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Abstract 

Simple elements of partial order theory turned out to be useful tools when rankings are needed. Here 
we show, how a subset of objects, mutually incomparable (called an antichain) can be further 
analyzed. There is a surprising relation to extremal graph theory, namely an application of the famous 
theorem of Turan. 

As example, we analyze the partially ordered sets of regions in the South - West of Germany, where 
the characterizing attributes are discretized concentrations of Lead, Cadmium, Zinc and Sulfur in the 
herb layer.  

  1. Introduction 

In multi-indicator systems, the concept of partially ordered sets is a useful tool in many 

different fields of research, see the following, certainly not complete list (sequenced after the 

years):  Randic, 1978, Ruch and Gutman, 1979, Bartel, 1994, 1995, Klein, 1995, Klöpffer and 

Volkwein, 1995, Galassi et al., 1996, Klein and Babic, 1997, Luther and Gnauck, 2002, Pavan 

and Todeschini, 2004, Castro et al., 2005, Sørensen et al., 2006, Bruggemann and Voigt, 

2008, Duchowicz et al., 2008, Newlin and Patil, 2010, Bruggemann and Patil, 2010, 

Todeschini, 2011, Tsakovski and Simeonov, 2011). Partially ordered sets (posets) can also be 

considered as a first step in evaluation and decision finding. However, the analysis of posets 

for decision making is usually only seen as a preprocessing step, because in general, partially 
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ordered sets do not allow a unique ranking (which is of interest for its own right, see for 

example Bruggemann and Carlsen, 2011, or De Loof et al., 2011).  

In our example, regions in Baden-Wuerttemberg, South-West of Germany were selected and 

monitored with respect to concentrations of the chemical elements Pb, Cd, Zn and S in the 

herb layer. This multi-indicator system with regions as objects and concentrations of the four 

chemical elements as indicators (syn.: attributes) raises the questions: 1) How can we get 

information about the pollution status? and 2) What can be said about geochemical relations? 

For example does an increase in pollution with respect to one pollutant always imply the 

increase of another pollutant?  

The first step to get answers is the visualization of the poset by a Hasse diagram. There are 

many references available which show examples of the analysis of Hasse diagrams, see e.g. 

Bruggemann et al., 2001, books such as Bruggemann and Patil, 2011 and special issues of 

journals such as MATCH Commun.Math.Comput.Chem  42, 2000 (Klein and Brickmann, 

2000).  

According to the used software (PyHasse, see for instance Voigt et al., 2010) Hasse diagrams 

are arranged in the way that the < - relation between two objects x and y (x < y) is 

geometrically represented by a position of y above the position of x and by a line or a 

sequence of lines connecting x with y. Hasse diagrams are directed graphs without cycles and 

if arranged in the given way, mostly analyzed in a vertical manner (increasing pollution, 

increasing toxicity, etc.). The horizontal dimension is often of less interest, especially if a 

linear order is wanted in order to find decisions. In that sense unfortunately the concept of 

incomparability is seen as an obstacle rather than as a means to “see where an object is and 

why it is, where it is” (Bruggemann and Patil, 2011). 

We began to study this horizontal component of a Hasse diagram in Bruggemann and Voigt, 

2011 where we more closely analyzed separated subsets. Here we turn back to more 

elementary parts of incomparability, namely to antichains, A famous result about antichains is 

the Dilworth theorem (Priestley and Davey, 1990, Crawley and Dilworth, 1973), which 

relates the number of elements in the maximum antichain with the number of chains (for 

definitions, see below). Some studies about antichains can also be found in Trotter, 1992, 

such as the concept of “alternating cycles” and the problem of finding the dimension of posets 

which is immediately related to the presence of antichains. However, so far to our knowledge 

the appearance of antichains obtained from data matrices has not found much interest in the 
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literature. For example, in Ivanciuc and Klein 2004 the leading idea is to find approximations 

of order preserving maps, relating chemical structures/reactions and their partial order with 

chemical data such as toxicity or bioaccumulation. Incomparability is then seen rather as a 

relaxation in this task than of interest for its own right.  

Our paper is organized as follows: 

Section 2: Basic definitions and presentation of the example 

Section 3: Countings in antichains 

Section 4: Conclusions and outlook. 
 

2. Basic material and the example of pollutionof a german state 

2.1 Basic definitions 
Partially ordered sets: Let G be a set of objects, characterized by some attributes q1,...,qm. 

Then we call (G, �) a partially ordered set, as follows:  

 

x,y � G, x < y : �  qi(x) � qi(y) for all i=1,...,m, and there is at  

least one index i* for which the strict inequality qi*(x) < qi*(y) holds.    

 (1)  

A pair x,y � G, for which neither x = y, nor x < y, nor y < x can be found, is called 

incomparable and symbolized by x || y. 

The set of attributes, used in (1) is called an information base, abbreviated as IB. 

Notation: Let IB’ � IB, then x <IB’ y,  x is less than y with respect to the attributes of IB’.  

 Chain: A subset G’ � G is called a chain, when all elements of G’ can be ordered.  

 Antichain: A subset G’ � G is called an antichain, when no two elements of G’ are ordered, 

i.e. for all (x,y) � G’2 follows: x||y.  

   

The analysis of chains (“vertical analysis of Hasse diagrams”) is most often of more interest, 

as chains can be seen as an interim result of ranking. Antichains are of less interest, albeit they 

are the obvious indication that different quantities cannot necessarily be measured on one 

scale, i.e. they are incommensurable. The question is: What can we deduce from the 

appearance of antichains with respect to the objects and with respect to the attributes? A first 

attempt toward an answer is given in this paper.   
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2.2 Example 

When the number of objects is small enough, then we can draw a little bar diagram, indicating 

the values of qi � IB of the corresponding object. We call this kind of special drawing an 

“intelligent Hasse diagram”. In Figure 1 we see the “intelligent Hasse diagram” with respect 

to the pollution of the German state Baden-Wuerttemberg by Pb, Cd, Zn and S, especially in 

the target herb layer. The herb layer is thought of as indicator of local and medium-ranged 

transport processes. The German state Baden-Wuerttemberg was thought of as divided into 60 

regions and at representative sites the concentrations (in mg/kg dry mass) in different targets 

were measured. Here we discretized the concentrations and obtained scores as follows: 

(i) Corresponding to the recommendations of the Environmental Protection Agency of Baden-

Wuerttemberg we selected three classes for Pb, Cd and Zn and two classes for S. 

(ii) The range of data was correspondingly divided into intervals of equal length 

(iii) The intervals were enumerated increasingly by 0,1,.. 

(iv) If a concentration c of a region x falls into the interval Is = [cmin
(s), cmax

(s)) then  region x 

got the score s.The concentrations cmin
(s) and cmax

(s) define the borders of the sth interval.  

Due to the replacement of quantities, continuous in concept by scores we obtained many 

equivalence classes. Hence we, finally are studying 14 representatives labeled by numbers 

such as 18, 35, etc.. (Figure 1).  

The Hasse diagram, shown in Figure 1, gives a series of useful information, namely:  

1. the pollution status of each region 

2. geochemical aspects 

3. identification of chains (in a messy Hasse diagram this task is done by the module 

chain4.py) 

4. identification of antichains  

It may be useful to explain Figure 1 in some more detail: 

The general degree of pollution increases starting from the bottom of the diagram and 

proceeding upwards. However the kind of pollution differs. From the point of view of human 

health or ecotoxicity the combined effect of Pb together with S, or of Pb and Cd may differ, 

even if both pollutions have the same intensity (compare object (region) “22” with the scores 

Pb = 1, S = 1 and “45” with the scores Pb = 1, Cd = 1). As long as there exists no generally 

accepted common scale to calculate the combined effect, it is wise, to keep such elements of 

G separated, i.e. to avoid compensation due to the averaging process in many decision support 

systems. Several chains can be detected in the Hasse diagram. For example:  
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“30” < “17” < “22” < “14” < “57”. 

 

Figure 1. –Partial ordering of the regions of Baden-Wuerttemberg (see text). Modified after 

Bruggemann et al. 1999  

Such chains show that an increase of one attribute does not imply a decrease of another one. 

In the chain considered the scores of Pb and Cd are simultaneously increasing, starting at “30” 

and finally ending up in “57”.  

The analysis of the Hasse diagram in Figure 1 leads us to the discussion of one of the different 

facets of incomparability, namely of separated subsets such as {09,34} vs 

{06,17,41,22,45,14,38,18,35,57,48} (Bruggemann and Voigt, 2011). Another facet of 

incomparability is the appearance of antichains, For example G’ = {18, 34, 35, 48, 57}. The 

elements of G’ also are maximal elements and therefore of special interest. What can be said 

about G’, which seems to be without any structure? This question motivates, what we will 

discuss in more detail in the next section. 

3. Antichains and their analysis 

3.1 Some additional notations 

For the sake of generality we write q1,..,qm for the attributes and x1,...,xn for the objects. If we 

specify two objects or two attributes, then we write x, y (objects) or q, p (attributes). 

The following subsets are of interest: 

A(G’ ) = {(xi,xj), i < j for all xi, xj � G’ � G} 
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Q(IB’) = {(qi,qj), i < j for all qi,qj � IB’ � IB} 

As the incomparability relation is symmetric, any exchange of the indices does not affect the 

incomparability. We call S(IB’) a complete graph on IB’ with the vertex set IB’ and the edge 

set {{qi,qj}}: qi,qj � IB’, qi � qj}. Note, the symbol S is motivated from the concept of a 

“simplex”. 

Furthermore we define:  

AC(G’,IB’) � {(xi,xj) �  A(G’), xi||IB’ xj}. 

From Figure 1, we selected G’={18, 35, 57, 48, 34} and see that this subset forms an 

antichain, leading to the set of object pairs, AC(G’,IB)={(18,35), (18,57),...,(48,34)}. The 

question now is: Take a pair (x,y) � AC(G’,IB). Which attribute pair (q,p) � Q(IB) keeps the 

incomparability x||y?   

We introduce the matrix ACM (from AntiChain Matrix). Let (x,y) � AC(G’) be a row and 

(q,p) � Q(IB’) a column of this matrix which is only completely defined if G’ and IB’ are also 

indicated. We, however refer in the following in all cases to G’ and IB’ so that the notation 

can be simplified. Then: 

�
�
	



else

yxif
pqyxACM pq

0
||1

),(),,( ),(       (2) 

We call RAC(x,y)  the rowsum of ACM concerning the row of (x,y), and CAC(q,p) the 

columnsum of ACM, concerning the column (q,p). Any objectpair (x,y) can be characterized 

by RAC(x,y) and any attribute pair (q,p) can be characterized by CAC(q,p). These numbers 

can given a contextual interpretation as follows: 

The larger RAC(x,y) the more severe its status as an incomparable object pair, because in 

many combinations of attributes an incomparability x||(q,p) y appears. Similarly we can 

interpret CAC(q,p) as describing the importance of a certain attribute pair for being 

responsible for the incomparabilities of (x,y) � AC.  

Finally it is useful to introduce Sred(x,y) (“Reduced complete graph”) as that graph, where the 

vertices  are the elements of IB’ and a vertex q is connected with vertex p if and only if  

ACM(x,y),(q,p) = 1. 
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3.2 Normalization of RAC and CAC 

For comparison purposes (for example to compare different antichains in one poset, or the 

same subset of objects forming antichains in different posets) it is wise, to normalize the row- 

and columnsums of ACM. Let m’=|IB’| and n’=|G’|. Then clearly m’*(m’-1)/2 and n’*(n’-

1)/2 are upper bounds.  

We define: 

cac(q,p):  = CAC(q,p)/[n’*(n’-1)/2]       (3) 

To prepare the next step, namely the normalization of RAC, we define: 

 

Transitive triples of attribute pairs: Three attribute pairs are transitively 

 closed, if the pairs consist of three attributes, which form a triangle in S(IB’).   (4) 
 

The three attribute pairs (q1,q2),(q1,q3),(q1,q4) are not a transitive triple of pairs. Their 

representation as a graph Sred(x,y) would be a star with q1 in the center. Similarly 

(q1,q2),(q2,q3),(q1,q4) is not transitively closed. The representation Sred(x,y) is a bifurcation 

free tree with q4 at the one, and q3 at the other end. However (qi,qj),(qj,qk),(qk,qi) form a 

transitive triple of attribute pairs. 

Observation: 

In ACM, given one object pair (x,y) the columns of pairs forming a transitive triple cannot 

have simultaneously three entries 1.  

Proof: 

Let us select x,y and let us assume x ||(q1,q2), x||(q1,q3) and x||(q2,q3)y. The three attribute pairs 

form a transitively closed triple.Then x ||(q1,q2) y can without restriction of generality be 

written as x>q1 y and x<q2 y. Consider now q1 and q3, concerning the incomparability x || (q1,q3) 

y. We already know: x >q1 y , hence it must be valid x<q3 y. Finally concerning the supposed 

incomparability  x ||(q2,q3) y:  With respect to q2 we know: x <q2 y, with respect to q3 we know:  

x <q3 y.  Hence x < (q2,q3) y. Therefore within a transitive triple of attribute pairs not all three 

attribute pairs can lead to an incomparability for x,y.  

Corollary: 

Following the observation above, the graph with maximal number of edges for a selected pair 

(x,y) � AC cannot be a complete graph, because this graph cannot contain triangles. 
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Therefore, the maximal number of edges of the graph Sred(x,y) is governed by a theorem of 

extremal graph theory, the theorem of Turan (Harary,1974).  The maximal number of edges in 

a triangle - free graph, i.e. of incomparabilities and hence the maximum number of rowsums 

of ACM is: 

�
�

�


�






4
'2

max
mu             (5) 

where the brackets indicate that the greatest integer is to be taken being less than or equal 

m’2/4. In the case of four attributes any cycle with four edges and valences 2 is a candidate for 

an allowed graph of attributes maximizing the rowsum.  

Hence the correct normalization of rowsums is as follows: 

rac(x,y): = RAC(x,y)/umax         (6) 

If, for example |IB|=4 and x,y�AC(G’,IB) then the corresponding simplex would be a 

tetrahedron, whereas the graph S(x,y) following (5) is a circle with four vertices.   

Remark 1: 

A similar derivation in order to determine the maximal number of edges, in a graph whose 

vertices are the objects of an antichain is not possible, because  x||(qi,qj |y  does not imply 

which relations are valid for x||(qi,qj) z or y ||(qi,qj) z.  Hence the upper limit of importance of a 

given attribute pair (qi,qj) is just n’*(n’-1)/2, with n’=|G’|.  

Remark 2: 

Corresponding to the arguments used in the proof of the observation every 2n+1 circle of 

attribute pairs cannot simultaneously lead to entries 1 of the ACM. As, however we are 

interested in a lower upper bound of RAC the exclusion of any 2n+1-circle (n>1)  is here of 

minor interest.  

 
3.3 Application 

The needed calculations are performed by means of the software package PyHasse. This 

software package was and is currently developed by the first author and contains now 60 

programs, all written in Python (which motivates us to write “Py”Hasse). PyHasse is designed 

for an ordinal analysis of data matrices. In Figure 2 the graphical user interface of 

antichain6Excel.py is shown. 
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The module antichain6Excel.py delivers a series of results, which are shown after pressing the 
corresponding button. For example, after selecting the Excel-Sheet with the data of pollution 
of Baden-Wuerttemberg, a Hasse diagram pops up (not shown) and pressing “Calc antichain 
statistics” a window like that, shown in Figure 2 (bottom) can be examined.  After selection of 
the data matrix an entry box opens, where the elements of an antichain can be read in.  

Usually a bar diagram representing the rac- and cac-values, resp. is wanted. Therefore this 
specific module has an interface to Excel, so results can be immediately visualized using the 
professional software of Excel (Figure 3). 

Examining Figure 3, one sees that the object pairs [48, 35] (slight notation change because of 
technicalities in the PyHasse program) and [57, 34] are incomparable independent which of 
the attribute pairs is selected. So we conclude that these two object pairs are incomparable ”to 
a high degree”. Any subset of IB down to a pair of attributes will lead to incomparability of 
these two object pairs. Another object pair, such as for example [18,35] has a low degree 
(namely of above 0.2 and less 0.4). Therefore it can be expected that deleting columns from 
the data matrix (for example for performing a sensitivity study) the pair [18,35] becomes 
comparable.  

 

Figure 2: Top: Graphical user interface of PyHasse, module (program) antichain6Excel.py. Bottom: 

one of the results windows (see text) 
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Figure 3: rac for the different object pairs. 

Figure 3 shows the aggregated state, i.e. the rowsums. In Table 1, the matrix ACM and the 

rowsums RAC are shown, where the individual contributions of each attribute pair and object 

pair can be inspected. 

Table 1: Antichain matrix (ACM(IB,G’)) allowing a detailed investigation of an antichain 
 
 [Pb, Cd] [Pb, Zn] [Pb, S]  [Cd, Zn] [Cd, S]      [Zn, S]    RAC 
[18, 48]:0  0  1  0  0      0        1  
[18, 35]:0  0  0  1  0      0        1  
[18, 57]:1  0  0  0  0      0        1  
[18, 34]:0  0  0  0  0      1        1  
[48, 35]:0  1  1  1  1      0        4  
[48, 57]:0  0  0  0  1      0        1  
[48, 34]:0  1  0  0  0      0        1  
[35, 57]:0  1  0  0  0      0        1  
[35, 34]:0  0  0  0  1      1        2  
[57, 34]:1  1  0  0  1      1        4  
 

In Figure 4 some graphs, Sred(x,y), derived from S(IB) are shown: 

 

Figure 4: Graphs S(IB) and Sred(x,y). Bold lines, realized for a given object pair.  

These graphs are useful, because we can see how far attributes are crucial for maintaining an 

incomparability: If for example [18, 48] is selected, then both attributes Pb and S are crucial. 
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Without one of these two, object  18 will be comparable to object 48. In [35, 34] we see that 

elimination of the attribute S (sulfur in the herb layer) would imply a comparability for 34 

with 35. Hence the analysis of the graphs Sred(x,y) supports a local sensitivity analysis. 

“Local” because only a pair (x,y) � AC(G’,IB) is of concern. A further evaluation of the 

matrix ACM by Formal Concept Analysis (see for example Bartel, 1994, 1995) seems to be 

promising but is out of the scope of this paper.  

Similarly we can check the role of attribute pairs (Figure 5): 

 

Figure 5: cac for the different attribute pairs of the selected antichain. 

The tendency to generate incomparable pairs is greatest for (Pb,Zn) and (Cd,S) then (Zn,S) . 

followed by the other possible attribute pairs. 

4. Conclusion and outlook 

The representation of partial orders by Hasse diagrams is a helpful tool to discuss topics for 

which a ranking is considered as important. Many conclusions can be directly drawn from the 

graphical scheme.  

Especially useful is the presentation of the order theoretical relations as “intelligent Hasse 

diagram” (see Figure 1), but also the possibility to look at chains within the partially ordered 

set. Consequently the new software package PyHasse provides several tools for the 

identification of chains (see chain4.py) and for statistical characterizations (as in 

antichain6Excel.py). When partial order is applied, then very often not a linear order arises 

but incomparabilities appear. If not a complete ranking is the only purpose of the study then 

the partial order itself motivates to perform some simple, albeit useful, explorative statistics as 
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demonstrated in section 3. The analysis of properties of the antichain matrix (ACM) and of its 

column- CAC and rowsums, RAC is at its very beginning. We show that even an antichain has 

a certain kind of structure,  namely the pairs (x,y) � AC(G’,IB’) derived from an antichain as 

well as the pairs (q,p) � Q(IB) can be differentiated and that the need of normalization leads 

to the consideration of graphs such as Sred(x,y) which must be trianglefree.  

Future work has to focus on the following questions: How can the graph Sred(x,y) be 

characterized in terms of concepts of graph theory? How can a (valued) graph be 

characterized, which is thought of as a result of summing over all contributions of ACM for a 

given column, i.e. when scanning through all (x,y) � AC? Furthermore: When, as it is the case 

in our example, only two object pairs are strongly incomparable, what can be said for the 

decision making process? Furthermore, which implication has the exclusion of 2n+1 circles in 

Sred(x,y)? 

The paper of Annoni et al., 2011 has shown that the analysis of posets in terms of G’ or IB’ 

does not give the full insight, as numerical values of the attributes for the different objects 

also play an important role. For example the object pair [48,35] has rac=1, however, a slight 

deviation of the numerical values may completely change the result. A corresponding 

variance based sensitivity study should be performed in the near future. 
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