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Abstract 

 
    In this paper, we introduce a new graphical representation of the DNA sequences, which we call 
3D- Presentation graphs. The present method is based on the 2D dynamic representation developed in 
[1] and Hook Immanantal for polynomial of  Laplacian matrix on DNA graph that have been used 
before.  

1.Introduction 
 
    DNA (deoxyribonucleic acid) is a double stranded sequence of four nucleotides; the four 

nucleotides that compose a strand of DNA are as follows: adenine (A), guanine (G), cytosine 

(C), and thymine (T); they are often called bases. The chemical structure of DNA (the famous 

double- helix) was discovered by James Watson and Francis Crick in 1953[1]. It consists of a 

particular bond of two linear sequences of bases. This bond follows a property of 

complementarity: adenine bonds with thymine (A-T) and vice versa (T-A), cytosine bonds 

with guanine (C-G) and vice versa (G-C). This is known as Watson-Crick complementarity.  

   Each DNA strand has two different ends that determine its polarity: the 3.’end, and the 5’ 

end. The double helix is an anti-parallel (two strands of opposite polarity) bonding of two 

complementary strands. The idea (due to Leonard Adleman) is to use strands of DNA to  
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encode the (instance of the) problem and to manipulate them using techniques commonly 

available in any molecular biology laboratory, to simulate operations that select the solution 

of the problem, if it exists[1,2]. 

   In the recent years, a rapid growth of sequence data in DNA databases has been observed. 

Some graphical representations of DNA sequences have been given by Nandy [3], and Guo et 

al. based on 2D graphical representation of DNA sequences. Guo and Nandy introduced a 

novel 2D graphical representation of DNA sequences of low degeneracy [4].  

   Consequently, designing mathematical tools that aim at a quick identification or for 

similarity studies between sequences have become an urgent necessity. Very useful are the 

methods based on graphical representations. In general, when the number of data is large, it 

can be easier to deal with mathematical descriptors that offer a numerical characterization of 

the graphs . 

    In general, many advances in 2D, 3D, and 4D DNA sequences representation appeared 

after the initial works [5-15] . Up to now , many papers published in DNA sequence. For 

example see [16-25]. 

    Since our method is based on the 2D-dynamic graph which introduced in [1] , in this 

reference the masses of the degeneracy of the plots is important , but in our method, we need 

only the graph of DNA sequence and therefore we remove the mass of points .        

    In this paper, we introduce a new graphical representation of the DNA sequences, which 

we call 3D-presentation and  we characterize a DNA graph by the second immanantal poly-

nomial and give an example for HSHISAD sequence .  
 

2. Theory    

    Let G= (V, E) be a graph with the set vertex of V =  and the set of edges of 

E . The adjacency matrix A(G) = (aij) of G is the n by n matrix defined by aij=1 , if (vi , vj)  E 

and aij=0 otherwise . Of course, if G = (V, E) is a directed graph, then (vi , vj) is pair order . 

    If D(G) is a diagonal matrix of degree vertices of the graphs, then L(G) = D(G) – A(G) is a 

Laplacian matrix. The second immanant of an n by n matrix L(G) = (lij) is defined by  

 [26-27] 

where  is the irreducible character of Sn corresponding to the partition (2,1n-2) . In 

particular, (  =  , where character and F is the number 

of fixed points . Define the “d2-polynomial” of G by  
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. 

 

The d2 polynomial associated with the Laplacian matrix L(G) is:                                          

 

The coefficients c0, . . . , cn can be computed as follows:[28] 

c0(G) = n-1 

c1(G) =  2m (n-1) 

ck(G) =  . 

 

    Qk,n denotes the collection of k-element subsets of the set {1, 2, . . . n}. If we denote 

with L[X] the k × k principal sub matrix of M corresponding to X, where X  Qk,n, we can 

define the m × m matrix 

L{X} =  

where In−k is the identity matrix of size n − k, 0k is the null matrix of size k and L{X}(i) is the 

matrix obtained from L{X} by removing the n-th row and the n-th column. 

     In follow we show how it is possible to characterize a DNA graph by the second 

immanantal polynomial and how to embed the polynomial coefficients into a low 

dimensional vector space. 
 

3. Result and discussion  

    Let us consider the sequence CGTCGA. The method for constructing the graph is shown in 

figure. 1. The plot of a sequence starts from the origin of the coordinate system (0,0) denoted 

as ‘start’ in the figure. Then, using the convention of a walk in 2D-space outlined in, the point 

is shifted, in succession, by one unit for each base in the sequence. The shifts are made by the 

following unit vectors: A = (-1,0), G = (1,0), C = (0,1) and T = (0,-1). The vectors C, T and 

A, G lie on the same lines. However, for pedagogical reasons, they are drawn next to each 

other in this paper.  

    As we explained in the introduction, we deal with the graph of DNA sequence which 

contains vertices without mass. 
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  Figure 1. (a) The method for constructing the 2D-dynamic graphical representation of the             
                    CGTCGA sequence  
                  
                  (b) The graph of CGTCGA sequences according to figure (a)  
 
     
At this point, we are able to partition the set of representative graphs into equivalence classes 

with the equivalence relation provided by sharing the same second immanantal polynomial, 

that is to say the same characteristic vector c = (c0, c1, . . . , cn). 

    In this section, we are going to introduce a technique to get a better clustering of the 

characteristic set in order to provide a more reliable metric for the representative graphs, 

specifically designed for the graphs actually present in the database. In fact, our objective is 

to provide a metric that allows to make queries on a large collection of representative graphs, 

or better of their characteristic vectors c.    

    We used the first three most significant independent components e1, e2, e3 to represent the 

characteristic vectors extracted from them. The coordinate system is spanned by the three 

independent components e1, e2, e3 and the characteristic vectors cj can be projected onto this 

pattern space by xij= ei · cj, where i = 1, 2, 3, j = 1, 2, . . . ,N and N is the dimension of the 

database. 

    It follows immediately that the metric will be the standard one between vectors in this 

linear space (figure. 2). 
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Figure 2. 3D-dynamic graphical representation of the  CGTCGA sequence 
 

 
   We presented a DNA graph characterization through the second immanantal polynomial, 

which provides an invariant set of coefficients which completely characterizes a DNA graph. 

Then it is possible to embed the set of polynomial coefficients into three dimensional space 

where it is possible to give a graph metric tuned on the specific collection by means of the 

standard product. This space is spanned by the independent vectors provided by the 

Independent Component Analysis performed on all vectors belonging to the database 

   In the above part, we gave 3D- dynamic representation for a model CGTCGA sequence, 

now we give another example for obtaining 3D- dynamic representation. For this purpose, we 

used from table 2 in [1]. In this table, there is a DNA sequence with the name ( HSHISAD ).  

Using in [1], we have the following figure :   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. 2D – representation of human 

ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAG 
GTGAACGTGGATTAAGTTGGTGGTGAGGCCCTGGGCAG 
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 The same as the previous model, we can show 3D - representation of  HSHISAD sequence in 
the following figure. 
 
 
 
 
 
 
 
 
     
   
 
 
 
 
 

 
Figure 4. A part of 3D – representation of human 

ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAG 
GTGAACGTGGATTAAGTTGGTGGTGAGGCCCTGGGCAG  
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