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ABSTRACT: The enantiomeric excesses obtained with 296 chiral catalysts in the 
asymmetric hydrogen transfer to acetophenone are extracted from a combinatorial database 
constructed by Riant et al., and used to investigate their relationships with the molecular 
structures of the catalysts. These catalysts incorporate three components, namely a β-amino 
alcohol, an aldehyde or ketone, and a metal complex precursor. The structures of the catalysts 
are featured by molecular descriptors, including chirality codes, calculated for their three 
components. Selection of variables, from the initial pool of molecular descriptors, is 
performed by a genetic algorithm. These are fed to a random forest to predict the 
enantiomeric excess. A square correlation coefficient of R2=0.82 and RMSE=9.96 are 
obtained for the test set, and the results for cross-validation of the whole dataset (in the out-of-
bag procedure) are R2=0.79 and RMSE=10.96. The method can be helpful for computer-aided 
design of enantioselective catalysts. 
 

� INTRODUCTION 
Usually, a pair of enantiomers exhibit different physical, chemical and biological activity. 

In order to reduce known or unknown side effects of the non-functional enantiomer, the needs 

of pure chiral materials are growing 1, 2, e.g. for the pharmaceutical and agrochemical 

industries. The organic synthetic chemists continually try to design new methods for 

asymmetric synthesis, and catalytic asymmetric reactions are much desired to pursue high 

enantioselectivity 3.  

Development of new chiral catalysts has an extremely high cost, although the combination 
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of high-throughput experiments and the combinatorial chemistry can accelerate the process of 

catalyst synthesis and catalyst evaluation 4. However, a large number of experiments are still 

required. The integration of computer-aided virtual screening in catalyst development can 

reduce the number of experiments and the corresponding costs.  

Raint and co-workers 5 tested a combinatorial database of chiral catalysts for asymmetric 

hydrogen transfer to acetophenone by high-throughput experiments and assessed the 

performance of a catalyst with a normalized performance factor (NPF), which was calculated 

on the basis of the experimental yield and enantiomeric excess of the catalyst. The catalysts 

with the top ten NPF were regarded as the best. In the second step, the genetic algorithm was 

used to screen experimentally the catalysts in vitro. At the beginning of the evolution, a 

population was composed of a small part of the library. From generation to generation, some 

catalysts with lower NPF were replaced by the other catalysts. Finally, when ca. 10% of the 

library had been investigated by genetic algorithm, about 60% of the ten best catalysts could 

be obtained. 

In a previous work, the authors’ laboratory reported the application of chirality codes and 

neural networks to screen virtually the catalysts of the same library to improve the hit rate of 

catalysts 6. Like in the work of Riant 5, the catalysts were then assessed by the value of NPF 

and the top ten catalysts were regarded as the best catalysts. The library was divided into ca. 

10% catalysts as training set and ca. 90% catalysts as test set. The Counterpropagation Neural 

Network (CPG NN) was trained by the chirality codes and NPFs of the catalysts in the 

training set, and then the trained CPG NN was used to predict NPFs of the catalysts in the test 

set. The catalysts in the test set were ranked decreasingly based on the predicted NPFs. It was 

observed that a selection of ca. 20% of the virtual library enabled to identify up to 85.5% of 

the ten target catalysts. 

The major goal of both methods above was to select catalysts possessing high performance 

with less experiments, but not to predict the quantitative values of the performance. 

In the present article we report a study to build mathematical models to predict 

quantitatively enantiomeric excess of an asymmetric reaction from the structure of the 

catalyst.  

Aires-de-Sousa and Gasteiger have predicted the enantiomeric excess for a combinatorial 

library of enantioselective reactions performed by addition of diethyl zinc to benzaldehyde 7. 

The small library was composed of 5 chiral catalysts and 13 chiral additives. There are not 
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many reports available in the literature on quantitative structure-enantioselectivity 

relationships of catalysts 1. 

 

� METHODS 
Data Set. The experimental data in this article were retrieved from the literature 5 and will 

be briefly introduced in this section. Catalysts with a yield lesser than 5% have no values of 

enantiomeric excess and were removed. Thus, the data set used in this article contained 296 

chiral catalysts for the asymmetric hydrogen transfer to acetophenone by isopropanol in the 

presence of potassium hydroxide. The reaction is shown in Figure 1. (R)-1-phenylethanol and 

(S)-1-phenylenthanol are the products of the reaction. 

 
Figure 1. Metal-catalyzed hydride transfer to acetophenone. 

 

The enantiomeric excess is the percentage of (R)-1- phenylethanol minus the percentage of 

(S)-1-phenylenthanol: 

([ ] [ ]) ([ ] [ ]) 100ee R S R S� � � 1  
where [R] is the reaction yield of products with R configuration and the [S] is the reaction 

yield with S configuration. 

The catalysts are synthesized from three components. Component A is an enantiopure β-

amino alcohol; component B is an aldehyde or ketone; component M is a metal complex 

precursor as shown in Figure 2. The general scheme is displayed in Figure 3. 

 

 

Figure 2. The set of metallic precursors M1 - M4. 
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Figure 3. Synthesis of chiral catalysts AxByMz. 
 

The 296 catalysts include 127 of type AxByM1, 83 AxByM2, 7 AxByM3 and 79 AxByM4. 

In order to build a stable prediction model, the 296 chiral catalysts were divided into 237 

(80%) as training set and the remaining 59 (20%) catalysts as test set. 

Radial Distribution Function Code. The carbonyl compounds (components B) were 

represented by a radial distribution function (RDF) code, which was originally developed by 

Gasteiger et al. and used to describe the 3D structure of the molecule [8]. The definition of 

RDF is briefly introduced as follows. 

21
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In this equation, ai and aj are the properties of atoms i and j such as atomic charge, rij is the 

distance between the atoms i and j, and b is a smoothing parameter. The value of x is a 

running variable for the function g(x). The f is an optional scaling factor. The g (x) is 

calculated at a number of discrete points with defined intervals to obtain the same number of 

descriptors to any sample. The dimension number of RDF code is independent of molecular 

size. 

A molecular encoding scheme has been developed on the basis of eq (1) and such a 

representation of the 3D structure of a molecule has been utilized for the simulation of 

infrared spectra [9]. 

Conformation-Independent Chirality Code. The amino-alcohols (component A) are 

enantiopure chiral compounds and were encoded by the conformation-independent chirality 

code (CICC) 10. Here only a brief explanation of the CICC code is given. First, a value of eijkl 

is defined through eq (2) that considers atoms i, j, k, and l, each of them belonging to a 

different ligand of a chiral center. 
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where ai is a property of atom i, such as atomic charge, and rij is a distance between atoms i 

and j. In order to consider the 3D structure but make the chirality code independent of a 

specific conformer, rij is taken as the sum of the bond lengths between atoms i and j on the 

path with the minimum number of bond counts.  

Furthermore, the chirality sign, sijkl, can be assigned a value of +1 or -1. For the 

computation of sijkl, atoms i, j, k, and l are ranked according to their decreasing atomic 

property ai. The 3D coordinates of A, B, C, and D, which are the corresponding atoms directly 

bonded to the chiral center, are used for atom i, j, k, and l, respectively. A plane is defined by 

the first three atoms (in the order established by ranking above), and the fourth atom is behind 

the plane. If the order is clockwise, sijkl will take the value of +1; or else, sijkl will take the 

value of -1. 

Then, the eijkl and sijkl are combined into eq (3) to generate the conformation-independent 

chirality code fCICC.  

� �2ji k l
ijkl

nn n n
b x e

CICC ijkl
i j k l

f (x) S e� �� 2����       (3) 

where ni, nj, nk, and nl are the number of atoms belonging to ligands i, j, k, and l, respectively; 

b is a smoothing factor. In practice, b controls the width of the peaks obtained by a graphical 

representation of fCICC(x) vs x. 

The fCICC (x) is calculated at a number of discrete points with defined intervals. The number 

of descriptors is not dependent on the size of a molecule. The actual range of x used in an 

application is chosen according to the range of atomic properties related to the range of 

observed interatomic distances for the given molecules. 

Molecular descriptors of AxByMz catalysts. Generation of molecular descriptors for 

components A, B and M was performed separately, and then combined into a representation 

for catalysts AxByMz. 

The Cartesian coordinates of the atoms in a molecule were calculated from the connection 

tables of the molecules by the 3D structure generator CORINA 11, 12, 13, 14. The 

physicochemical atomic properties were calculated using fast empirical methods included in 

the program package PETRA 15, 16. The calculation of chirality codes was performed by using 

a program developed by Aires-de-Sousa and Gasteiger 10. The process is as follows: 
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(1) Amino-alcohols (A), all of which were chiral compounds, were encoded by 

conformation-independent chirality code. A code possesses 51 values by using: (a) the partial 

atomic charge as atomic property; (b) all the atoms including hydrogen; (c) values of x in the 

interval [-0.03e2Å-1, 0.03e2 Å-1 ]; (e) the smoothing parameter b set to (code length/range of 

x)2. 

(2) Carbonyl compounds (B), most of which were achiral compounds, were encoded with 

RDF descriptors using the following parameters: (a) the partial atomic charge was the atomic 

property; (b) the range was [0, 15 Å] for x; (c) the length for a code was 63; (d) the smoothing 

parameter b was equal to 100. 

(3) Metal precursors (M) included 4 possible metal complexes, and were encoded by a 

binary vector with four bits. The M1, M2, M3, and M4 were represented by “1,0,0,0”, 

“0,1,0,0”, “0,0,1,0” and “0,0,0,1”, respectively.  

(4) A 51-dimensional CICC code for A, a 63-dimensional RDF vector for B, and a 4-

dimensional vector derived from M were combined into a 118-dimensional vector to represent 

a catalyst. Twelve elements of the vector with constant zero values were deleted. Finally, a 

106-dimensional vector was obtained for characterizing a catalyst AxByMz. 

Classification and Regression Tree (CART). A regression tree was suitable for this research, 

in order to make quantitative predictions of the enantiomeric excess. A single regression tree 
17 was sequentially constructed, partitioning objects from a parent node into two child nodes. 

Each node is produced by a logical rule, defined for a single variable (a variable of chirality 

code), where objects below a certain variable's value fall into one of the two child nodes, and 

objects above fall into the other child node. The prediction for an object reaching a given 

terminal node is obtained by the average of enantiomeric excesses of the catalysts (in the 

training set) reaching the same terminal node. The entire procedure comprises three main 

steps. First an entire tree is constructed by data splitting into smaller nodes; each produced 

split is evaluated by square errors of enantiomeric excess which decreases as long as the new 

split permits child node's square errors to be smaller than parent node. Second, a set of 

smaller, nested trees is obtained by obliteration (pruning) of certain nodes of the tree obtained 

in the first step. The selection of the weakest branches is based on sum of square errors of all 

terminal nodes that decides which subtree, from a set of subtrees with the same number of 

terminal nodes, has the lowest (within node) error. Finally, from the set of all nested subtrees, 

the tree giving the lowest value of error in cross-validation (where the set of objects used to 
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grow the tree is different from the prediction set) is selected as the optimal tree. In this study, 

a tree was grown with the R program version 2.10.1 18 using the RPART library with the 

default parameters. 

Random Forest. A random forest (RF) 18, 19 is an ensemble of unpruned classification and 

regression trees created by using bootstrap samples of the training data and random subsets of 

variables to define the best split at each node. Prediction is made by the average of the 

individual trees. Additionally, performance is internally assessed with the prediction error for 

the objects left out in the bootstrap procedure (internal cross-validation or out-of-bag 

estimation). Therefore, about 1/3 of training set was randomly selected as validation set and 

the other 2/3 or so were used to training a tree, and the prediction of validation set was used to 

assess the tree. Random Forests were grown with the R program, version 2.10.1, using the 

Random Forest library 18. The RFs were trained to predict enantiomeric excess on the basis of 

chirality code of the catalyst. The number of trees in a random forest was set to 1000. It has 

been shown that the method is extremely accurate in a variety of applications 20. 

Genetic Algorithms. Some variables of the chirality code may not be relevant for our 

purposes, and can even introduce noise. Models with few descriptors are usually preferred for 

increased robustness. Here we used genetic algorithms for the selection of variables. Genetic 

algorithms simulate the evolution of a population, where each individual of the population 

represents a subset of descriptors and its fitness is assessed by the ability to generated accurate 

models 21. 

At the beginning of the evolution, the individuals are randomly generated. The probability 

of selecting a variable into subset (randomly for each subset) is between 0 and 0.4. 

A population of individuals is allowed to evolve over a number of (300) generations. In 

each generation, half of the population die, and the other half survive (the fittest individuals). 

Each of the surviving individuals mates with another (randomly chosen) surviving individual, 

and two new offspring are generated. The offspring result from crossover of their parents, 

followed by random mutation. The population of the next generation consists of the new 

offspring and their parents.  

The evaluation (scoring) of each individual is made by a Counter Propagation neural 

network (CPG NN) that uses the subset of molecular descriptors for predicting the 

enantiomeric excesses. The NN is trained with the training set, and the score of the subset of 

molecular descriptors is the root-mean-square of errors for the predictions obtained for the 
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training set. The individuals (subsets of descriptors) giving lower errors are considered to be 

fitter than those giving higher errors and are selected for mating. 

 

� RESULTS AND DISCUSSION 
Prediction of enantiomeric excesses for the chiral catalysts by the regression tree. The 

molecular descriptors and enantiomeric excesses of the catalysts of the training set were used 

to train a classification and regression tree. The obtained tree is shown in Figure 4. 

In Figure 4, variables, X(1)~X(106), are the elements of the 106-dimensional vector of 

molecular descriptors. Among them, X(1)~X(40) are the CICC codes of component A, X(41)- 

X(102) are the RDF codes of component B, and X(103)- X(106) are the indicator variables of 

component M. From Figure 4, it can be seen that nine variables were adopted to split the 

notes in the regression tree, among them X(2), X(3), X(6), and X(19) are the codes of CICC 

derived from A, X(57), X(59), and X(70) are the RDF codes from B and X(103) and X(104) 

are the indicator variables from M1 and M2. The nine selected variables show that all A, B 

and M play an important role to establish the prediction model. The indicator variable derived 

from M4 was not included, although 79 of 296 catalysts were synthesized from M4. 

In the root node, N=237 means that the number of catalysts in the training set is 237, and 

Y=40 denotes the value of the node is 40, which is the average value of enantiomeric excesses 

of 237 catalysts. The root node was split by variable X(6). If X(6) of a catalyst is smaller than 

0.09082, the catalyst falls into the left node, otherwise the catalyst falls into the right node. As 

a result, 237 catalysts in the training set were partitioned into 190 catalysts in the left node 

with Y=31.8 and 47 catalysts in the right node with Y=73.14. 

When a catalyst is submitted to the trained classification and regression tree in Figure 4, 

the catalyst will finally fall into a terminal. The value of the terminal (Y) is the prediction 

value (enantiomeric excess in this article) of the catalyst. For training set and test set, the 

results were obtained with square correlation coefficients of R2=0.71 and R2=0.56, 

respectively. 
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Figure 4. Graphical representation of the classification and regression tree for the prediction of 
enantiomeric excess of catalyst. Ovals represent the nodes and rectangles denote the 

terminals in the tree. The annotations in the nodes and in the terminals are the inequations 
of the conditions and the enantiomeric excess (Y), respectively. 

 

Prediction of enantiomeric excesses for the chiral catalysts by random forest. In order to 

build more stable model, a random forest was trained with molecular descriptors and 

enantiomeric excesses of training set. The prediction results of the training set and the test set 

are shown in table 1. 

 
Table 1. Square correlation coefficients (R2) obtained by random forest 

Methods a OOB of training set 
(R2) 

Prediction of test set 
(R2) 

OOB of the whole data set 
(R2) 

RF 0.71 0.77 0.74 
GA + RF 0.77 0.82 0.79 

a RF denotes random forest; GA represents genetic algorithm. 
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Table 1 shows that the result of the test set is R2=0.77 and the result of cross-validation 

(OOB) of training set is R2=0.71. The results were improved significantly comparing to 

CART. 

If all the 296 catalysts were used to build prediction model, the result of OOB was 

R2=0.74. 

In addition, 5-fold cross-validation was also performed, so five prediction models were 

constructed with random forests. The result of cross-validation was the same as with OOB of 

the whole dataset (R2=0.74). 

 

 

Figure 5. Experimental enantiomeric excesses vs. predicted enantiomeric excesses 
 

In order to obtain more robust and accurate models, the variable selection of chirality 

codes was performed by genetic algorithm. After the selection, the subset of the molecular 

descriptors contained 18 variables of CICC codes of component A and 6 variables of RDF of 

component B. The M1-M4 were always added into subset, whatever they were selected or not 

by genetic algorithm. Finally, the subset was composed of 18 + 6 + 4 = 28 variables instead of 

108. The result of OOB of the training set was R2=0.77 and for the test set a value of R2=0.82 

and RMSE=9.96 were obtained (see figure 5). If the whole dataset were used to train random 

forest, the results of OOB were R2 =0.79 and RMSE=10.96. These results are also presented 

in Table 1.  
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The data set of 296 catalysts included 127 AxByM1, 83 AxByM2, 7 AxByM3 and 79 

AxByM4. Thus, separate RF prediction models were built for AxByM1, AxByM2, and 79 

AxByM4 (the number of AxByM3 catalysts were not enough). The datasets were randomly 

partitioned into training set with 80% of the catalysts and test set with the remaining 20% of 

the catalysts. The results for the respective prediction models are displayed in Table 2. 

 
Table 2. Square correlation coefficients of the predicted vs. observed enantiomeric excesses for 127 
AxByM1, 83 AxByM2 and 79 AxByM4. 

Methods a Data set OOB of training set 
(R2) 

Prediction of test set 
(R2) 

OOB of the whole data set 
(R2) 

 
RF 

AxByM1 0.87 0.87 0.83 
AxByM2 0.78 0.74 0.77 
AxByM4 0.57 0.66 0.61 

GA + RF 
AxByM1 0.82 0.87 0.83 
AxByM2 0.80 0.73 0.79 
AxByM4 0.62 0.68 0.63 

a RF denotes random forest; GA represents genetic algorithm. 
 

Table 2 shows that the best predictions were achieved by the data set of catalysts 

synthesized with M1. For the model constructed by random forest, the OOB predictions with 

the training set yielded R2=0.87 and for the prediction of test set R2=0.87 and RMSE=8.47. If 

all 127 catalysts were used as training set, the results of OOB were R2=0.83 and RMSE=9.91. 

The worst prediction results, ca. R2=0.60, were obtained with the data set of catalysts derived 

from M4. 

Similarly, genetic algorithm was used to select the variables - 12 to 27 selected variables 

were used to construct the prediction model by using random forest. The same steps were 

performed as above and the results are also listed in Table 2. From Table 2, we can see that the 

results were slightly improved after reducing the number of the variables by using genetic 

algorithm. 

In addition, the whole data set of 296 catalysts were repartitioned into a training set with 

228 catalysts synthesized by cyclic aldehydes and ketones and a test set with 68 catalysts 

synthesized by acyclic aldehydes and ketones, i.e., the structures in the test set did not appear 

in the training set. The prediction models were constructed by random forest and genetic 

algorithm as mentioned above and the results are shown in Table 3. Even with the more 

challenging partition of the data, results are similar to those in Table 1. 
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Table 3. Square correlation coefficients (R2) obtained using the 228 catalysts synthesized from cyclic 
aldehydes and ketones as the training set, and the 68 catalysts synthesized from acyclic aldehydes 
and ketones as the test set. 

Methods a OOB of training set 
(R2) 

Prediction of test set 
(R2) 

RF 0.72 0.69 
GA + RF 0.79 0.79 

a RF denotes random forest; GA represents genetic algorithm. 
 

■  CONCLUSION 
In this study, a library of 296 chiral catalysts for the asymmetric hydrogen transfer to 

acetophenone was investigated by using the methods of quantitative structure-activity 

relationships (QSAR). The molecular descriptors of the catalysts, including chirality codes, 

were submitted to classification and regression tree or random forest to construct the 

prediction models for the quantitative prediction of enantiomeric excesses, which is one of the 

most important factors to evaluate the performance of catalysts in asymmetric reactions. The 

results reveal that the molecular codes derived from the structure of catalysts can be applied to 

construct robust predictive models of the catalytic performance. It demonstrates a 

chemoinformatics method with the potential to screen virtually chiral catalysts in asymmetric 

reactions, which is valuable to reduce time and cost of the development of asymmetric 

catalysts. 
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