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Abstract 

The formation of polyhedra has attracted much interest as an attractive research topic that 
is connected with chemistry. In this paper, we focus on the grow law of so-called Goldberg 
method based on Platonic polyhedra. There are four classes of extended Platonic polyhedra we 
can construct: the extended tetrahedra; the extended hexahedra; the extended octahedra; the 
extended dodecahedra. The extended tetrahedra, extended hexahedra, and extended 
dodecahedra are, respectively, assembled by using the method of adding hexagons, whereas the 
extended octahedra are made by means of adding squares. We also prove that this method fails 
to be applied to icosahedra. The study of the architecture and growth of extended Platonic 
polyhedra provides further insight into the molecular design and theoretical characterization of 
chemical molecules. 

1. Introduction 

The elegant structure of polyhedra makes it one of the basic forms of physical existence in 

nature. Beautiful crystals, a series of ball-like fullerenes [1, 2] and viral capsids [3, 4] are typical 

polyhedra in chemistry and biology. Platonic solids, the five simplest polyhedra with all faces 

regular, have attracted the special attention of chemists as structural models time and again 

since antiquity [5-7]. The five Platonic polyhedra are tetrahedron, cube, octahedron, 
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dodecahedron and icosahedron. However, the polyhedral world is mysterious and there are 

more novel polyhedral solids waiting for us to explore [8, 9]. 

In 1937 [10], Goldberg proposed a mathematical method to generate a kind of 

‘multi-symmetric’ polyhedra. These so-called Goldberg polyhedra have been found as 

mathematical modes of icosahedral fullerenes science than. Then in 1971 [11], Coxeter also 

found the same operation in order to explain the structural principle of spherical viral capsids. 

Deza et al. [12, 13], recently, recalled the Goldberg-Coxeter construction to build a large 

collection of 3- and 4-valent plane graphs, while some related structural properties, such as 

zigzags and central circuits, are described in [14, 15]. They decomposed this method into some 

simpler well-known operations, such as medial, leapfrog, and k-inflation [16]. In particular, the 

chirality of fullerene can be determined during the Goldberg construction [17]. On the other hand, 

two series of extended Goldberg polyhedra [18-20] were constructed from Goldberg polyhedra, 

which preserve icosahedral symmetry and are similar to some viral capsids which abide by 

Caspar-Klug theory [3]. We also proposed two combinatorial operations to generate a kind of 

chemically potential cages based on Goldberg polyhedra [21]. 

This paper presents the Goldberg method by adding regular polygons in another point of 

view, which maintains the symmetry in the operation. In Golberg’s seminal paper [10], 

dodecahedron was used as a case to explain this symmetrical operation. According to this idea, 

we apply it to other four Platonic polyhedra and generate extended Platonic polyhedra. These 

extended Platonic polyhedra are assembled by adding hexagons and squares to Platonic solids 

and they may belong to the subset of some bifaced regular polyhedra discussed by Deza and 

Grishukin [22], but keep the symmetry of original polyhedra. Therefore, these particular bifaced 

regular polyhedral modes have already played an important role as models for chemical 

molecules [23, 24], or will also found their chemical analogues in the future.  

2. Goldberg method and Extended Dodecahedra 

In this paper, we will introduce the Goldberg method proposed in ref. [10], which consists 

of three steps: splitting, adding and assembling. In the following, the method will be explained 
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in detail by using dodecahedron as an example. 

The first step is splitting, which means to break a dodecahedron down into twelve regular 

pentagonal pieces, as shown in Figure 1.    

      
Fig. 1 The operation of breaking a dodecahedron into twelve regular pentagonal pieces. 

The second step is adding, which refers to inserting several hexagons in twelve pentagons 

of a dodecahedron in a coherent way. The fact that hexagons are added to one pentagon of a 

dodecahedron regularly is shown in Figure 2. 

 
Fig. 2 Adding hexagons to a pentagon in a coherent way. 

The third step is assembling, which indicates that assemble all twelve parts in which 

hexagons are added to pentagons regularly. For example, an extended dodecahedron of 72- 

hedron [512 660] is assembled from 12 regular pentagons of a dodecahedron to which 5 hexagons 

are added respectively. 

 
Fig. 3 The 72-hedron contains 12 pentagons and 60 hexagons. 
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The study of the Goldberg method, from Figure 1 to Figure 3, reveals two outstanding 

properties: 

(1) The resulting polyhedra are vertex regular and the degree of vertex remains unchanged 

during the construction. For example, the degree of extended dodecahedron is three, the 

same as the initial dodecahedron. 

(2) The symmetrical property of the Platonic polyhedra is one which remains unchanged when 

adding regular polygons. Given an extended dodecahedron with I or Ih, the initial pentagons 

lie on axises of rotation of order 5, while the positions of 2- and 3- fold axises are at the 

edges and centers of hexagons. 

Proposition 2.1 For any extended dodecahedra, the adding polygons are hexagons. 

Proof  Suppose that x regular y-gons are added to the dodecahedron, and then the 

extended dodecahedron will satisfy these conditions as follows: 
            x12��F                                (1) 

2
30 xyE ��                               (2) 

 
3

20 xyV ��                               (3) 

where F, E and V are the number of faces, edges and vertices respectively. 

Then plug these conditions into Euler formula:  and get 

, then and finally we can derive the 

following result: . This completes the proof. 

The adding of hexagons should follow the particular rule in accordance with the 

symmetrical restraint. The Figure 4 shows how to add hexagons around an initial pentagon. As 

shown in the figure, the adding hexagons are divided into five identical parts, where the 5-fold 

symmetry of pentagons maintains in the adding process. Likewise, Figure 5 shows the 

distribution of adding hexagons to one hexagon. The adding hexagons can be divided into six 

identical parts to make the 2-fold and 3-fold symmetry unchanged. 
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Fig. 4 The adding of hexagons around a pentagon. 

 

Fig. 5 The distribution of adding hexagons to one hexagon. 

Comparing the fact that hexagons are added to the pentagon with that hexagons are added 

to the hexagon topologically, we will find that they have the same number of hexagons in one 

part, as is shown in Figure 6. According to the above two rules, the number of hexagons can be 

calculated by considering the distribution of hexagons in a polar coordinate. The Figure 6 

shows the distribution of hexagons in each part. 

 
Fig. 6 The distribution of hexagons in one part. 
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Using  as the inclined coordinates of the vertex of a part, the square of the distance 

from the center of the part to the vertex . With the mathematical method, we can 

figure out that the number of hexagons added to a pentagon in one part is 

. Since there are five equal parts, the number of hexagons added to a 

pentagon is . Similarly, the number of hexagons added to a 

dodecahedron is  due to twelve symmetrically distributed pentagons 

and adding twelve pentagons we can easily compute that the total number of faces in this 

polyhedron is . 

 
Fig. 7 The number of faces of the extended dodecahedra. 

As shown in Figure 7, the numbers in the circles denote the number of faces of extended 

dodecahedra, which are also called “Goldberg polyhedra” somewhere else [10]. For example, 

42-, 72- and 92-hedron are shown in Figure 8. 

 
Fig. 8 Three extend dodecahedra. (a) 42, (b) 72 and (c) 92-hedron. 

Therefore, the numbers of faces F, vertices V and edges E of the polyhedra derived from 
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Goldberg’s method can be expressed as: 

2)a(10 22 ���� babF                      (4) 

)a(30 22 babE ���                       (5) 

)a(20 22 babV ���                       (6) 

If  then , or vice versa. 

3. Extended Tetrahedra 

Similar with the extended dodecahedra, the extended tetrahedra also have two properties 

as follows: 

(1) The degree of vertex of the extended tetrahedra is three. 

(2) The symmetry of the extended tetrahedra is T or Td. 

Proposition 3.1 For any extended tetrahedra, the adding polygons are hexagons. 

Proof  Suppose that x regular y-gons are added to a tetrahedron, and then the extended 

tetrahedra will satisfy these conditions as follows: 

xF �� 4                                (7) 

2
6 xyE ��                               (8) 

3
4 xyV ��                               (9) 

Plug F, E and V into Euler formula, yield , then 

 and finally we can get the following result: . This completes the proof. 

Thus, the extended tetrahedra are a kind of polyhedra that contain 3-gons and 6-gons. 

Combining the symmetrical restraint, the hexagon adding rule is same as the extended 

dodecahedra, as shown in Figure 5 and 6. The Figure 9 shows the distribution of the faces of 

hexagons in each part. It is easy to calculate that the number of hexagons added to a regular 

triangle in one part is . Since there are three equal parts, the number of 

hexagons added to a regular triangle is . The number of hexagons added 

to a tetrahedron is  because of four symmetrically distributed triangles 
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and adding the four triangles, the total number of faces in this polyhedron is 

, which is shown in Figure 9. 

 
Fig. 9 The numbers of faces of the extended tetrahedra. 

The numbers of faces F, vertices V and edges E of this type of polyhedra obtained from 

Goldberg’s method are given by: 

   2)a(2 22 ���� babF                            (10) 

)(6 22 babaE ���                              (11) 

)a4 22 babV ���                              (12) 

As an example, when , the obtained extended tetrahedron is actually truncated 

tetrahedron of Archimedean polyhedra. Some carbon-containing compounds own this structure. 

The Cn polyhedra of fullerene (or ball-shaped alkane) with hexagonal and triangular faces 

possess the highest Td symmetry [25]. They have relation with their dual polyhedra of closed 

boron hydride with 3 or 6 edges, as illustrated in Figure 10.  
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Fig. 10 The dual polyhedra of Bn and Cn with Td symmetry. 

Decahedron, hexadecahedron and icosahedron of this type of polyhedra are shown in 

Figure 11.  

 
Fig. 11 Decahedron , hexadecahedron  and icosahedrons . 

4. Extended Hexahedra 

In the case of extended hexahedra, they also have two properties as follows: 

(1) The degree of vertex of the extended hexahedra is three. 

(2) The symmetry of the extended hexahedra is O or Oh. 

Proposition 4.1 For any extended hexahedra, the adding polygons are hexagons. 

Proof  Suppose that x regular y-gons are added to a hexahedron, and then the extended  

hexahedron will satisfy these conditions as follow: 
x6��F                                  (13) 

-721-



2
12 xyE ��                                 (14) 

3
8 xyV ��                                 (15) 

Then substitute F, E and V into Euler formula, and get 

, then  and finally solving for  we get the following result: 

. This completes the proof. 

Thus, the extended hexahedra are a kind of polyhedra that contain 4-gons and 6-gons. 

Combining the symmetrical restraint, the hexagon adding rule is same as the extended 

dodecahedra, as shown in Fig 5 and 6. Therefore, the number of hexagons added to a square in 

one part is . Since there are four equal parts, the number of hexagons 

added to a square is . The number of hexagons added to a hexahedron 

is  because of 6 symmetrically distributed squares and adding the 6 

squares, the total number of faces in this polyhedron is , which is shown 

in Figure 12. 

 

Fig. 12 The numbers of faces of the extended hexahedra. 

Thus the numbers of faces F, vertices V and edges E of this type of polyhedra obtained 

from Goldberg’s method are described as 

2)a(4 22 ���� babF                          (16) 

)(12 22 babaE ���                           (17) 
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)(8 22 babaV ���                           (18) 

As an example, when , the obtained extended hexahedron is actually 

truncated octahedron of Archimedean polyhedra. Some carbon-containing compounds also 

own this structure. The Cn polyhedra of fullerene (or ball-shaped alkane) that with hexagonal 

and quadrilateral faces have the highest Oh symmetry [25]. They have relation with their dual 

polyhedra of blocked boron hydride with 4 or 6 edges, as illustrated in Figure 13. 

 

Fig. 13 The dual polyhedra of Bn and Cn with Oh symmetry. 

5. Extended Octahedra 

Goldberg [10] didn’t refer the case of adding polygons to an octahedron, instead, we find 

that the way of constructing the above three polyhedra can also be applied to octahedron. The 

difference is that the adding polygons for extended octahedra are squares, rather than hexagons. 

This is because the degree of vertex of octahedron is four. 

For the extended octahedra, they have two properties as follow: 

(1) The degree of vertex of the extended octahedra is four. 

(2) They belong to the octahedrite family [13], with the symmetry of O or Oh. 

Proposition 5.1 For any extended octahedra, the adding polygons are squares. 
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Proof  Suppose that x regular y-gons are added to a hexahedron, and then the obtained 

extended octahedra will satisfy these conditions as follow: 

   xF ��8                                     (19) 

2
12 xyE ��                                   (20) 

4
6 xyV ��                                   (21) 

Then plug F, E and V into Euler formula, and get 

, then  and finally solving for y we get the following result: 

. This completes the proof. 

Combining the symmetrical restraint, the adding of squares should follow the particular 

rule. The Figure 14 shows how to add squares around an initial triangle. As shown in the figure, 

the adding squares are divided into three identical parts, which the 3-fold symmetry of 

pentagons maintains in the adding process. Likewise, the Figure 15 shows the distribution of 

adding squares to one square. The adding squares can be divided into four identical parts to 

make the 2-fold and 4-fold symmetry unchanged. Accordingly, the extended octahedra keep the 

symmetry of octahedra, O or Oh. Similarly, comparing the fact that hexagons are added to the 

regular triangle with that hexagons are added to the hexagon topologically, we will find that 

they have the same number of hexagons in one part. Accordingly, the number of squares can 

also be calculated by considering the distribution of squares in a polar coordinate. The Figure 

16 shows the distribution of squares in each part. As such, we can calculate that the number of 

squares added to a triangle in one part is . Since there are three equal parts, the 

number of squares added to a triangle is . The number of squares added to an 

octahedron is  because of eight symmetrically distributed triangles and adding 

the eight triangles, the total number of faces in this polyhedron is , which is 

shown in Figure 17. 
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Fig. 14 The distribution of adding squares to one triangle regularly. 

 

Fig. 15 The distribution of adding squares to one square regularly. 

 

Fig. 16 The distribution of squares in one part. 
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Fig. 17 The numbers of faces of the extended octahedra. 

The numbers of faces F, vertices V and edges E of this type of polyhedra obtained from 

Goldberg’s method are described as  

 2)(6 22 ��� baF                        (22) 

 )a(12 22 bE ��                         (23) 

   )(6 22 baV ��                          (24) 

 
Fig. 18 Parallelogram faces of AgO4 radical from 26-hedron. 
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As an example, when , the obtained extended octahedra are actually 

cuboctahedron of Archimedean polyhedra. Cluster nucleus atoms in transition-metal cluster 

compound form similar tetrakaidecahedron [4638], such as [Rh13H2(CO)24][P(CH2Ph)Ph3]3. If a 

= b = 2, then the resulting 26-hedron is rhombicuboctahedron of Archimedean polyhedra. 

Ag6O8 in crystal of Ag(Ag6O8)NO3 is similar to these structure in which Ag ion and O atoms 

make parallelogram faces of AgO4 radical by dsp2 hybridized orbit. These parallelogram faces 

form 26-hedron [418 38] by shared vertices, which is shown in Fig. 18. 

6. Applying Goldberg method to Icosahedron 

Unfortunately, we find that Goldberg method can’t be applied to the icosahedron. It is 

assumed that Goldberg method be used in the icosahedron and the resulting polyhedra will 

satisfy these properties. 

(1) The degree of vertex of this type of polyhedra is five. 

(2) The symmetry of this type of polyhedra is I or Ih. 

Supposing that x regular y-gons are added to an icosahedron, then the resulting polyhedron 

will satisfy these conditions as follow:                    

 x20��F                             (25) 

2
30 xyE ��                            (26) 

5
12 xyV ��                            (27) 

Substitute F, E and V into Euler formula, and get 

, then  and finally solving for y we get the following result: 

. It means that polygons of a single type can’t be added to the icosahedron according 

to Goldberg method. 

7. Conclusion 

Research on the Goldberg method based on dodecahedron reveals three construction steps: 

splitting, adding and assembling. This method can be applied to other Platonic polyhedra of 
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regular tetrahedron, regular hexahedron and regular octahedron, but except regular icosahedron. 

Therefore, the extended tetrahedra, extended hexahedra and extended octahedra are proposed. 

According to their construction method and structures, we deduced their growth law and cited 

some actual examples of molecules in various disciplines. Although these polyhedra have been 

partly discussed in pervious works, our work indicates that the combination of Goldberg 

method for polyhedra and chemistry can be extended into a number of new areas for theories 

and methods in structural chemistry, and enrich the study of topological stereochemistry and be 

widely used in many fields. 
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