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Abstract:  For understanding the growth mechanisms of DNA fractal links, we constructed a 
series of Sierpinski links with different fractal number n based on k-tangle models and 
deduced the component number of them from some formulas. The properties of the links are 
investigated and DNA strand models with one three-fold symmetry axis are given. Moreover, 
a bottom-up synthesis method is proposed and extended to three dimensional DNA Sierpinski 
structures. Our results not only exhibit novel geometry but also provide a theoretical basis for 
synthesis of DNA fractal nanostructures.   

1. Introduction  

The special structure of DNA, that is, two helical chains of nucleotides held together by the 

specific hydrogen-bonded base pairs, render it as an important and ideal building material in 

creating programmable and predictive supramolecular structure [1]. During the past few 

decades, various DNA supramolecular structures including DNA polyhedral links or 

catenanes [2,3] (e.g., DNA tetrahedron [4–10], DNA cube [11–14], DNA truncated 

octahedron [14], DNA octahedron [15–17], DNA dodecahedron [6,18], DNA icosahedron 

[19,20], DNA bipyramid [21], and DNA buckyballs[6]) and others[22–28] have been 

synthesized by the experiments[29]. These structures are of great interest to both chemists and 

mathematicians because of the significantly geometrical characters associated with polyhedra 

[1, 29]. 
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Accompanied by these exciting and intriguing results, considerable effort has been 

devoted to describing some of these amazing structures from the geometrical and topological 

points of view, which is based on the knot theory [30, 31]. In recent years, Qiu’s group has 

proposed the methods of “N-branches curves and M-double-twisted lines covering” and “N-

crossing curves and M-double-twisted lines covering” to construct polyhedral links [1, 29, 

32–39], especially for a series of surprising DNA polyhedral links [37–39]. At the same time, 

mathematical characterizations of these structures using topology and graph theory as 

working tools are making great progress [40–49]. More recently, Rothemund et al. have found 

that DNA can be assembled into crystals with patterns of Sierpinski triangles [50]. This 

importantly experimental result has inspires our great interest in concerning about the 

construction of DNA Sierpinski triangles theoretically. 

In this paper, the aim is to design more perfect DNA Sierpinski triangles and to unravel 

the growth mechanisms of DNA Sierpinski links. In order to do these, DNA Sierpinski links 

are constructed with different fractal number n and, the growth mechanisms are studied. 

Furthermore, a bottom-up synthesis method of DNA Sierpinski triangles is put forward and 

extended to 3D model. These mathematic models may help chemists and biologists to 

checkout and develop new synthesis strategies, and thus enrich the system information of 

DNA nanostructures. 

2. Construction of DNA Sierpinski links 

The Sierpinski triangle, namely, the Sierpinski gasket or the Sierpinski Sieve, is a fractal and 

attractive fixed set described by Sierpinski in the following three steps [51]: 

(i)   Begin with an equilateral triangle; 

(ii)   Shrink the triangle to 1/2 height and 1/2 width, make three copies, and place the three     

shrunken triangles so that each triangle connects the other two triangles at a corner; 

(iii) Repeat step (ii) with each of the smaller triangles.  

As shown in Figure 1, a series of neoteric and fractal structures occur finally. Labeling 

them as E0, E1, E2, E3,…, En in order, it can be found that they conform to the law: one grows 

into three, three grow into nine..., so three En-1 can grow into En, and the joint points are 

defined as growing points. 
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Figure 1.  Sierpinski triangles with different fractal number n. 

Two building blocks should be considered and designed in terms of the “N-branched 

curves and M-double-twisted lines covering” method. One is “N-branched curves”, which are 

designed to cover the vertexes. The other is “M-double-twisted lines”, which are used to 

replace the edges. And the combination of these two would lead to some closed circles. 

According to Sierpinski triangles, tangles [31] and two styles of vertexes [52] are constructed 

to fulfill the requirements. Three types of tangles (i. e. odd tangle, even tangle and the special 

case of zero tangle) are constructed on the basis of the twist number k, as represented in 

Figure 2. By covering the vertex with n-degree vertex (where n indicates the degree of vertex), 

two styles of three-degree vertexes are obtained in which one is crossed and the other is 

uncrossed (see Figure 3). 

 
Figure 2.  Tangle with k crossings. 
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Figure 3.  Two types of three-degree vertex, (a) the uncrossed three-degree vertex; and 

(b) the crossed three-degree vertex. 

The links constructed are classified into two types depending on the styles of the 

growing points (crossed or uncrossed). They are the first type of DNA Sierpinski links when 

the growing points are crossed; otherwise, they are the second type. Three types of links (odd 

tangle, even tangle and zero tangle links) need to be constructed because the twist number k 

determines the strand number of link. For convenience, the cases of k= 0, 1, 2 were discussed 

in the following sections because the component numbers of them are the same as that of zero, 

odd and even tangle links. 

2.1 The first type of DNA Sierpinski links 

(i) DNA Sierpinski links with odd tangles 

Using odd tangles to cover Sierpinski triangle En, the corresponding link labeled as Lo-n 

is obtained, in which n is the fractal number. Figure 4 shows the Sierpinski links covered by 

k=1 tangles and uncrossed vertexes, and n is in the range from 0 to 4. It is evident that a 

trivial knot is derived if n=0. Moreover, the growth of links has an intrinsic mechanism when 

n increases. Also can be readily seen is that Lo-0 has 1 DNA strand, while Lo-1, Lo-2 and Lo-3 

have 2, 5 and 14, respectively. The number of DNA strands is defined as the component 

number, denoted as An. Thus, the growing mechanism can be illustrated as the difference 

between An and An-1 which equals to 3n-1 during the assembly of odd tangle link (Formula (1)): 

� �Zn,nAA n
nn �.�� �
� 13 1
1       (1)  

(ii) DNA Sierpinski links with even tangles 
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Figure 4.  The first type DNA Sierpinski links with odd tangles, n=0, 1, 2, 3. 

Using even tangles to cover Sierpinski triangle En, it gets the link Le-n. Figure 5 displays 

Sierpinski links covered by k=2 tangles and the uncrossed vertexes in which n ranges from 0 

to 4. The results suggest a two components link rather than a trivial knot is obtained when n is 

zero. Similarly, there is an intrinsic law for the link growth when n increases. For the link Le-0, 

it has 2 DNA strands, while Le-1, Le-2, and Le-3 have 5, 14 and 21, respectively. Consequently, 

the growth of DNA Sierpinski links with even tangles can be expressed as:  

                                    1 3 ( 1, )n
n nA A n n�� � . �3       (2) 

(iii) DNA Sierpinski links with zero tangles 

With respect to the Sierpinski triangles En covered by zero tangles, they are labeled as 

L0-n. If k is zero, there are no crossings but parallel double lines. L0-0, L0-1, L0-2, L0-3 are shown 

in Figure 6. The component number A0, A1, A2 and A3 are 2, 5, 14 and 41, respectively. The 

growth mechanism of DNA Sierpinski links can be extrapolated which also satisfies Formula 

(2). 
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 Figure 5.  The first type DNA Sierpinski links with even tangles, n=0, 1, 2, 3. 

   

   
Figure 6.  The first type DNA Sierpinski links with zero tangles, n=0, 1, 2, 3. 

It should be addressed here that the similar laws have been reported by Jiang and Jin 

[53]. The results obtained from our method are in good agreement with theirs, which confirms 

its validity. 
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2.2   The second type of DNA Sierpinski links 

As stated above, the DNA Sierpinski links with uncrossed growing points are illustrated as 

follows. The k=1, 2, 0 tangles are employed to discussed the cases DNA Sierpinski links with 

odd, even and zero tangles, respectively.  

(i) DNA Sierpinski links with odd tangles  

Different from the uncrossed growing points of the first type of DNA Sierpinski links, 

the growing points of the second ones are crossed, as depicted in Figure 7. Whatever the 

fractal number n is, the ultimate structure is a knot, meaning An always equals to 1. The 

interesting result implies the possibility of designing and synthesizing a series of DNA 

Sierpinski triangles with only one DNA strand.  
 

       

Figure 7.  The second type DNA Sierpinski links with odd tangles, n=1, 2, 3. 

(ii) DNA Sierpinski links with even tangles 

As shown in Figure 8, a long scaffold DNA strand can be assembled into a framework 

where a certain amount of short DNA strands are nested, then a DNA Sierpinski triangle is 

gained. The component number An is found to be equal to 3n+1. Because the number of the 

smallest triangles which with the same orientation of initial triangle E0 is 3n, An follows 

Formula (3).  

                                         3 1( 1, )n
nA n n� � . 00 �3       (3) 

As a result, such fractal structures composed of a long DNA strand and some short DNA 

strands with same lengths may be designed and synthesized, and the first type of DNA 

Sierpinski links would be realized. 
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Figure 8.  The second type DNA Sierpinski links with even tangles, n=1, 2, 3. 

(iii) DNA Sierpinski links with zero tangles 

Replacing uncrossed growing points of the first type DNA Sierpinski links with zero 

tangles with crossed ones, it can be found that An changes as the second type DNA Sierpinski 

link with even tangles does, as shown in Figure 9. 

            

Figure 9.  The second type DNA Sierpinski links with zero tangles, n=1, 2, 3. 

3. Structure and properties 
(i) Structural analysis of DNA Sierpinski links 

To understand the properties of the DNA Sierpinski links, structural analysis is 

performed. For the first type DNA Sierpinski links with zero tangles, some different length 

DNA strands are designed, and then they are assembled to form the desired structures. If the 

growing points are crossed, a long scaffold DNA strand and some short DNA strands with 

same lengths appear. It is obvious that the numbers of self-intersect points are equal to those 

of growing points. We use Cn to indicate the number of self-intersect areas. It fulfills formula 

(4): 

                                   1 13 3 3 ( 2 3)n nC C n and C� � � 0 . 00 0 �      (4) 

The existence of self-intersect areas ensures that the structure is not unfastened. In principle, 

the more the self-intersect areas are, the steadier the structure is. 
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It is well-established that the twist number k changes with the fractal number n. It is a 

geometric sequence with common ratio 3 and the first term is 3k. With regard to the first type 

DNA Sierpinski with odd tangles, there are three self-intersect areas in each DNA Sierpinski 

link, and they locate at the triangle areas close to the initial three vertexes (see Figure 4). If 

the growing points are replaced by crossed ones, k increases and equals to the number of the 

growing points. All points of the resulted knots are self-intersect areas that make DNA 

Sierpinski more stable. The twist number of the first type DNA Sierpinski links meets a 

geometric sequence with common ratio 3, and the first term is 2k. There is no self-intersect 

area in these structures. It means the stability arises from the interlocked DNA strands. The 

component number An will reduce 1)/2(3 �n , and the self-intersect areas increases and equals 

to the number of growing points if the growing points are crossed. The stability of the 

structure is guaranteed by interlocked DNA strands and the self-intersect areas. 

(ii) The designing rules of DNA strands 

Herein, the concept of step length is defined. For an alternating links or knots, step 

length is the length from one over crossing (or under crossing) to the next over crossing (or 

under crossing). The full step length is the sum of step length of a DNA strand, the longest 

DNA strand is indicated by lmax.  

Firstly, for the first type DNA Sierpinski links with odd tangles, if we suppose the 

length of each edge of Sierpinski is 0.5a, then the step length of DNA strands are distributed 

as follows: 

0, 2 2 2 ;
1, 2 2 2 ;

2 2 2 2 2 2 ;
2, 2 2 2 ;

2 2 2 2 2 2 ;
2 2 2 2 2 2 2 2 2 2 2 2 ;

...

n a a a
n a a a

a a a a a a
n a a a

a a a a a a
a a a a a a a a a a a a

� 0 � �
� 0 � � 00

000000000 � � � � �
� 0 � � 0

0000000000 � � � � �
0000000000 � � � � � � � � � � �

 

 

If n is arbitrary, the longest DNA strand is  

max 3 2 2 ( 0,nl a n n� 4 4 00 . 0 �3�      (5) 
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Figure 10.  The models of DNA strands that are composed of DNA Sierpinski links. 

The formula (5) suggests that any DNA Sierpinski links can be composed of DNA 

strands with lmax from longest to shortest, their numbers are 3n, 3n-1, 3n-2, ..., 1 in order. Shown 

in Figure 10a is the corresponding DNA strand model. For example, the Sierpinski triangle 

with fractal number 2 is made of 6a, 12a and 24a DNA strands, and their numbers are are 32, 

31, 30, respectively. 

If the uncrossed growing points are replaced by crossed ones, the distribution of DNA 

Sierpinski links is described below: 

4 4 4

1, 2 (1.5 1.5 ) 2 (1.5 1.5 ) 2 (1.5 1.5 );
2, 2 (1.5 1.5 ) 2 (1.5 1.5 ) 2 (1.5 1.5 ) ;

...

n a a a a a a a a a a a a
n a a a a a a a a a a a a
� 0 � � � � � � � � � � �
� 0 � � � � � � � � � � �  

It is clearly that (1.5a+1.5a+a) p is a repeated unit that always inserts between 2a and 2a. 

p satisfies formula (6), so the DNA strands model can be represented as shown Figure 10 b. 

3 1 ( 0, )
2

n

p n n�
� 00 . 0 �3

      
(6) 

Secondly, with respect to the first type of DNA Sierpinski links with zero or even 

tangles, their distributions can be described below in terms of the above method: 
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1.5 1.5 1.5
0, ;

1.5 1.5 1.5

1.5 1.5 1.5
1, 1.5 1.5 1.5 ;

1.5 1.5 1.5 1.5 1.5 1.5
...

a a a
n

a a a

a a a
n a a a

a a a a a a

� �#
� 00$ � �%

� �#
�� 00 � �$
� � � � � �%

 

It shows that (1.5a) q is a repeated area and the longest DNA strand of any Sierpinski 

link is: 

max 3 2 1.5 ( 0, )nl a n n� 4 4 00 . 00 �3      (7) 

This indicates that any DNA Sierpinski links can be made of DNA strands with lmax 

from longest to shortest and the number of them is 3n, 3n-1, 3n-2, ... , 1 in order, the difference 

is that there are two styles of short DNA strands with equal full step length and their numbers 

are not same. For instance, the number of strands that constitute the smallest triangles with 

consistent orientation of initial triangle is 3n, and the number of strands that constitute the 

smallest triangles with opposite orientation of initial triangle is 3n-1 (see Figure 6). Figure10c 

shows the DNA strands model, the closed circles indicate DNA strands, q satisfies formula (8): 

3 2 ( 0, )nq n n� 4 00 . 00 �3       (8) 

If the uncrossed growing points are taken placed by crossed ones, the distribution of 

DNA Sierpinski links is shown below: 

3 3 3

12 12 12

39 39 39

1.5 1.5 1.5
1, ;

( ) 1.5 ( ) 1.5 ( ) 1.5

1.5 1.5 1.5
2, ;

( ) 1.5 ( ) 1.5 ( ) 1.5

1.5 1.5 1.5
3, ;

( ) 1.5 ( ) 1.5 ( ) 1.5
...

a a a
n

a a a a a a

a a a
n

a a a a a a

a a a
n

a a a a a a

� �#
� 00$ � � � � �%

� �#
� 00$ � � � � �%

� �#
� 00$ � � � � �%

 

The result shows that (a)m is a repeated area located between 1.5a and 1.5a. The DNA 

strands model is shown in Figure 10 d, m satisfies formula (9):  

13 3 ( 1, )n nm m n n� � � 00 . 00 �3        (9) 

(iii) The symmetry of DNA Sierpinski links  

It is well known that the symmetry of Sierpinski triangles is C3v and the step order is 2n. 

Any DNA Sierpinski link will be superimposed with itself by rotating 1200, indicating it has a 

three-fold symmetry axis. The DNA models shown in Figure 10 prove this result. Regardless 

of base-pairs, it can be concluded that each DNA strand possesses a three-fold symmetry axis 
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and the step order is n. It demonstrates that the symmetry of DNA Sierpinski link is reduced 

compared with Sierpinski triangle. 

4. Investigation of synthesis method 

A bottom-up synthesis method of DNA Sierpinski triangles is proposed in this paper based on 

the constructed structures.  

 

Figure 11.  The strategy of synthesizing DNA Sierpinski links from basic building block. 

Above all, the basic building block needs to be chosen. As shown in Figure 11, the Lo-0 

on the leftmost is selected as the basic building block, the bigger and more complicate 

structures can be obtained by connecting some of them together. Second, special enzymes will 

perform well at the time. The chosen enzyme acts on two vertexes of the basic building block 

and breaks DNA strands. Then the sticky ends are bared outside and three basic building 

blocks are joined together by DNA Ligases, keep going and going, the last two cracks are also 

sewed up by suture enzyme then the desired structures will be produced. Any perfect DNA 

Sierpinski links will be realized by this novel method. In Figure 11, a DNA Sierpinski links 

with the fractal number 2 is synthesized from the basic building block Lo-0. 

The strategy of synthesizing DNA Sierpinski links is useful for two dimensional 

structures; what about expanding it to three dimensional structures? The answer is yes but the 

basic building block is not Lo-0 anymore, a tetrahedron link is selected as basic building block. 

A schematic diagram is given in Figure 12, three tetrahedron links are connected together and 
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a 3D DNA Sierpinski links with fractal number 2 is shown as an example. 

 
Figure 12.  The strategy of synthesize 3D DNA Sierpinski links. 

5. Conclusions 

In this paper, a few tentative attempts were made on designing and characterizing DNA fractal 
links by mathematical methods. A series of DNA Sierpinski links were constructed by k-
tangle models and two kinds of vertexes, and the growth mechanisms of two types of DNA 
Sierpinski links were unraveled by some formulas. We gave a definition of step length of 
DNA strands and analyze the distributions of step length, and then DNA strand models were 
got to describe the design rules of DNA strands.  

A novel and exquisite bottom-up synthesis method based on the constructed DNA 
Sierpinski links with aid of enzymes was proposed. If we have gotten building blocks, then 
the desired structures can be realized with patience easily. The perfect method supplies a new 
train of thought for assembling two and three dimensional DNA fractal structures. 

Although our study of DNA Sierpinski links and fractal links is only underway in theory, 
it gives an access for us to get a further understanding of macromolecular and viruses with 
fractal structures; these mathematic models maybe help chemists and biologists to checkout 
and develop their synthesis strategies.  
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