have been applied to the problem of annotation of 

protein-coding genes in microbial genomes and high accuracy can be achieved, the identified 

results seem to differ greatly in some cases. The causes perhaps lie in the different 

mechanisms adopted in those methods. In addition, the predicting results by several prevalent 

gene-finding programs validate the fact that false positive prediction caused by the high ratio 

of additional genes has been the bottleneck for gene annotations. The 36 numerical 
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descriptors deduced in our work correspond to the six possible reading frames of given DNA 

sequence, which are easily obtained just by calculating the geometrical centers of each 

component of x, y, z and x�, y�, z�. In previous works, extensive statistic works have to be done 

to describe information of protein-coding genes, therefore the workload and the running time 

can be shortened remarkably. On the other hand, abundant analysis show that the 36 

numerical descriptors could display the universal features of protein-coding genes efficiently.  

(3) Graphical representations have been proved to be convenient and efficient in biological 

sequences analysis. However, the open problem that how to propose graphical approaches 

that can provide more information is still difficult. As have been discussed previously [21], 

most graphical representation are based on individual nucleotides, it is ineluctable to assign 

some natural numbers to transform the biological sequences into intuitive curves, especially 

in those graphical representations attempting to describe polymers. In this work, we perform 

some meaningful analysis on the debates on the influences of the artificial parameters. 

Although these analysis are not sufficient and rigorous enough, the results obtained can 

provide usefully theoretical support for further construction and application of graphical 

representation based methods.  

To facilitate the potential users, a convenient software named TN_curve NumG 1.0 is 

exploited to generate the 36-D vector of any DNA sequence, which can be retrieved by 

emailing us. TN_curve NumG 1.0 supports multi-sequence input in fasta format (confirming 

there is no blank space existing in file name), and there are two options for users: 

  (1). I-TN curve. This option generates the 36 numerical descriptors based on the encoding 

strategy of 1�A, 2�G, 3�C, 4�T.  

  (2). EIIP. This option generates the 36 numerical descriptors based on the encoding 

strategy of 0.1260�A, 0.0806�G, 0.1340�C, 0.1335�T. 
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