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Abstract

The extended superposition method, which has been developed by us as an extension

of the concept of elementary superposition (S. Fujita, Theor. Chim. Acta, 82, 473–498

(1992)), is applied to enumeration of cubane derivatives with chiral and achiral proli-

gands. This method provides us with a tool for evaluating the respective contribution of

each USCI-CF (unit subduced-cycle index with chirality fittingness) to the corresponding

CI-CF (cycle index with chirality fittingness), which is in turn calculated by means of the

proligand method, the markaracter method, the characteristic-monomial method or others.

The extended superposition method does not require generating functions but requires cycle

indices (CI) for regular and irregular cases, which depend upon permutational features of

chiral and/or achiral (pro)ligands. Calculated values by the extended superposition method

are clarified to be identical with those obtained in terms of generating functions. Effects

of chiral proligands (as three-dimensional structures) on the numbers of cubane derivatives

are detailedly compared with those of the corresponding graphs (as two-dimensional con-

stitutions).
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1 Introduction
As discussed in Parts I–III of this series reported in this journal, gross enumerations by the

proligand method [1–3], the markaracter method [4, 5], and the characteristic monomial method

[6–8] are based on generating functions, which are derived from cycle indices (CIs) or cycle

indices with chirality fittingness (CI-CFs) during their practical calculations of isomer numbers.

Although such calculations using generating functions are convenient to obtain whole results

enumerated for every constitutions, there are many cases in which only specified calculations

for given constitutions are necessary to be examined.

For the purpose of conducting such specified calculations, we have proposed the concept

of elementary superposition [9, Chapter 18], which allows us to obtain isomer numbers with

given constitutions, where the numbers are itemized with respect to point-group symmetries of

isomers. The first version of elementary superposition based on unit subduced cycle indices

(USCIs) [10] has been extended to be capable of treating cases in which unit subduced cycle

indices with chirality fittingness (USCI-CFs) are applied to enumeration of three-dimensional

structural isomers [11]. On a similar line to the degenerate derivation of the markaracter method

from the USCI method (cf. Part II of this series), the elementary superposition method for treat-

ing USCIs has been degenerated into the superposition method for treating CIs [10], which has

been proven to be equivalent to the methods developed by Redfield [12] and Read [13, 14]. An

extended version of the superposition method for dealing with CI-CFs has been also developed

by starting from USCI-CFs [11]. We here call this version the extended superposition method,

because this method is capable of treating both chiral and achiral (pro)ligands.

The purpose of the present series is to compare various methods of combinatorial enumera-

tion, where we use the cubane skeleton of high symmetry (Oh) as a common starting structure

and we emphasize 3D structures of enumerated isomers as well as those of ligands to be sub-

stituted. In this paper, the extended superposition method is applied to isomer enumerations of

cubane derivatives, where both achiral and chiral ligands (more abstractly, proligands) are taken

into consideration after introducing chirality fittingness. Thereby, the versatility of the extended

superposition method is emphasized even in the cubane skeleton of high symmetry (Oh).

2 Methods Based on Generating Functions
This section is devoted to generate cycle indices with chirality fittingness (CI-CFs), which are

used for the extended superposition method as well as for other methods based on generating

functions. Enumeration data for comparison are also given by using the other methods based

on generating functions, although the full data have been reported previously in Part I of this

series.

2.1 CI-CFs for Enumerating Cubane Derivatives
Let us consider derivation of 3D structural isomers by starting from a cubane skeleton of Oh-

symmetry, where the numbering of the eight positions is shown in 1 (Figure 1).

By applying either one of the proligand method (cf. Part I), the markaracter method (cf.

Part II), the characteristic monomial method (cf. Part III), and other methods supported by the

USCI approach [9], we are able to obtain the following cycle indices with chirality fittingness

(CI-CFs) for calculating the total number of 3D structural isomers (Eq. 1), the number of achiral
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Figure 1: Numbering of the eight positions of cubane (1)

derivatives (Eq. 2), and the number of enantiomeric pairs of chiral derivatives (Eq. 3):
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where the symbol $d denotes a sphericity index, which is selected from ad for a homospheric

case, bd for a hemispheric case, and cd for an enantiospheric case. It should be noted that each

monomial contained in these CI-CFs is a subduced cycle index with chirality fittingness (SCI-

CF), which is generally a product of USCI-CFs in accord with orbits (equivalence classes) of

substitution positions of a given skeleton. Because the cubane skeleton (1) to be discussed in the

present article contains a single orbit of eight substitution positions, each SCI-CF is identical

with the corresponding USCI-CF.

2.2 Generating Functions for Enumerating Cubane Derivatives
Suppose that substituents are selected from an inventory of proligands:

L = {H,A,W,X,Y,Z; p,p; q,q}, (4)

where H, A, W, X, Y, and Z are achiral proligands in isolation, while p, q, p, and q are chiral

proligands in isolation. The pair of a letter (e.g., p) and its overlined counterpart (e.g., p)

represents an enantiomeric pair.

First, let us briefly examine the three methods based on generating functions: i.e., Theorem 1

of [1] for the proligand method (cf, Part I), Theorem 1 of Part II for the markaracter method (the

CI-CF version of Theorem 5 of [5] for CI), or Theorem 4 of [8] for the characteristic monomial

method (cf. Part III). As shown in Prat I of this series, the ligand inventory L generates the

following inventory functions:

ad = Hd +Ad +Wd +Xd +Yd +Zd (5)

bd = Hd +Ad +Wd +Xd +Yd +Zd +pd +pd +qd +qd (6)

cd = Hd +Ad +Wd +Xd +Yd +Zd +2pd/2pd/2 +2qd/2qd/2. (7)

They are introduced into Eq. 1 to give a generating function:

-671-



g = H8 +H7A+H7W+H7X+H7Y+H7Z+
1

2
(H7p+H7p)

+
1

2
(H7q+H7q)+3H6A2 +3H6AW+3H6AX+3H6AY+3H6AZ+ · · ·

+
3

2
(H6Ap+H6Ap)+

3

2
(H6Aq+H6Aq)+3H6W2 +3H6WX+ · · ·

+
7

2
(H5Ap2 +H5Ap2)+9H5App+7(H5Apq+H5Apq)+ · · ·

+11(H4A2p2 +H4A2p2)+23H4A2pp+ · · · , (8)

where the coefficient of each term HhAaWwXxYyZzppppqqqq represents the number of cubane

derivatives as 3D-structural isomers having h of H, a of A, w of W, x of X, y of Y, z of Z, p of

p, p of p q of q, and q of q. Such a mode of substitution can be represented by a substitution

pattern [h,a,w,x,y,z; p, p,q,q], where we can presume h ≥ a ≥ w ≥ x ≥ y ≥ z; p ≥ q, p ≥ p,

and q ≥ q without loosing generality.

The isomer numbers can be itemized into achiral and chiral derivatives by using Eqs. 2 and

3. As for practical calculations based on generating functions and results reported in tabular

forms, see Parts I and II of this series.

3 Elementary Superpositions
The crux of the extended superposition is to evaluate each monomial (i.e., SCI-CF) contained in

a CI-CF independently, where the SCI-CF is in turn derived from USCI-CFs. This independent

evaluation is permitted by the concept of elementary superpositions [11].

3.1 Regular Ligand Partitions
The term regular ligand partition [11] has been coined to refer to a substitution pattern in which

chiral ligands appear pairwise to form an enantiotopic pair, e.g.,

[θ ]1 = [5,1,0,0,0,0;1,1,0,0], (9)

which corresponds to the formula H5App. Such regular cases require Eqs. 62 and 63 of [11],

which are calculated to treat the present regular case of [θ ]1:

H = S[5]⊗S[1]⊗ S̃ [1] (10)

H′ = S[5]⊗S[1]⊗S [1]⊗S [1], (11)

where the symbol S[n] denotes a symmetric group of degree n, the symbol S̃ [n] denotes a sym-

metric group for treating the pairwise behavior of pnpn, and the symbol S [n] denotes a sym-

metric group for treating a separate behavior of pn and pn.

On the basis of Eqs. 10 and 11, extended cycle indices defined by Eqs. 64 and 65 of [11] are

calculated as follows to treat the present case of the substitution pattern [θ ]1 (Eq. 9):

CI(H,sd,cd) =
1

120
(s5

1 +15s1s2
2 +20s2

1s3 +10s3
1s2 +20s2s3 +30s1s4 +24s5)× s1 × c2
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=
1

120
(s6

1c2 +15s2
1s2

2c2 + · · ·) (12)

CI(H′,sd,bd) =
1

120
(s5

1 +15s1s2
2 +20s2

1s3 +10s3
1s2 +20s2s3 +30s1s4 +24s5)× s1 ×b2

1

=
1

120
(s6

1b2
1 +15s2

1s2
2b2

1 + · · ·), (13)

where monomials unnecessary in the following discussion are omitted for the sake of brevity.

The elementary superposition of each monomial (SCI) in the CI-CF (Eq. 1) by one of the

extended cycle indices (Eq. 12 or Eq. 13) results in the evaluation of the number of the fixed

isomers, where Eq. 12 is applied to each monomial (i.e., each of the top four monomials in Eq.

1) corresponding to an achiral cyclic group (or an improper rotation), while Eq. 13 is applied

to each monomial (i.e., each of the last four monomials in Eq. 1) corresponding to a chiral

cyclic group (or a proper rotation). In other words, Eq. 12 is applied to each monomial of the

CI-CF captaining sphericity indices ad’s and/or cd’s. while Eq. 13 is applied to each monomial

captaining sphericity indices bd’s only.

It should be noted that, during the process of the elementary superposition, the cycle struc-

tures of monomials in Eq. 12 or Eq. 13 are selected to be consistent with that of the monomial

at issue. The ∗© operation has been defined to formulate the procedure described above more

concisely, so as to give Theorem 4 (the elementary superposition with chirality fittingness) in

[11]. Briefly speaking, the ∗© operation is concerned with the separate applications of Eq. 12

and of Eq. 13, as described above.

As for the monomial b8
1 in the CI-CF (Eq. 1), the monomial s6

1b2
1 of Eq. 13 is selected

because s1 is compatible with b1. According to Lemma 2 of [11], we can evaluate the following

value:
1

120
× (18 ×8!) = 336, (14)

which shows the contribution of the monomial b8
1 to the total isomer number to be calculated.

The remaining monomials containing bd are evaluated to give zero values. On the other hand,

the monomial a4
1c2

2 in the CI-CF (Eq. 1) matches with the monomial s4
1s2c2 of Eq. 13, because

s1 is compatible with a1 as well as s2 is compatible with c2. According to Lemma 3 of [11], we

can evaluate the following value:

1

120
×10× (14 ×4!)× (22 ×2!) = 16. (15)

The remaining monomials containing ad and/or cd are evaluated to give zero values. Thereby,

we obtain the following row vector,

(336,0,0,0,0,0,16,0), (16)

in which each term represents the number of fixed isomers with respect to the corresponding

cyclic group (or to the corresponding Q-conjugacy class). Such a row vector is here called a
fixed ligand vector.

Then, Theorem 6 (the superposition with chirality fittingness) of [11] is applied to the vector

(Eq. 16) and the CI-CF (Eq. 1) to evaluate the number (B[θ ]1) of isomers having the formula

H5App or the partition [θ ]1:

B[θ ]1 =
1

48
×336+

1

8
×16 = 7+2 = 9. (17)
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The value B[θ ]1 = 9 is equal to the coefficient of the term H5App in the right-hand side of the

generating function (Eq. 8).

On a similar line, the elementary superposition of Eq. 12 (no effect of Eq. 13) onto the

CI-CF(a) represented by Eq. 2, so as to give the number (B(a)
[θ ]1

) of achiral derivatives:

B(a)
[θ ]1

=
1

4
×16 = 4, (18)

where the value 16 is concerned with the monomial a4
1c2

2 of the CI-CF(a) and obtained in a

similar way to Eq. 15.

The elementary superposition of Eqs. 12 and 13 onto the CI-CF(e) (Eq. 3) gives the number

(B(e)
[θ ]1

) of enantiomeric pairs of chiral derivatives:

B(e)
[θ ]1

=
1

48
×336− 1

8
×16 = 7−2 = 5, (19)

which is obtained by changing the plus sign of Eq. 17 into minus. Obviously, we have:

B(a)
[θ ]1

+B(e)
[θ ]1

= B[θ ]1 . (20)

3.2 Irregular Ligand Partitions
Such a ligand partition as represented by

[θ ]2 = [5,1,0,0,0,0;1,0,1,0], (21)

which corresponds to the formula H5Apq, is referred to as an irregular ligand partition accord-

ing to [11]. Because this partition is concerned with a chiral case, only H′ is used to examine

elementary superposition. Hence, Eq. 13, which can be also used to treat the present irregular

case, is superposed onto Eq. 1, where the monomial b8
1 of Eq. 1 is compatible with the monomial

s6
1b2

1 of Eq. 13 to give
1

120
× (18 ×8!) = 336. (22)

Because the other monomials of Eq. 13 give zero values, we obtain the following fixed ligand

vector as a row vector,

(336,0,0,0,0,0,0,0), (23)

in which each term represents the number of fixed isomers with respect to the corresponding

cyclic group (or to the corresponding Q-conjugacy class). Then, Theorem 6 (the superposition

with chirality fittingness) of [11] is applied to the vector (Eq. 23) and the CI-CF (Eq. 1), so as

to evaluate the number (B[θ ]2) of isomers having the formula H5Apq or the partition [θ ]2:

B[θ ]2 =
1

48
×336 = 7. (24)

Strictly speaking, the value B[θ ]2 = 7 corresponds to the formula of H5Apq. Obviously, the same

calculation should be done for the formula H5Apq (or [5,1,0,0,0,0;0,1,0,1]). It follows that

this value corresponds to the term 7(H5Apq + H5Apq) in the right-hand side of the generating

function (Eq. 8). This means that there are 14 enantiomeric pairs because of 14× 1
2(H5Apq +
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H5Apq). Note that each pair of enantiomers, e.g., H5Apq/H5Apq, is counted once so that the

combined term 1
2(H5Apq + H5Apq) corresponds to one pair of enantiomers.

When Eq. 13 is superposed onto Eq. 2, there emerge no monomials to be considered. Hence,

the number (B(a)
[θ ]2

) of achiral derivatives is evaluated to be zero:

B(a)
[θ ]2

= 0. (25)

Eq. 13 is superposed onto Eq. 3, so as to give the half number (B(e)
[θ ]2

) of enantiomeric pairs

of chiral derivatives:

B(e)
[θ ]2

=
1

48
×336 = 7, (26)

which is equal to Eq. 24 because of Eq. 25. Note that this value should be duplicated to give 14

enantiomeric pairs because of 14× 1
2(H5Apq + H5Apq).

In order to check the validity of such duplication for the number of enantiomeric pairs, let

us next examine another case of an irregular ligand partition:

[θ ]3 = [5,1,0,0,0,0;2,0,0,0], (27)

which corresponds to the formula H5Ap2 (or H5Ap2). Eq. 63 of [11] is used to treat such an

irregular case:

H′ = S[5]⊗S[1]⊗S [2], (28)

where the symbol S[n] denotes a symmetric group of degree n and the symbol S [n] denotes a

symmetric group for treating a separate behavior of pn and pn.

On the basis of Eq. 28, an extended cycle index defined by Eq. 65 of [11] is calculated as

follows to treat the present irregular case:

CI(H′,sd,bd) =
1

120
(s5

1 +15s1s2
2 +20s2

1s3 +10s3
1s2 +20s2s3 +30s1s4 +24s5)

×s1 × 1

2
(b2

1 +b2)

=
1

120
× 1

2
× (s6

1b2
1 +15s2

1s2
2b2

1 + · · ·+ s6
1b2 +15s2

1s2
2b2 + · · ·), (29)

where monomials unnecessary in the following discussion are omitted for the sake of brevity.

The monomial b8
1 in the CI-CF (Eq. 1) is compatible to the monomial s6

1b2
1 of Eq. 29. Hence

the corresponding elementary superposition is calculated as follows:

1

120
× 1

2
× (18 ×8!) = 168. (30)

The remaining monomials are evaluated to give zero values. Thereby, we obtain the following

fixed ligand vector:

(168,0,0,0,0,0,0,0), (31)

each term of which represents the number of fixed isomers with respect to the corresponding

cyclic group (or to the corresponding Q-conjugacy class). Then, Theorem 6 (the superposition

with chirality fittingness) of [11] is applied to the vector (Eq. 31) and the CI-CF (Eq. 1) to

evaluate the number (B[θ ]3) of isomers having the formula H5Ap2 or the partition [θ ]3:

B[θ ]3 =
1

48
×168 =

7

2
. (32)

-675-



This value corresponds to the term 7
2(H

5Ap2 +H5Ap2) which appears in in the right-hand side

of the generating function (Eq. 8). This means that there are 7 enantiomeric pairs because the

term should be considered to be 7× 1
2(H5Apq + H5Apq).

4 Elementary Superpositions vs. Generating Functions
This section is devoted to compare elementary superpositions with generating functions as tools

of evaluating fixed ligand vectors.

4.1 Fixed Ligand Vectors Due to Elementary Superpositions
As an illustrative example, let us examine a regular ligand partition represented as follows:

[θ ]4 = [4,2,0,0,0,0;1,1,0,0], (33)

which corresponds to the formula H4A2pp. Such a regular case requires Eqs. 62 and 63 of [11],

which are calculated to treat the present regular case of [θ ]4:

H = S[4]⊗S[2]⊗ S̃ [1] (34)

H′ = S[4]⊗S[2]⊗S [1]⊗S [1], (35)

where the symbols are used in the same meanings as presented in Eqs. 10 and 11. On the basis

of Eqs. 34 and 35, extended cycle indices defined by Eqs. 64 and 65 of [11] are calculated as

follows to treat the present case of [θ ]4:

CI(H,sd,cd) =
1

24
(s4

1 +6s2
1s2 +3s2

2 +8s1s3 +6s4)× 1

2
(s2

1 + s2)× c2

=
1

24
× 1

2
(· · ·+3s3

2c2 +7s4
1s2c2 + · · ·) (36)

CI(H′,sd,bd) =
1

24
(s4

1 +6s2
1s2 +3s2

2 +8s1s3 +6s4)× 1

2
(s2

1 + s2)×b2
1

=
1

24
× 1

2
(· · ·+ s6

1b2
1 + · · ·), (37)

where monomials unnecessary in the following discussion are omitted for the sake of brevity.

Note that the term 7s4
1s2c2 in Eq. 36 is generated from (6s2

1s2)(s2
1)(c2) plus (s4

1)(s2)(c2).
According to Lemma 2 or 3 of [11], the elementary superposition of each monomial in the

CI-CF (Eq. 1) by either one of the extended cycle indices (Eq. 36 or Eq. 37) results in the

evaluation of the number of the fixed isomers:

s6
1b2

1 (Eq. 37) onto b8
1 :

1

24
× 1

2
× (18 ×8!) = 840 (38)

s3
2c2 (Eq. 36) onto c4

2 :
1

24
× 1

2
× (24 ×4!)×3 = 24 (39)

s4
1s2c2 (Eq. 36) onto a4

1c2
2 :

1

24
× 1

2
× (14 ×4!)× (22 ×2!)×7 = 28. (40)

The remaining monomials are evaluated to give zero values. Thereby, we obtain the following

fixed ligand vector:

(840,0,0,0,24,0,28,0). (41)

-676-



Then, Theorem 6 of [11] is applied to the vector (Eq. 41) and the CI-CF (Eq. 1) to evaluate the

number (B[θ ]4) of isomers having the formula H4A2pp or the partition [θ ]4:

B[θ ]4 =
1

48
×840+

1

12
×24+

1

8
×28 =

35

2
+2+

7

2
= 23. (42)

The value B[θ ]1 = 23 is equal to the coefficient of the term H4A2pp in the right-hand side of the

generating function (Eq. 8).

On a similar line, the elementary superposition of Eq. 36 (no effect of Eq. 37) onto the

CI-CF(a) (Eq. 2), so as to give the number (B(a)
[θ ]4

) of achiral derivatives:

B(a)
[θ ]4

=
1

6
×24+

1

4
×28 = 4+7 = 11. (43)

On the other hand, the elementary superposition of Eqs. 36 and 37 onto the CI-CF(e) (Eq.

3) gives the number (B(e)
[θ ]4

) of enantiomeric pairs of chiral derivatives:

B(e)
[θ ]4

=
1

48
×840− 1

12
×24− 1

8
×28 =

35

2
−2− 7

2
= 12. (44)

Among 23 derivatives (Eq. 42) of the formula H4A2pp ([4,2,0,0;1,1,0,0]), 11 achiral deriva-

tives calculated as Eq. 43 are illustrated in Fig. 2. Among the 11 achiral derivatives illustrated

in Fig. 2, each isolated derivative (e.g., 2) is characterized by a Type IV stereoisogram [15]. On

the other hand, each pair surrounded by a frame (e.g., 3 and 4) is in an RS-diastereomeric rela-

tionship. Such an RS-diastereomeric relationship is characterized by a Type V stereoisogram,

which represents a generalized case of pseudoasymmetry [15].

Twelve enantiomeric pairs of chiral derivatives calculated as Eq. 44 are illustrated in Fig.

3. Among the 12 enantiomeric pairs of chiral derivatives (Fig. 3), two pairs surrounded by

each frame (e.g., 13a/13b and 14a/14b) are stereoisomeric (more specifically speaking, RS-

stereoisomeric) to each other, where they are characterized by a Type III stereoisogram [15]. On

the other hand, each enantiomeric pair surrounded by a frame (e.g., 21a/21b) is characterized

by a Type II stereoisogram [15].

4.2 Fixed Ligand Vectors Due to Generating Functions
The CI-CF (Eq. 1) is characterized by the formal row vector of USCI-CFs (unit subduced cycle

indices with chirality fittingness):

(b8
1,b

4
2,b

2
1b2

3,b
2
4,c

4
2,c2c6,a4

1c2
2,c

2
4), (45)

which appear in the Oh(/C3v)-row of the non-dominant USCI-CF table discussed in Part II of

this series, i.e., b8
1 for C1, b4

2 for C2 and C′
2, b2

1b2
3 for C3, b2

4 for C4, c4
2 for Cs and Ci, c2c6 for

C3i, a4
1c2

2 for C′
s, and c2

4 for S4.

An alternative way of calculating a fixed ligand vector is to introduce Eqs. 5–7 into the

USCI-CFs listed in Eq. 45. The resulting generating functions contain values as the coefficients

of monomials to be considered. Among them, non-zero terms necessary to the present case are

listed as follows:

b8
1 : 840H4A2pp (46)

c4
2 : 24H4A2pp (47)

a4
1c2

2 : 28H4A2pp (48)
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Figure 2: Achiral cubane derivatives with H4A2pp ([4,2,0,0;1,1,0,0])

Thereby, we obtain the following fixed ligand vector,

(840,0,0,0,24,0,28,0), (49)

which is identical with Eq. 41, so that the same result as Eq. 42 is alternatively obtained.

5 Ligands as 3D Structures vs. as Graphs

5.1 Stereoisomeric Chiral Proligands
From a stereochemical point of view, the derivatives of the formula H4A2pp have stereoisomers

of the formula H4A2p2 (or H4A2p2), which is represented by an irregular ligand partition:

[θ ]5 = [4,2,0,0,0,0;2,0,0,0]. (50)

According to Eq. 63 of [11], we obtain the following equation:

H′ = S[4]⊗S[2]⊗S [2], (51)
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Figure 3: Chiral cubane derivatives with H4A2pp ([4,2,0,0;1,1,0,0])
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where the symbols are used in the same meanings as presented in Eqs. 10 and 11. On the basis

of Eq. 51, an extended cycle index defined by Eq. 65 of [11] is calculated as follows to treat the

present case of [θ ]5:

CI(H′,sd,bd) =
1

24
(s4

1 +6s2
1s2 +3s2

2 +8s1s3 +6s4)× 1

2
(s2

1 + s2)× 1

2
(b2

1 +b2)

=
1

24
× 1

2
× 1

2
(s6

1b2
1 +3s3

2b2 + · · ·), (52)

where monomials unnecessary in the following discussion are omitted for the sake of brevity.

According to Lemma 2 of [11], the elementary superposition of each monomial in the CI-

CF (Eq. 1) by the extended cycle index (Eq. 52) results in the evaluation of the number of the

fixed isomers:

s6
1b2

1 (Eq. 52) onto b8
1 :

1

24
× 1

2
× 1

2
× (18 ×8!) = 420 (53)

s3
2b2 (Eq. 52) onto b4

2 :
1

24
× 1

2
× 1

2
× (24 ×4!)×3 = 12. (54)

The remaining monomials are evaluated to give zero values. Thereby, we obtain the following

fixed ligand vector as a row vector,

(420,12,0,0,0,0,0,0). (55)

Then, Theorem 6 of [11] is applied to the vector (Eq. 55) and the CI-CF (Eq. 1) to evaluate the

number (B[θ ]5) of isomers having the formula H4A2p2 or the partition [θ ]5:

B[θ ]5 =
1

48
×420+

3

16
×12 =

35

4
+

9

4
= 11. (56)

The value B[θ ]5 = 11 is equal to the coefficient of the term 11(H4A2p2 + H4A2p2) in the right-

hand side of the generating function (Eq. 8). Note that the partition [θ ]5 is paired with the

partition [θ ]′5 = [4,2,0,0,0,0;0,2,0,0] corresponding to H4A2p2. This means the presence of

22 enantiomeric pairs because of 11×1
2(H4A2p2 + H4A2p2). Obviously, we obtain B(a)

[θ ]5
= 0 for

the number of achiral derivatives and B(e)
[θ ]5

= 11 for the number of enantiomeric pairs.

Among the 22 enantiomeric pairs H4A2p2/H4A2p2, 8 pairs are illustrated in Fig. 4, where

they are collected to show their stereoisomeric relationships to achiral cubane derivatives of

H4A2pp collected in Fig. 2. Structural formulas surrounded in each frame are stereoisomeric to

each other. More strictly speaking, they construct a degenerate quadruplet of RS-stereoisomers,

which is specified by a Type II stereoisogram [15].

Among the 22 enantiomeric pairs H4A2p2/H4A2p2, the remaining 14 pairs are illustrated

in Fig. 5, where they are collected to show their stereoisomeric relationships to enantiomeric

pairs of cubane derivatives of H4A2pp, which are collected in Fig. 3. Structural formulas sur-

rounded in each frame are stereoisomeric to each other. More strictly speaking, they construct

a (degenerate) quadruplet of RS-stereoisomers, which is specified by a Type III (or Type II)

stereoisogram [15].

5.2 Chiral Proligands as Graphs
When the derivatives of the formula H4A2pp and H4A2p2 (or H4A2p2) are considered to be

stereoisomers, the proligands p and p are regarded as a graph which has 2D constitutions, where
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Figure 4: Enantiomeric pairs of chiral cubane derivatives with H4A2p2 ([4,2,0,0;2,0,0,0]) and

H4A2p2 ([4,2,0,0;0,2,0,0]). To be continued.

the symbol p̂ denotes such a graph corresponding to p and p. Then, let us count derivatives of

the formula H4A2p̂2, which corresponds to a regular ligand partition:

[θ ]6 = [4,2,2,0,0,0;0,0,0,0], (57)

because the graph p̂ can be regarded as an achiral proligand. To treat proligands as graphs, Eqs.

62 and 63 of [11] are degenerated to give the following group:

H = H′ = S[4]⊗S[2]⊗S[2], (58)

where the symbols are used in the same meanings as presented in Eqs. 10 and 11. On the basis

of Eq. 58, extended cycle indices defined by Eqs. 64 and 65 of [11] are calculated to give a

degenerate CI as follows:

CI(H,sd) = CI(H′,sd)

=
1

24
(s4

1 +6s2
1s2 +3s2

2 +8s1s3 +6s4)×
(

1

2
(s2

1 + s2)

)2
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Figure 5: Enantiomeric pairs of chiral cubane derivatives with H4A2p2 ([4,2,0,0;2,0,0,0]) and

H4A2p2 ([4,2,0,0;0,2,0,0]). Continued.
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=
1

24
(s4

1 +6s2
1s2 +3s2

2 +8s1s3 +6s4)× 1

2
× 1

2
(s4

1 +2s2
1s2 + s2

2)

=
1

24
× 1

2
× 1

2
(s8

1 +3s4
2 +16s4

1s2
2 + · · ·), (59)

where monomials unnecessary in the following discussion are omitted for the sake of brevity.

Note that the term 16s4
1s2

2 is generated by (s4
1)(s

2
2) + (6s2

1s2)(2s2
1s2) + (3s2

2)(s
4
1).

According to Lemmas 2 and 3 of [11], the elementary superposition of each monomial in

the CI-CF (Eq. 1) by the extended cycle index (Eq. 59) results in the evaluation of the number

of the fixed isomers:

s8
1 (Eq. 59) onto b8

1 :
1

24
× 1

2
× 1

2
× (18 ×8!) = 420 (60)

s4
2 (Eq. 59) onto b4

2 :
1

24
× 1

2
× 1

2
× (24 ×4!)×3 = 12 (61)

s4
2 (Eq. 59) onto c4

2 :
1

24
× 1

2
× 1

2
× (24 ×4!)×3 = 12 (62)

s4
1s2

2 (Eq. 59) onto a4
1c2

2 :
1

24
× 1

2
× 1

2
× (14 ×4!)× (22 ×2!)×16 = 32. (63)

The remaining monomials are evaluated to give zero values. Thereby, we obtain the following

fixed ligand vector as a row vector,

(420,12,0,0,12,0,32,0). (64)

Then, Theorem 6 of [11] is applied to the vector (Eq. 64) and the CI-CF (Eq. 1) to evaluate the

number (B[θ ]6) of isomers having the formula H4A2p̂2 or the partition [θ ]6:

B[θ ]6 =
1

48
×420+

3

16
×12+

1

12
×12+

1

8
×32 =

35

4
+

9

4
+1+4 = 16. (65)

Comparison between Figs. 2 and 4 provides 8 sets of stereoisomers, i.e.,

{2; 25a/25b}, {3, 4; 26a/26b}, {5, 6; 27a/27b}, {7; 28a/28b},

{8; 29a/29b}, {9, 10; 30a/30b}, {11; 31a/31b}, and {12; 32a/32b}.

On the other hand, comparison between Figs. 3 and 5 provides 8 sets of stereoisomers, i.e.,

{13a/13b, 14a/14b; 33a/33b, 34a/34b}, {15a/15b, 16a/16b; 35a/35b, 36a/36b},

{17a/17b, 18a/18b; 37a/37b, 38a/38b}, {19a/19b, 20a/20b; 39a/39b, 40a/40b},

{21a/21b; 41a/41b}, {22a/22b; 42a/42b, 43a/43b},

{23a/23b; 44a/44b}, {24a/24b; 45a/45b, 46a/46b}.

Hence, there totally appear 16 sets of stereoisomers in accord with the value calculated by Eq.

65. These results clearly demonstrate effects without and with chirality fittingness, i.e., graphs

vs. 3D structures for proligands.

6 Preliminary Desymmetrizations of Skeletons
When a starting skeleton has a high symmetry as shown in the present case 1 (Figure 1) of

Oh, it is sometimes troublesome to verify enumeration results. Preliminary desymmetrization
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Figure 6: Cubane skeletons substituted preliminarily by p and p

of the skeleton provides us with a convenient way of doing such verification, where partially

substituted skeletons are taken into consideration. To check the data illustrated in Figs. 2 and

3, let us start from three skeletons (47–49) shown in Fig. 6, in which p and p are preliminarily

substituted.

Point-group symmetries for 47–49 are shown in Fig. 6. By the substitution of the proligands

p and p, the remaining six positions of each desymmetrized skeleton are restricted to be divided

into several orbits (equivalence classes), which are controlled by coset representations of its

point-group symmetry. For example, the six positions of 47 are divided into five orbits:

{3,8},{1},{4},{6}, and {7}. (66)

which are controlled by a set of coset representations:

Cs(/C1)+4Cs(/Cs). (67)

Thereby, a CI-CF for total enumeration is calculated as follows:

CI-CF(Cs,$) =
1

2
(b6

1 +a4
1c2), (68)

which is listed in the bottom part of Fig. 6. Note that the monomial (SCI-CF) b6
1 is calculated

from USCI-CFs of the 5 component orbits, i.e., (b2
1)(b1)(b1)(b1)(b1), while the monomial (SCI-

CF) a4
1c2 stems from (c2)(a1)(a1)(a1)(a1). Similarly, the CI-CF(a) for enumerating achiral

derivatives and the CI-CF(e) for enumerating enantiomeric pairs are calculated as shown in the

bottom part of Fig. 6. This procedure is repeated to examine 48 and 49, giving CI-CFs, CI-

CF(a)s, and CI-CF(e)s, which are also collected in the bottom part of Fig. 6.

Because p and p are already placed, four H’s and two A’s are taken into consideration as

achiral proligands so that Eqs. 62 and 63 of [11] are degenerated to give the following group:

H = H′ = S[4]⊗S[2], (69)

where the symbols are used in the same meanings as presented in Eqs. 10 and 11. On the basis

of Eq. 69, extended cycle indices defined by Eqs. 64 and 65 of [11] are calculated to give a
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degenerate CI as follows:

CI(H,sd) = CI(H′,sd)

=
1

24
(s4

1 +6s2
1s2 +3s2

2 +8s1s3 +6s4)× 1

2
(s2

1 + s2)

=
1

24
× 1

2
(s6

1 +3s3
2 +7s4

1s2 + · · ·), (70)

where monomials unnecessary in the following discussion are omitted for the sake of brevity.

According to Lemmas 2 and 3 of [11], the elementary superposition of each monomial in

the CI-CF of 47 (Eq. 68 or in the bottom part of Fig. 6) by the extended cycle index (Eq. 70)

results in the evaluation of the number of the fixed isomers:

s6
1 (Eq. 70) onto b6

1 :
1

24
× 1

2
× (16 ×6!) = 15 (71)

s4
1s2 (Eq. 70) onto a4

1c2 :
1

24
× 1

2
× (14 ×4!)× (2×1!)×7 = 7 (72)

Then, Theorem 6 of [11] is used to give

1

2
×15+

1

2
×7 = 11 (73)

which denotes the total number of cubane derivatives of H4A2 (or fully H4A2pp) by starting

from the p,p-substituted skeleton 47. This value is alternatively obtained by introducing

ad = bd = cd = Hd +Ad (74)

into the CI-CF of 47 (Eq. 68 or in Fig. 6), where the resulting generating function contains

the term 11H4A2 as indicating after the CI-CF at issue in Fig. 6. Similarly, the applications

of the elementary superposition method or the generating function method to the CI-CF(a) and

CI-CF(e) provide the corresponding values for 47, as shown in Fig. 6. This set of procedures is

repeated to examine 48 and 49, where each calculation result is shown also in the bottom part

of Fig. 6 in the form of the coefficient of the term H4A2.

The data illustrated in Figs. 2 and 3 are verified by the itemized calculations shown in the

bottom part of Fig. 6 as follows:

1. As for 47, 7 achiral derivatives are found to be {2, 3, 4, 5, 6, 7, 8} of Fig. 2, while 4 enan-

tiomeric pairs are found to be {13a/13b, 14a/14b, 15a/15b, 16a/16b} of Fig. 3. Totally,

there are 11 derivatives based on 47 as a p,p-skeleton, where the value is consistent with

the total number 11 calculated.

2. As for 48, 3 achiral derivatives correspond to {9, 10, 11} of Fig. 2, while 6 enantiomeric

pairs correspond to {17a/17b, 18a/18b, 19a/19b, 20a/20b, 21a/21b, 22a/22b} of Fig. 3.

Totally, there are 9 derivatives, which are consistent with the total number 9 calculated.

3. As for 49, one achiral derivative is {12} of Fig. 2 while two enantiomeric pairs are found

to be {23a/23b, 24a/24b} of Fig. 3. Totally, there are 3 derivatives, which are consistent

with the total number 3 calculated.
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7 Conclusions
The extended superposition method, which has been developed as an application of elementary

superposition [11], is applied to enumeration of cubane derivatives with chiral and achiral pro-

ligands. This method provides us with a tool for evaluating the respective contribution of each

USCI-CF (unit subduced-cycle index with chirality fittingness) to the corresponding CI-CF (cy-

cle index with chirality fittingness), which is calculated by means of the proligand method (Part

I of this series), the markaracter method (Part II), the characteristic-monomial method (Part

III) or others. The extended superposition method does not require generating functions but

requires cycle indices (CI) for regular and irregular cases, which depend upon permutational

features of chiral and/or achiral (pro)ligands. Calculated values by the extended superposition

method are clarified to be identical with those obtained in terms of generating functions, which

are calculated by using the proligand method (Part I), the markaracter method (Part II), and the

characteristic monomial method (Part III).
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