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Abstract

The CM (characteristic monomial) method developed by us (S. Fujita, Theor. Chem.
Acc., 99, 224–230 (1998), S. Fujita, J. Chem. Inf. Comput. Sci., 40, 1101–1112 (2000))

is applied to enumeration of cubane derivatives with chiral and achiral proligands. For

this purpose, CM-CFs (characteristic monomials with chirality fittingness) are calculated

by emphasizing the interconvertivity between Q-conjugacy characters and markaracters.

Thereby, a dominant CM-CF table is constructed so as to correspond to an irreducible

Q-conjugacy character table in the present article (Part III of this series), just as a domi-

nant USCI-CF (unit subduced-cycle index with chirality fittingness) table corresponds to a

dominant markaracter table as discussed in Part II of this series. The present set of tables is

used to prepare dominant and non-dominant USCI-CFs, which are in turn used to prepare

SCI-CFs (subduced cycle indices with chirality fittingness) and CI-CFs (cycle indices with

chirality fittingness). The CI-CFs of Oh and O for enumerating cubane derivatives as three-

dimensional structural isomers and as steric isomers as well as for enumerating achiral and

chiral cubane derivatives are clarified to be equivalent to those prepared by the proligand

method (Part I of this series) as well as to those prepared by the markaracter method (Part II

of this series). A Maple program source for calculating USCI-CFs from CM-CFs is given

as an example of practical calculation.
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1 Introduction
As discussed in Part II of this series reported in this journal, the concept of marks [1] has long

been neglected in most textbooks on group theory, even on permutation groups [2–4], although

the concept of marks is natural and more informative to discuss permutation representations,

especially to discuss their applications to combinatorial enumeration. Instead, the concept of

characters based on linear representations has been used to discuss permutation representations

under excluding such applications to combinatorial enumeration. The USCI (unit subduced cy-

cle index) approach developed by us [5] has casted a renewed light on the concept of marks,

where the concepts of subductions of coset representations and unit subduced cycle indices (US-

CIs) have been introduced by starting from marks of coset representations as an essential set of

permutation representations. These newly-developed concepts have been applied to combina-

torial enumerations of chemical derivatives as three-dimensional (3D) objects after developing

the concepts of sphericities and chirality fittingness [5]. The concept of marks has later been

essentially qualified into the concept of markaracters [6], which, in turn, has been found to be

a basis of dominant representations. After the related concepts to marks have been matched to

markaracters, the qualified concepts have been applied to combinatorial enumerations [7] (cf.

Part II of this series).

Because of easy manageability, the concept of characters has been a basis of linear represen-

tations as a predominant methodology in group theory and has worked as a main repertoire of

most textbooks on group theory [8, 9], on chemical applications [10–13], on physical applica-

tions [14–17], and so on. However, the concept itself is short of capability to treat combinatorial

enumeration as described in the preceding paragraph.

In order to cover this shortness, the CM (characteristic monomial) method developed by us

has introduced the concept of maturity [18, 19] after clarifying the importance of Q-conjugacy

representations and Q-conjugacy characters. Thereby, linear representations have been linked

with coset representations so that the concept of characteristic monomials (CMs) and related

concepts have been proposed to supply versatile tools for combinatorial enumeration [20–26].

The CM method has been extended to take account of sphericities and chirality fittingness
to give CM-CFs (characteristic monomials with chirality fittingness), which are effective in

combinatorial enumerations of chemical derivatives as 3D objects [27].

The purpose of the present series is to compare various methods of combinatorial enumera-

tion, where we use the cubane skeleton of high symmetry (Oh) as a common starting structure

and we emphasize 3D structures of enumerated isomers as well as those of ligands to be sub-

stituted. In this paper, the CM method is applied to isomer enumerations of cubane derivatives,

where both achiral and chiral ligands (more abstractly, proligands) are taken into consideration

after introducing chirality fittingness. Thereby, the versatility of the CM method is emphasized

even in the cubane skeleton of high symmetry (Oh).

2 Characteristic Monomial Tables

2.1 Characteristic Monomial Table of Oh

2.1.1 Via Multiplicity Vectors

According to the formulation reported by us [6, 18, 20], characters can be transformed into Q-

conjugacy characters, where the concept of maturity works as a key concept [18]. Thereby,
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such (irreducible) character tables as collected in textbooks on group theory (e.g., [12]) can

be converted into the corresponding Q-conjugacy markaracter tables by the procedure shown in

[18, 20]. In particular, character tables for matured groups can be considered to be Q-conjugacy

character tables as they are. Because the point group of Oh to be discussed mainly in the present

article is matured, its character table (Table 1) itself is regarded as a Q-conjugacy character

table, where each conjugacy class coressponds to each Q-conjugacy class.

Table 1: (Q-Conjugacy) Character Table of Oh

D̃Oh

C1 C2 C′
2 Cs C′

s Ci C3 C4 S4 C3i

I 3C2 6C2 3σh 6σd i 8C3 6C4 6S4 8S6

A1g 1 1 1 1 1 1 1 1 1 1

A2g 1 1 −1 1 −1 1 1 −1 −1 1

Eg 2 2 0 2 0 2 −1 0 0 −1

T1g 3 −1 −1 −1 −1 3 0 1 1 0

T2g 3 −1 1 −1 1 3 0 −1 −1 0

A1u 1 1 1 −1 −1 −1 1 1 −1 −1

A2u 1 1 −1 −1 1 −1 1 −1 1 −1

Eu 2 2 0 −2 0 −2 −1 0 0 1

T1u 3 −1 −1 1 1 −3 0 1 −1 0

T2u 3 −1 1 1 −1 −3 0 −1 1 0

Table 2: Markaracter Table of Oh
M̃Oh C1 C2 C′

2 Cs C′
s Ci C3 C4 S4 C3i

Oh(/C1) 48 0 0 0 0 0 0 0 0 0

Oh(/C2) 24 8 0 0 0 0 0 0 0 0

Oh(/C′
2) 24 0 4 0 0 0 0 0 0 0

Oh(/Cs) 24 0 0 8 0 0 0 0 0 0

Oh(/C′
s) 24 0 0 0 4 0 0 0 0 0

Oh(/Ci) 24 0 0 0 0 24 0 0 0 0

Oh(/C3) 16 0 0 0 0 0 4 0 0 0

Oh(/C4) 12 4 0 0 0 0 0 4 0 0

Oh(/S4) 12 4 0 0 0 0 0 0 4 0

Oh(/C3i) 8 0 0 0 0 8 2 0 0 2

Each of the Q-conjugacy classes corresponds to a cyclic group, which is selected from a

non-redundant set of cyclic subgroups (SCSG) according to [6], e.g.,

SCSGOh =
{

C1,C2,C′
2,Cs,C′

s,Ci,C3,C4,S4,C3i
}

(1)

for the point group Oh. The respective cyclic subgroups correspond to the coset represen-

tations Oh(/Gi) (Gi ∈ SCSGOh), which are selected from the full set of coset representa-

tions for Oh(/Gi) (Gi ∈ SSGOh). The restricted set of coset representation, e.g., Oh(/Gi)
(Gi ∈ SCSGOh), is called dominant representations, each of which is characterized by such

a dominant markaracter as collected in a dominant markaracter table, e.g., Table 2.

The crux of the CM method is that Q-conjugacy characters can be regarded as markaracters

[6]. This means that each row of of Table 1 can be regarded as a vector in a vector space spanned

by the set of row vectors shown in the dominant markaracter table (M̃Oh referred to shortly by

the term markaracter table) shown in Table 2 (see Part II of this series). As a result, each row

of of Table 1 is multiplied by the inverse markaracter table (M̃−1
Oh

) to give a multiplicity vector

shown in Table 3.

For example, the resulting multiplicity vector in the Eg-row of Table 3 means the following

equation:

Eg = −1

4
M̃Oh(/C1) +

1

4
M̃Oh(/C2) +

1

4
M̃Oh(/Cs) +

1

4
M̃Oh(/Ci)−

1

2
M̃Oh(/C3i), (2)

where M̃Oh(/C1) etc. denote the corresponding rows of Table 2. Thus, Eq. 2 is verified by the

data of Table 2 as follows:

−1
4× (48, 0, 0, 0, 0, 0, 0, 0, 0, 0)

+ 1
4× (24, 8, 0, 0, 0, 0, 0, 0, 0, 0)

+ 1
4× (24, 0, 0, 8, 0, 0, 0, 0, 0, 0)

+ 1
4× (24, 0, 0, 0, 0, 24, 0, 0, 0, 0)

− 1
2× ( 8, 0, 0, 0, 0, 8, 2, 0, 0, 2)

Eg =

=⇒

(−12, 0, 0, 0, 0, 0, 0, 0, 0, 0)
( 6, 2, 0, 0, 0, 0, 0, 0, 0, 0)
( 6, 0, 0, 2, 0, 0, 0, 0, 0, 0)
( 6, 0, 0, 0, 0, 6, 0, 0, 0, 0)
( −4, 0, 0, 0, 0,−4,−1, 0, 0,−1)
( 2, 2, 0, 2, 0, 2,−1, 0, 0,−1)

(3)
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Table 3: Q-Conjugacy Characters and Multiplicity Vectors for Q-Conjugacy Representations

Q-conjugacy characters ×M̃−1
Oh

multiplicity vectors

A1g (1,1,1,1,1,1,1,1,1,1) =⇒ (−3
8 ,−1

8 , 1
4 , 1

8 , 1
4 − 1

8 ,0, 1
4 , 1

4 , 1
2)

A2g (1,1,−1,1,−1,1,1,−1,−1,1) =⇒ (1
8 , 3

8 ,−1
4 , 1

8 ,−1
4 ,−1

8 ,0,−1
4 ,−1

4 , 1
2)

Eg (2,2,0,2,0,2,−1,0,0,−1) =⇒ (−1
4 , 1

4 ,0, 1
4 ,0, 1

4 ,0,0,0,−1
2)

T1g (3,−1,−1,−1,−1,3,0,1,1,0) =⇒ (3
8 ,−3

8 ,−1
4 ,−1

8 ,−1
4 , 1

8 ,0, 1
4 , 1

4 ,0)
T2g (3,−1,1,−1,1,3,0,−1,−1,0) =⇒ (−1

8 , 1
8 , 1

4 ,−1
8 , 1

4 , 1
8 ,0,−1

4 ,−1
4 ,0)

A1u (1,1,1,−1,−1,−1,1,1,−1,−1) =⇒ (−1
8 , 1

8 , 1
4 ,−1

8 ,−1
4 , 1

8 , 1
2 , 1

4 ,−1
4 ,−1

2)
A2u (1,1,−1,−1,1,−1,1,−1,1,−1) =⇒ (−1

8 , 1
8 ,−1

4 ,−1
8 , 1

4 , 1
8 , 1

2 ,−1
4 , 1

4 ,−1
2)

Eu (2,2,0,−2,0,−2,−1,0,0,1) =⇒ (1
4 , 1

4 ,0,−1
4 ,0,−1

4 ,−1
2 ,0,0, 1

2)
T1u (3,−1,−1,1,1,−3,0,1,−1,0) =⇒ (1

8 ,−1
8 ,−1

4 , 1
8 , 1

4 ,−1
8 ,0, 1

4 ,−1
4 ,0)

T2u (3,−1,1,1,−1,−3,0,−1,1,0) =⇒ (1
8 ,−1

8 , 1
4 , 1

8 ,−1
4 ,−1

8 ,0,−1
4 , 1

4 ,0)

The multiplicity vectors can be applied to a dominant USCI-CF table (cf. Table 3 of Part II

for the Oh group). For example, the S4-column of the dominant USCI table of Oh contains c12
4

for the Oh(/C1)-row, c4
2c4

4 for the Oh(/C2)-row, c6
4 for the Oh(/Cs)-row, c6

4 for the Oh(/Ci)-
row, and c2

4 for the Oh(/Ci)-row, so that the resulting multiplicity vector in the Eg-row of Table

3 gives the following characteristic monomial with chirality fittingness (CM-CF) according to

[27]:

Z(Eg ↓ S4;$d) = (c12
4 )−1/4 × (c4

2c4
4)

1/4 × (c6
4)

1/4 × (c6
4)

1/4 × (c2
4)

−1/2 = c2, (4)

which corresponds to Eq. 2. This procedure is repeated to cover all of the multiplicity vectors

collected in Table 3 and all of the columns in the dominant USCI table (Table 3 of Part II)

so as to generate the CM-CF Table of Oh shown in Table 4. The CM-CF in Eq. 4 appears

in the intersection of the Eg-row and the S4-column of Table 4. Note that Table 4 is obtained

practically by using the Maple program listed in Appendix of Part II of this series, because

respective rows of Table 1 (the left-hand side of Table 3) can be regarded as markaracters.

As shown in the top part of Table 4, the cyclic subgroups listed in SCSGOh (Eq. 1) cor-

respond to the Q-conjugacy classes, i.e., I; 3C2; 6C2; 3σh; 6σd; i; 8C3; 6C4; 6S4; and 8S6,

where each coefficient indicates the number of elements contained in the Q-conjugacy class at

issue. The bottom row shows the factor (Nj) of each Q-conjugacy class which is calculated by

dividing the number of elements by 48 (= |Oh|) [21, 27].

2.1.2 Via Direct Subductions

CM tables without chirality fittingness are alternatively constructed by means of direct subduc-

tion of Q-conjugacy representations [22]. The method of direct subduction has been extended

to obtain the corresponding CM-CF Tables [27].

As an example, let us consider the subductions of Q-conjugacy characters (Table 1) into the

cyclic subgroup S4. In a similar way to Example 2 of [27], a subduced Q-conjugacy character

table is generated by selecting necessary columns (C1-, C2-, and S4-columns) from the Q-

conjugacy character table (Table 1). The resulting matrix (the subduced Q-conjugacy character

table) is multiplied by the inverse markaracter table of S4 (M̃−1
S4

) so as to give the following
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Table 4: CM-CF Table of Oh

C1 C2 C′
2 Cs C′

s Ci C3 C4 S4 C3i

I 3C2 6C2 3σh 6σd i 8C3 6C4 6S4 8S6

A1g b1 b1 b1 a1 a1 a1 b1 b1 a1 a1

A2g b1 b1 b−1
1 b2 a1 a−1

1 c2 a1 b1 b−1
1 b2 a−1

1 c2 a1

Eg b2
1 b2

1 b2 a2
1 c2 a2

1 b−1
1 b3 b2 c2 a−1

1 a3

T1g b3
1 b−1

1 b2
2 b−1

1 b2
2 a−1

1 c2
2 a−1

1 c2
2 a3

1 b3 b1b−1
2 b4 a1c−1

2 c4 a3

T2g b3
1 b−1

1 b2
2 b1b2 a−1

1 c2
2 a1c2 a3

1 b3 b−1
1 b4 a−1

1 c4 a3

A1u b1 b1 b1 a−1
1 c2 a−1

1 c2 a−1
1 c2 b1 b1 a−1

1 c2 a−1
1 c2

A2u b1 b1 b−1
1 b2 a−1

1 c2 a1 a−1
1 c2 b1 b−1

1 b2 a1 a−1
1 c2

Eu b2
1 b2

1 b2 a−2
1 c2

2 c2 a−2
1 c2

2 b−1
1 b3 b2 c2 a1a−1

3 c−1
2 c6

T1u b3
1 b−1

1 b2
2 b−1

1 b2
2 a1c2 a1c2 a−3

1 c3
2 b3 b1b−1

2 b4 a−1
1 c4 a−1

3 c6

T2u b3
1 b−1

1 b2
2 b1b2 a1c2 a−1

1 c2
2 a−3

1 c3
2 b3 b−1

1 b4 a1c−1
2 c4 a−1

3 c6

Nj
1

48
1
16

1
8

1
16

1
8

1
48

1
6

1
8

1
8

1
6

result:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1 C2 S4

A1g 1 1 1

A2g 1 1 −1

Eg 2 2 0

T1g 3 −1 1

T2g 3 −1 −1

A1u 1 1 −1

A2u 1 1 1

Eu 2 2 0

T1u 3 −1 −1

T2u 3 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎝
1
4 0 0

−1
4

1
2 0

0 −1
2 1

⎞⎟⎠
M̃−1

S4

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1 C2 S4

A1g ↓ S4 0 0 1

A2g ↓ S4 0 1 −1

Eg ↓ S4 0 1 0

T1g ↓ S4 1 −1 1

T2g ↓ S4 1 0 −1

A1u ↓ S4 0 1 −1

A2u ↓ S4 0 0 1

Eu ↓ S4 0 1 0

T1u ↓ S4 1 0 −1

T2u ↓ S4 1 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

a1

a−1
1 c2

c2

a1c−1
2 c4

a−1
1 c4

a−1
1 c2

a1

c2

a−1
1 c4

a1c−1
2 c4

(5)

where the first matrix in the left-hand side is the subduced Q-conjugacy character table at issue

(regarded as a kind of subduced markaracter table), the second one is M̃−1
S4

, and the matrix in

the right-hand side is the subduction-multiplicity matrix at issue.

The subduction-multiplicity matrix (the right-hand side of Eq. 5) contains the multiplicities

for the respective subductions. For example, the T1g ↓ S4-row indicates

T1g ↓ S4 = S4(/C1)−S4(/C2)+S4(/S4). (6)

Equation 6 generates a USCI-CF a1c−1
2 c4 because the subscripts are calculated by using such

relationships as |S4|/|C1| = 4/1 = 4, |S4|/|C2| = 4/4 = 2, and |S4|/|S4| = 4/4 = 1, where the

coefficients appearing in the right-hand side are used as the powers of the respective components

of the USCI-CF. Note that S4(/C1), S4(/C2), and S4(/S4) are respectively characterized by the

sphericity indices c4, c2, and a1, because the S4(/C1) and the S4(/C2) are enantiospheric and

because the S4(/S4) is homospheric in accord with the USCI approach [5]. This is symbolically

denoted as follows:

Z(T1g ↓ S4;$d) = a1c−1
2 c4, (7)
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which appears at the intersection of the T1g-row and the S4-column in Table 4, where the symbol

$d represents a set of ad , bd , and cd . On similar lines, the other subductions are characterized by

CM-CFs collected in the rightmost part of Eq. 5. The CM-CFs of Eq. 5 appear in the S4-column

of Table 4.

2.2 Characteristic Monomial Table of O
Because the point group of O, which is the maximum chiral subgroup of Oh, is matured, its

character table (Table 5) is regarded as a Q-conjugacy character table.

Table 5: (Q-Conjugacy) Character Table of O

D̃O
C1 C2 C′

2 C3 C4

I 3C2 6C2 8C3 6C4

A1 1 1 1 1 1

A2 1 1 −1 1 −1

E 2 2 0 −1 0

T1 3 −1 −1 0 1

T2 3 −1 1 0 −1

Table 6: Markaracter Table of Oh

M̃O C1 C2 C′
2 C3 C4

O(/C1) 24 0 0 0 0

O(/C2) 12 4 0 0 0

O(/C′
2) 12 0 2 0 0

O(/C3) 8 0 0 2 0

O(/C4) 6 2 0 0 2

Each row of of Table 5 is regarded as a vector in a vector space spanned by the set of row

vectors shown in the (dominant) markaracter table (M̃O) shown in Table 6 (cf. Part II of this

series). As a result, each row of of Table 5 is multiplied by the inverse markaracter table (M̃−1
O )

to give a multiplicity vector, which is used to calculate the corresponding CM-CF in a similar

way to the case of Oh. The results are collected in Table 7.

Table 7: CM-CF Table of O

C1 C2 C′
2 C3 C4

I 3C2 6C2 8C3 6C4

A1 b1 b1 b1 b1 b1

A2 b1 b1 b−1
1 b2 b1 b−1

1 b2

E b2
1 b2

1 b2 b−1
1 b3 b2

T1 b3
1 b−1

1 b2
2 b1b2

2 b3 b1b−1
2 b4

T2 b3
1 b−1

1 b2
2 b1b2 b3 b−1

1 b4

Nj
1

24
1
8

1
4

1
3

1
4
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3 Characteristic-Monomial Method for Enumeration

3.1 Markaracters as Q-Conjugacy Characters
3.1.1 Dominant Markaracters as Q-Conjugacy Characters

In the preceding section, an irreducible Q-conjugacy character (e.g., each row of Table 1 for

the point group Qh) is regarded as a vector in the vector space spanned by a set of dominant

markaracters (e.g., the set of row vectors shown in Table 2), where the corresponding multiplic-

ity vectors are collected in Table 3.

From an inverse point of view, a dominant markaracter (in this example, each row of Table

2) can be regarded as a vector in the vector space spanned by a set of irreducible Q-conjugacy

characters (in this example, the set of row vectors shown in Table 1). For example, the M̃Oh(/C1)-

row of Table 2 corresponds to the following multiplicity vector:

M̃Oh(/C1)D
−1
Oh

= (48,0,0,0,0,0,0,0,0,0)D−1
Oh

= (1,1,2,3,3,1,1,2,3,3), (8)

where the symbol D−1
Oh

denotes the inverse of Table 1 (denoted by the symbol DOh). The con-

crete form of D−1
Oh

is shown in Table 8. Because the coset representation Oh(/C1) represents

the regular representation of Oh, the multiplicity vector shown in the right-hand side of Eq. 8

is consistent with a well-known theorem which claims that each irreducible representation of

degree n is contained n-times in the regular representation, i.e.,

Oh(/C1) = A1g +A2g +2Eg +3T1g +3T2g +A1u +A2u +2Eu +3T1u +3T2u. (9)

This equation shows that A1g (or A2g, or A1u, or A2u) of degree 1 appears once, Eg (or Eu) of

degree 2 appears twice, and T1g (or T2g, or T1u, or T2u) of degree 3 appears three times.

Table 8: Inverse Q-Conjugacy Character Table of Oh

D−1
Oh

A1g A2g Eg T1g T2g A1u A2u Eu T1u T2u

C1 I 1
48

1
48

1
24

1
16

1
16

1
48

1
48

1
24

1
16

1
16

C2 3C2
1

16
1

16
1
8 − 1

16 − 1
16

1
16

1
16

1
8 − 1

16 − 1
16

C′
2 6C2

1
8 −1

8 0 −1
8

1
8

1
8 −1

8 0 −1
8

1
8

Cs 3σh
1

16
1

16
1
8 − 1

16 − 1
16 − 1

16 − 1
16 −1

8
1

16
1

16

C′
s 6σd

1
8 −1

8 0 −1
8

1
8 −1

8
1
8 0 1

8 −1
8

Ci i 1
48

1
48

1
24

1
16

1
16 − 1

48 − 1
48 − 1

24 − 1
16 − 1

16

C3 8C3
1
6

1
6 −1

6 0 0 1
6

1
6 −1

6 0 0

C4 6C4
1
8 −1

8 0 1
8 −1

8
1
8 −1

8 0 1
8 −1

8

S4 6S4
1
8 −1

8 0 1
8 −1

8 −1
8

1
8 0 −1

8
1
8

C3i 8S6
1
6

1
6 −1

6 0 0 −1
6 −1

6
1
6 0 0

The procedure exemplified by Eq. 8 is repeated to cover the respective rows of Table 2 so

as to give the corresponding multiplicity vectors shown in Table 9. For the purpose of practical

-655-



calculation, Table 2 (M̃Oh) is regarded as a matrix and multiplied by the inverse (Table 8, D−1
Oh

),

i.e.,

M̃OhD−1
Oh

. (10)

The resulting matrix is the same as the right-hand side of Table 9. The calculation of Eq.

10 is conducted by the Maple system, where the following Maple program (the file name

“CM01.mpl”) is read from the Maple display window:

#CM01.mpl
#Q-conjugacy multiplicity of dominant representations
#read "c:/fujita0/CM01.mpl";

with(linalg);

DOh := matrix(10,10,
[[1,1,1,1,1,1,1,1,1,1],
[1,1,-1,1,-1,1,1,-1,-1,1],
[2,2,0,2,0,2,-1,0,0,-1],
[3,-1,-1,-1,-1,3,0,1,1,0],
[3,-1,1,-1,1,3,0,-1,-1,0],
[1,1,1,-1,-1,-1,1,1,-1,-1],
[1,1,-1,-1,1,-1,1,-1,1,-1],
[2,2,0,-2,0,-2,-1,0,0,1],
[3,-1,-1,1,1,-3,0,1,-1,0],
[3,-1,1,1,-1,-3,0,-1,1,0]]);

InvDOh := inverse(DOh);

MOh := matrix(10,10,
[[48,0,0,0,0,0,0,0,0,0],
[24,8,0,0,0,0,0,0,0,0],
[24,0,4,0,0,0,0,0,0,0],
[24,0,0,8,0,0,0,0,0,0],
[24,0,0,0,4,0,0,0,0,0],
[24,0,0,0,0,24,0,0,0,0],
[16,0,0,0,0,0,4,0,0,0],
[12,4,0,0,0,0,0,4,0,0],
[12,4,0,0,0,0,0,0,4,0],
[8,0,0,0,0,8,2,0,0,2]]);

MultiDomi:=evalm(MOh &* InvDOh);

As for the point group O, the inverse point of view is also effective. Thus, a dominant

markaracter (each row of Table 6) can be regarded as a vector in the vector space spanned by a

set of irreducible Q-conjugacy characters (the set of row vectors shown in Table 5). In a similar

way to Oh, the inverse D−1
O for the O group (Table 10) is used to calculate multiplicity vectors

collected in Table 11. Note that the coset representation O(/C1) as the regular representation is

characterized by the multiplicity vector calculated as follows:

M̃O(/C1)D
−1
O = (24,0,0,0,0)D−1

O = (1,1,2,3,3), (11)

which corresponds to the following reduction:

O(/C1) = A1 +A2 +2E +3T1 +3T2, (12)

where each irreducible representation of degree n is contained n-times in the regular represen-

tation. Thus, A1 (or A2) of degree 1 appears once, E of degree 2 appears twice, and T1 (or T2)

of degree 3 appears three times.
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Table 9: Markaracters and Multiplicity Vectors for Dominant Representations (Oh)

Markaracters ×D−1
Oh

multiplicity vectors

M̃Oh(/C1) = (48,0,0,0,0,0,0,0,0,0) =⇒ (1,1,2,3,3,1,1,2,3,3)
M̃Oh(/C2) = (24,8,0,0,0,0,0,0,0,0) =⇒ (1,1,2,1,1,1,1,2,1,1)
M̃Oh(/C′

2)
= (24,0,4,0,0,0,0,0,0,0) =⇒ (1,0,1,1,2,1,0,1,1,2)

M̃Oh(/Cs) = (24,0,0,8,0,0,0,0,0,0) =⇒ (1,1,2,1,1,0,0,0,2,2)
M̃Oh(/C′

s) = (24,0,0,0,4,0,0,0,0,0) =⇒ (1,0,1,1,2,0,1,1,2,1)
M̃Oh(/Ci) = (24,0,0,0,0,24,0,0,0,0) =⇒ (1,1,2,3,3,0,0,0,0,0)
M̃Oh(/C3) = (16,0,0,0,0,0,4,0,0,0) =⇒ (1,1,0,1,1,1,1,0,1,1)
M̃Oh(/C4) = (12,4,0,0,0,0,0,4,0,0) =⇒ (1,0,1,1,0,1,0,1,1,0)
M̃Oh(/S4) = (12,4,0,0,0,0,0,0,4,0) =⇒ (1,0,1,1,0,0,1,1,0,1)
M̃Oh(/C3i) = (8,0,0,0,0,8,2,0,0,2) =⇒ (1,1,0,1,1,0,0,0,0,0)

Table 10: Inverse Q-Conjugacy Character Table of O

D−1
O A1 A2 E T1 T2

C1 I 1
24

1
24

1
12

1
8

1
8

C2 3C2
1
8

1
8

1
4 −1

8 −1
8

C′
2 6C2

1
4 −1

4 0 −1
4

1
4

C3 8C3
1
3

1
3 −1

3 0 0

C4 6C4
1
4 −1

4 0 1
4 −1

4

Table 11: Markaracters and Multiplicity Vectors for Dominant Representations (O)

Markaracters ×D−1
O multiplicity vectors

M̃O(/C1) = (24,0,0,0,0) =⇒ (1,1,2,3,3)
M̃O(/C2) = (12,4,0,0,0) =⇒ (1,1,2,1,1)
M̃O(/C′

2)
= (12,0,2,0,0) =⇒ (1,0,1,1,2)

M̃O(/C3) = (8,0,0,2,0) =⇒ (1,1,0,1,1)
M̃O(/C4) = (6,2,0,0,2) =⇒ (1,0,1,1,0)
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As found in Table 11, the coset representation O(/C3) as a dominant representation is char-

acterized by the markaracter (M̃O(/C3)), which generates a multiplicity vector as follows:

M̃O(/C3)D
−1
O = (8,0,0,2,0)D−1

O = (1,1,0,1,1). (13)

The resulting multiplicity vector corresponds to the following reduction:

O(/C3) = A1 +A2 +T1 +T2. (14)

3.1.2 Non-Dominant Markaracters as Q-Conjugacy Characters

After the inverse viewpoint is adopted, non-dominant markaracters (cf. Part II of this series)

can be treated on the same line as the dominant markaracters described above. For example,

the coset representation Oh(/C3v) as a non-dominant representation is characterized by the

markaracter (M̃Oh(/C3v)), which generates a multiplicity vector as follows:

M̃Oh(/C3v)D
−1
Oh

= (8,0,0,0,4,0,2,0,0,0)D−1
Oh

= (1,0,0,0,1,0,1,0,1,0). (15)

The resulting multiplicity vector corresponds to the following reduction:

Oh(/C3v) = A1g +T2g +A2u +T1u. (16)

In a similar way, other non-dominant representations are assigned to multiplicity vectors col-

lected in Table 12.

Non-dominant markaracters for the point group O (cf. Part II of this series) are also treated

on the same line as the cases of Oh. The resulting multiplicity vectors are collected in Table 13.

3.2 USCI-CFs Calculated From CM-CF Tables
3.2.1 Dominant USCI-CFs from CM-CFs

The multiplicity vector shown in the M̃Oh(/C3)-row of Table 9 corresponds to the following

reduction:

Oh(/C3) = A1g +A2g +T1g +T2g +A1u +A2u +T1u +T2u. (17)

Let us consider the subduction of the dominant representation Oh(/C3) into a subgroup S4.

Then, we obtain:

Oh(/C3) ↓ S4 = A1g ↓ S4 +A2g ↓ S4 +T1g ↓ S4 +T2g ↓ S4

+A1u ↓ S4 +A2u ↓ S4 +T1u ↓ S4 +T2u ↓ S4. (18)

By referring to the data collected in the S4-column of the CM-CF table of Oh (Table 4), the

USCI-CF corresponding to Oh(/C3) ↓ S4 is calculated as follows:

Z(Oh(/C3) ↓ S4;$d)
= Z(Oh(A1g ↓ S4;$d)Z(Oh(A2g ↓ S4;$d)Z(Oh(T1g ↓ S4;$d)Z(Oh(T2g ↓ S4;$d)

×Z(Oh(A1u ↓ S4;$d)Z(Oh(A2u ↓ S4;$d)Z(Oh(T1u ↓ S4;$d)Z(Oh(T2u ↓ S4;$d)
= (a1)(a−1

1 c2)(a1c−1
2 c4)(a−1

1 c4)(a−1
1 c2)(a1)(a−1

1 c4)(a1c−1
2 c4) = c4

4. (19)
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Table 12: Markaracters and Multiplicity Vectors for Non-Dominant Representations (Oh)

markaracter ×D−1
Oh

multiplicity vectors

M̃Oh(/D2) = (12,12,0,0,0,0,0,0,0,0) =⇒ (1,1,2,0,0,1,1,2,0,0)
M̃Oh(/D′

2)
= (12,4,4,0,0,0,0,0,0,0) =⇒ (1,0,1,0,1,1,0,1,0,1)

M̃Oh(/C2v) = (12,4,0,8,0,0,0,0,0,0) =⇒ (1,1,2,0,0,0,0,0,1,1)
M̃Oh(/C′

2v)
= (12,4,0,0,4,0,0,0,0,0) =⇒ (1,0,1,0,1,0,1,1,1,0)

M̃Oh(/C′′
2v)

= (12,0,2,4,2,0,0,0,0,0) =⇒ (1,0,1,0,1,0,0,0,1,1)
M̃Oh(/C2h) = (12,4,0,4,0,12,0,0,0,0) =⇒ (1,1,2,1,1,0,0,0,0,0)
M̃Oh(/C′

2h)
= (12,0,2,0,2,12,0,0,0,0) =⇒ (1,0,1,1,2,0,0,0,0,0)

M̃Oh(/D3) = (8,0,4,0,0,0,2,0,0,0) =⇒ (1,0,0,0,1,1,0,0,0,1)
M̃Oh(/C3v) = (8,0,0,0,4,0,2,0,0,0) =⇒ (1,0,0,0,1,0,1,0,1,0)
M̃Oh(/D4) = (6,6,2,0,0,0,0,2,0,0) =⇒ (1,0,1,0,0,1,0,1,0,0)
M̃Oh(/C4v) = (6,2,0,4,2,0,0,2,0,0) =⇒ (1,0,1,0,0,0,0,0,1,0)
M̃Oh(/C4h) = (6,2,0,2,0,6,0,2,2,0) =⇒ (1,0,1,1,0,0,0,0,0,0)
M̃Oh(/D2d) = (6,6,0,0,2,0,0,0,2,0) =⇒ (1,0,1,0,0,0,1,1,0,0)
M̃Oh(/D′

2d) = (6,2,2,4,0,0,0,0,2,0) =⇒ (1,0,1,0,0,0,0,0,0,1)
M̃Oh(/D2h) = (6,6,0,6,0,6,0,0,0,0) =⇒ (1,1,2,0,0,0,0,0,0,0)
M̃Oh(/D′

2h)
= (6,2,2,2,2,6,0,0,0,0) =⇒ (1,0,1,0,1,0,0,0,0,0)

M̃Oh(/T) = (4,4,0,0,0,0,4,0,0,0) =⇒ (1,1,0,0,0,1,1,0,0,0)
M̃Oh(/D3d) = (4,0,2,0,2,4,1,0,0,1) =⇒ (1,0,0,0,1,0,0,0,0,0)
M̃Oh(/D4h) = (3,3,1,3,1,3,0,1,1,0) =⇒ (1,0,1,0,0,0,0,0,0,0)
M̃Oh(/O) = (2,2,2,0,0,0,2,2,0,0) =⇒ (1,0,0,0,0,1,0,0,0,0)
M̃Oh(/Th) = (2,2,0,2,0,2,2,0,0,2) =⇒ (1,1,0,0,0,0,0,0,0,0)
M̃Oh(/Td) = (2,2,0,0,2,0,2,0,2,0) =⇒ (1,0,0,0,0,0,1,0,0,0)
M̃Oh(/Oh) = (1,1,1,1,1,1,1,1,1,1) =⇒ (1,0,0,0,0,0,0,0,0,0)

Table 13: Markaracters and Multiplicity Vectors for Non-Dominant Representations (O)

markaracter ×D−1
O multiplicity vectors

M̃O(/D2) = (6,6,0,0,0) =⇒ (1,1,2,0,0)
M̃O(/D′

2)
= (6,2,2,0,0) =⇒ (1,0,1,0,1)

M̃O(/D3) = (4,0,2,1,0) =⇒ (1,0,0,0,1)
M̃O(/D4) = (3,3,1,0,1) =⇒ (1,0,1,0,0)
M̃O(/T) = (2,2,0,2,0) =⇒ (1,1,0,0,0)
M̃O(/O) = (1,1,1,1,1) =⇒ (1,0,0,0,0)
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Table 14: Dominant USCI-CF Table of Oh

C1 C2 C′
2 Cs C′

s Ci C3 C4 S4 C3i

I 3C2 6C2 3σh 6σd i 8C3 6C4 6S4 8S6

Oh(/C1) b48
1 b24

2 b24
2 c24

2 c24
2 c24

2 b16
3 b12

4 c12
4 c8

6

Oh(/C2) b24
1 b8

1b8
2 b12

2 c12
2 c12

2 c12
2 b8

3 b4
2b4

4 c4
2c4

4 c4
6

Oh(/C′
2) b24

1 b12
2 b4

1b10
2 c12

2 c12
2 c12

2 b8
3 b6

4 c6
4 c4

6

Oh(/Cs) b24
1 b12

2 b12
2 a8

1c8
2 c12

2 c12
2 b8

3 b6
4 c6

4 c4
6

Oh(/C′
s) b24

1 b12
2 b12

2 c12
2 a4

1c10
2 c12

2 b8
3 b6

4 c6
4 c4

6

Oh(/Ci) b24
1 b12

2 b12
2 c12

2 c12
2 a24

1 b8
3 b6

4 c6
4 a8

3

Oh(/C3) b16
1 b8

2 b8
2 c8

2 c8
2 c8

2 b4
1b4

3 b4
4 c4

4 c2
2c2

6

Oh(/C4) b12
1 b4

1b4
2 b6

2 c6
2 c6

2 c6
2 b4

3 b4
1b2

4 c2
2c2

4 c2
6

Oh(/S4) b12
1 b4

1b4
2 b6

2 c6
2 c6

2 c6
2 b4

3 b2
2b2

4 a4
1c2

4 c2
6

Oh(/C3i) b8
1 b4

2 b4
2 c4

2 c4
2 a8

1 b2
1b2

3 b2
4 c2

4 a2
1a2

3

Nj
1
48

1
16

1
8

1
16

1
8

1
48

1
6

1
8

1
8

1
6

When this procedure is repeated by considering Table 9 and Table 4, we obtain the dominant

USCI-CF table shown in Table 14, which is essentially identical with Table 3 of Part II. Obvi-

ously, this treatment is the reverse of the treatment described in Section 2.

Practically, the full data of Table 14 were calculated by using the Maple system [28], where

a Maple file named “cm5A.mpl” (extension .mpl), whose source list is shown in Appendix, was

used for calculation. After the file was stored in a working directory named “c:/fujita0/”, the

following commands were input from the display of the Maple system:

>restart;
>read "c:/fujita0/cm05A.mpl";

Similar discussions on the relationship between CM-CFs and dominant USCI-CFs are avail-

able with respect to the point group O by using the CM-CF table of O (Table 7) and the multi-

plicity vectors listed in Table 11.

3.2.2 Non-Dominant USCI-CFs from CM-CFs

The discussions in the preceding paragraph can be applied to non-dominant markaracters listed

in Table 12. For example, the multiplicity vector shown in the M̃Oh(/C3v)-row of Table 12 (Eq.

15) corresponds to the reduction shown in Eq. 16. The subduction into S4 is represented by the

following equation:

Oh(/C3v) ↓ S4 = A1g ↓ S4 +T2g ↓ S4 +A2u ↓ S4 +T1u ↓ S4. (20)

By starting from the data collected in the S4-column of the CM-CF table of Oh (Table 4), the

USCI-CF corresponding to Oh(/C3v) ↓ S4 is calculated as follows:

Z(Oh(/C3v) ↓ S4;$d)
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= Z(Oh(A1g ↓ S4;$d)Z(Oh(T2g ↓ S4;$d)
×Z(Oh(A2u ↓ S4;$d)Z(Oh(T1u ↓ S4;$d)

= (a1)(a−1
1 c4)(a1)(a−1

1 c4) = c2
4. (21)

This procedure is repeated to give the USCI-CFs of Oh(/C3v) as follows:

(b8
1,b

4
2,b

4
2,c

4
2,a

4
1c2

2,c
4
2,b

2
1b2

3,b
2
4,c

2
4,c2c6). (22)

When this procedure is repeated by considering Table 12 and Table 4, we obtain the non-

dominant USCI-CF table shown in Table 15, which is essentially identical with Table 5 of

Part II.

It should be noted that the process of calculating non-dominant USCI-CFs (e.g., Eq. 16 →
Eq. 20 → Eq. 21) is essentially equivalent to the process calculating dominant USCI-CFs (e.g.,

Eq. 17 → Eq. 18 → Eq. 19), because we start from the common CM-CF table (Table 4). Hence,

the full data of Table 15 were calculated by using the same Maple file (cm5A.mpl) listed in

Appendix.

Similar discussions on the relationship between CM-CFs and dominant USCI-CFs for the

point group O are obtained by starting from the CM-CF table of O (Table 7) and the multiplicity

vectors listed in Table 13.

3.3 Enumeration of Cubane Derivatives
3.3.1 Cubane Derivatives as 3D Structural Isomers

The numbering of a cubane skeleton belonging to the Oh-point group is shown in 1 (Figure 1).

The 8 positions generates 48 permutations on the action of the 48 elements of Oh, where they

1 2

34

5

8

6

7

1

Figure 1: Numbering of the eight positions of cubane (1)

construct a permutation representation P. The markaracter for characterizing P is obtained by

counting fixed positions on the action of each cyclic subgroup. For example, let us examine the

point group C′
s = {I,σd(6)}, which is concerned with the mirror plane containing the positions

2, 4, 6, and 8 in the cubane skeleton (1). Permutations (as products of cycles) corresponding to

the C′
s group are selected from P as follows:

I (1)(2)(3)(4)(5)(6)(7)(8)

σd(6) (2)(4)(6)(8)(1 3))(5 7)

fixed positions (2), (4), (6) and (8)
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Table 15: Non-Dominant USCI-CF Table of Oh

C1 C2 C′
2 Cs C′

s Ci C3 C4 S4 C3i

I 3C2 6C2 3σh 6σd i 8C3 6C4 6S4 8S6

Oh(/D2) b12
1 b12

1 b6
2 c6

2 c6
2 c6

2 b4
3 b6

2 c6
2 c2

6

Oh(/D′
2) b12

1 b4
1b4

2 b4
1b4

2 c6
2 c6

2 c6
2 b4

3 b2
2b2

4 c2
2c2

4 c2
6

Oh(/C2v) b12
1 b4

1b4
2 b6

2 a8
1c2

2 c6
2 c6

2 b4
3 b2

2b2
4 c2

2c2
4 c2

6

Oh(/C′
2v) b12

1 b4
1b4

2 b6
2 c6

2 a4
1c4

2 c6
2 b4

3 b2
2b2

4 c2
2c2

4 c2
6

Oh(/C′′
2v) b12

1 b6
2 b2

1b5
2 a4

1c4
2 a2

1c5
2 c6

2 b4
3 b3

4 c3
4 c2

6

Oh(/C2h) b12
1 b4

1b4
2 b6

2 a4
1c4

2 c6
2 a12

1 b4
3 b2

2b2
4 c2

2c2
4 a4

3

Oh(/C′
2h) b12

1 b6
2 b2

1b5
2 c6

2 a2
1c5

2 a12
1 b4

3 b3
4 c3

4 a4
3

Oh(/D3) b8
1 b4

2 b4
1b2

2 c4
2 c4

2 c4
2 b2

1b2
3 b2

4 c2
4 c2c6

Oh(/C3v) b8
1 b4

2 b4
2 c4

2 a4
1c2

2 c4
2 b2

1b2
3 b2

4 c2
4 c2c6

Oh(/D4) b6
1 b6

1 b2
1b2

2 c3
2 c3

2 c3
2 b2

3 b2
1b2

2 c3
2 c6

Oh(/C4v) b6
1 b2

1b2
2 b3

2 a4
1c2 a2

1c2
2 c3

2 b2
3 b2

1b4 c2c4 c6

Oh(/C4h) b6
1 b2

1b2
2 b3

2 a2
1c2

2 c3
2 a6

1 b2
3 b2

1b4 a2
1c4 a2

3

Oh(/D2d) b6
1 b6

1 b3
2 c3

2 a2
1c2

2 c3
2 b2

3 b3
2 a2

1c2
2 c6

Oh(/D′
2d) b6

1 b2
1b2

2 b2
1b2

2 a4
1c2 c3

2 c3
2 b2

3 b2b4 a2
1c4 c6

Oh(/D2h) b6
1 b6

1 b3
2 a6

1 c3
2 a6

1 b2
3 b3

2 c3
2 a2

3

Oh(/D′
2h) b6

1 b2
1b2

2 b2
1b2

2 a2
1c2

2 a2
1c2

2 a6
1 b2

3 b2b4 c2c4 a2
3

Oh(/T) b4
1 b4

1 b2
2 c2

2 c2
2 c2

2 b4
1 b2

2 c2
2 c2

2

Oh(/D3d) b4
1 b2

2 b2
1b2 c2

2 a2
1c2 a4

1 b1b3 b4 c4 a1a3

Oh(/D4h) b3
1 b3

1 b1b2 a3
1 a1c2 a3

1 b3 b1b2 a1c2 a3

Oh(/O) b2
1 b2

1 b2
1 c2 c2 c2 b2

1 b2
1 c2 c2

Oh(/Th) b2
1 b2

1 b2 a2
1 c2 a2

1 b2
1 b2 c2 a2

1

Oh(/Td) b2
1 b2

1 b2 c2 a2
1 c2 b2

1 b2 a2
1 c2

Oh(/Oh) b1 b1 b1 a1 a1 a1 b1 b1 a1 a1

Nj
1

48
1

16
1
8

1
16

1
8

1
48

1
6

1
8

1
8

1
6
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where the overbar represents the inversion of chirality. Note that each of the fixed positions

(2, 4, 6, and 8) is capable of accommodating an achiral proligand only (achirality determined

in isolation) in accord with chirality fittingness [5]. Because the four positions are fixed as

designated by one-cycles, the value 4 is placed as the C′
s-component of the markaracter M̃P.

This procedure is repeated to cover all of the cyclic subgroups up to conjugation so as to give

the markaracter:

M̃P = (8,0,0,0,4,0,2,0,0,0), (23)

which is identical with the M̃Oh(/C3v)-row of Table 12 (Eq. 15). As a result, the USCI-CFs listed

in Eq. 22 (the Oh(/C3v)-row of Table 15) are regarded as the corresponding SCI-CFs, because

the permutation representation P consists of a single orbit. Hence, Eq. 35 of [27] is adopted to

treat this case so as to generate the following CI-CF:

CI-CF(P,$d) =
1

48
b8

1 +
1

16
b4

2 +
1

8
b4

2 +
1

16
c4

2 +
1

8
a4

1c2
2 +

1

48
c4

2 +
1

6
b2

1b2
3 +

1

8
b2

4 +
1

8
c2

4 +
1

6
c2c6

=
1

48
b8

1 +
3

16
b4

2 +
1

6
b2

1b2
3 +

1

8
b2

4 +
1

12
c4

2 +
1

6
c2c6 +

1

8
a4

1c2
2 +

1

8
c2

4 (24)

by applying the data of the Nj-row of Table 7 to the SCI-CFs (Eq. 22).

Let us consider an inventory of proligands:

L = {H,A,B,C,W,X,Y,Z; p,p; q,q}, (25)

where H, A, B, C, W, X, Y, and Z are achiral proligands in isolation, while p, q, p, and q are

chiral proligands in isolation. The pair of a letter (e.g., p) and its overlined counterpart (e.g.,

p) represents an enantiomeric pair. According to Theorem 4 of [27], we use the following

inventory functions:

ad = Hd +Ad +Bd +Cd +Wd +Xd +Yd +Zd (26)

bd = Hd +Ad +Bd +Cd +Wd +Xd +Yd +Zd +pd +pd +qd +qd (27)

cd = Hd +Ad +Bd +Cd +Wd +Xd +Yd +Zd +2pd/2pd/2 +2qd/2qd/2. (28)

They are introduced into Eq. 24 to give a generating function where the coefficient of each term

HhAaBbCcWwXxYyZzppppqqqq represents the number of cubane derivatives as 3D-structural

isomers having h of H, a of A, b of B, c of C, W of W, x of X, y of Y, z of Z, p of p, p of p q of

q, and q of q. As for practical calculations, see Parts I and II of this series.

3.3.2 Cubane Derivatives as Steric Isomers

To count cubane derivatives as steric isomers, the cubane skeleton (1) is considered to belong

to the point group O. The 8 positions of 1 generates 24 permutations on the action of the

24 elements of O where they construct a permutation representation P′. The markaracter for

characterizing P′ is obtained by counting fixed positions on the action of each cyclic subgroup:

M̃P′ = (8,0,0,2,0), (29)

which has already appeared in Eq. 13 and in Table 11. The corresponding multiplicity vector

indicates the reduction shown in Eq. 14. The right-hand side of Eq. 14 is combined with the

data of the CM-CF table of O (Table 7) so as to generate the USCI-CFs for O(/C3):

(b8
1,b

4
2,b

4
2,b

2
1b2

3,b
2
4). (30)
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Because the permutation representation P′ consists of a single orbit corresponding to O(/C3),
each USCI-CF itself can be regarded as its SCI-CF. Hence, Eq. 35 of [27] is adopted to treat

this case so as to generate the following CI-CF:

CI-CF(P′,bd) =
1

24
b8

1 +
1

8
b4

2 +
1

4
b4

2 +
1

3
b2

1b2
3 +

1

4
b2

4

=
1

24
b8

1 +
3

8
b4

2 +
1

3
b2

1b2
3 +

1

4
b2

4 (31)

by using the data shown in Eq. 30 and the Nj-row of Table 7. Note that Eq. 31 contains the SI

bd only. When the ligand inventory L (Eq. 25) is adopted to count cubane derivatives as steric

isomers, the ligand-inventory function bd (Eq. 27) is introduced into the right-hand side of Eq.

31 according to Theorem 4 of [27]. Then, the expansion of the resulting function gives a gen-

erating function for counting cubane derivatives as steric isomers. As for practical calculations,

see Parts I and II of this series.

3.3.3 Achiral Cubane Derivatives

When the symbol A represents the number of achiral derivatives and the symbol C repre-

sents the number of enantiomeric pairs (a pair of enantiomers is separately counted once),

The CI-CF(P,$d) (Eq. 24) is equal to A + C, while the CI-CF(P′,bd) (Eq. 31) is equal to A

+ 2C. Hence, the CI-CF(a)(P,$d) for obtaining the number of achiral derivatives is evaluated as

follows:

CI-CF(a)(P,$d) = 2CI-CF(P,$d)−CI-CF(P′,bd)

=
1

6
c4

2 +
1

3
c2c6 +

1

4
a4

1c2
2 +

1

4
c2

4. (32)

When the ligand inventory L (Eq. 25) is adopted to count achiral cubane derivatives, the ligand-

inventory functions ad and cd (Eqs. 26 and 28) are introduced into the right-hand side of Eq.

32. As for practical calculations, see Parts I and II of this series.

3.3.4 Enantiomeric Pairs of Cubane Derivatives

On a similar line to the preceding paragraphs, the CI-CF(c)(P,$d) for obtaining the number of

enantiomeric pairs is evaluated as follows:

CI-CF(e)(P,$d) = CI-CF(P′,bd)−CI-CF(P,$d)

=
1

48
b8

1 +
3

16
b4

2 +
1

6
b2

1b2
3 +

1

8
b2

4 −
1

12
c4

2 −
1

6
c2c6 − 1

8
a4

1c2
2 −

1

8
c2

4. (33)

When the ligand inventory L (Eq. 25) is adopted to count enantiomeric pairs of chiral cubane

derivatives, the ligand-inventory functions ad , bd , and cd (Eqs. 26–28) are introduced into the

right-hand side of Eq. 33. As for practical calculations, see Parts I and II of this series.

3.4 Cycle Indices Calculated by Other Methods
The crux of the CM method is the recognition that markaracters can be regarded as Q-conjugacy

characters and vice versa. Thereby, USCI-CFs (unit subduced cycle indices with chirality fit-

tingness) based on markaracters can be derived by starting from dominant CM-CFs based on
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irreducible Q-conjugacy characters, as discussed in this article (Part III of this series). From

the inverse viewpoint, CM-CFs can be in turn calculated by starting from dominant USCI-CFs,

as discussed in Part II of this series. This means that SCI-CFs (subduced cycle indices with

chirality fittingness) and CI-CFs (cycle indices with chirality fittingness) are equivalent in both

the methods. In addition, the proligand method discussed in Part I of this series, is found to be

based on Q-conjugacy so as to be linked with the CM method. The proligand method is also

linked with the markaracter method, because a set of conjugate subgroups corresponds to a set

of Q-conjugacy classes. As a result, the SCI-CFs and CI-CFs obtained by the proligand method

are equivalent to those of the CM method and to those of the markaracter method. Such general

propositions are exemplified by the CI-CFs shown in Eq. 24 (3D-structural isomers), Eq. 31

(steric isomers), Eq. 32 (achiral derivatives), and Eq. 33 (chiral derivatives) for counting cubane

derivatives under the action of Oh (or O).

4 Conclusions
To show the versatility of the CM (characteristic monomial) method developed by us [21, 27],

the CM-CF tables of Oh and O are prepared for the purpose of enumerating cubane derivatives,

where CM-CFs (characteristic monomials with chirality fittingness) are calculated to treat achi-

ral and chiral ligands. The crux of the CM method is the recognition that markaracters can be

regarded as Q-conjugacy characters and vice versa. Thereby, USCI-CFs (unit subduced cycle

indices with chirality fittingness) based on markaracters can be derived by starting from CM-

CFs based on Q-conjugacy characters. The calculated USCI-CFs can be applied to prepare

SCI-CFs (subduced cycle indices with chirality fittingness), which are further used to prepare

CI-CFs (cycle indices with chirality fittingness). The CI-CFs for enumerating cubane deriva-

tives as 3D-structural isomers and steric isomers as well as for enumerating achiral and chiral

cubane derivatives are clarified to be equivalent to those prepared by the proligand method (Part

I of this series) as well as to those prepared by the markaracter method (Part II of this series).

A Maple program source for calculating USCI-CFs from CM-CFs is given as an example of

practical calculation.
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Appendix

Maple Program for Generating the Data of Tables 14 and 15
#cm05A.mpl
#SCI-CFs for dominant and non-dominant parts
#read "c:/fujita0/fujita/stereochm11/cubaneCM/calc/cm05A.mpl";

with(linalg);

DOh := matrix(10,10,
[[1,1,1,1,1,1,1,1,1,1],
[1,1,-1,1,-1,1,1,-1,-1,1],
[2,2,0,2,0,2,-1,0,0,-1],
[3,-1,-1,-1,-1,3,0,1,1,0],
[3,-1,1,-1,1,3,0,-1,-1,0],
[1,1,1,-1,-1,-1,1,1,-1,-1],
[1,1,-1,-1,1,-1,1,-1,1,-1],
[2,2,0,-2,0,-2,-1,0,0,1],
[3,-1,-1,1,1,-3,0,1,-1,0],
[3,-1,1,1,-1,-3,0,-1,1,0]]);

InvDOh := inverse(DOh);

ndSCIcf := proc(m::vector)
local v, SCIcf;
v:=evalm(m &* InvDOh);
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SCIcf:=vector(10);
SCIcf[1]:=sort(
(b1ˆ(v[1]))*(b1ˆ(v[2]))*(b1ˆ(2*v[3]))*(b1ˆ(3*v[4]))*
(b1ˆ(3*v[5]))*(b1ˆ(v[6]))*(b1ˆ(v[7]))*(b1ˆ(2*v[8]))*
(b1ˆ(3*v[9]))*(b1ˆ(3*v[10])),[b1,b2]);
SCIcf[2]:=sort(
(b1ˆ(v[1]))*(b1ˆ(v[2]))*(b1ˆ(2*v[3]))*
(b1ˆ((-1)*v[4]))*(b2ˆ(2*v[4]))*
(b1ˆ((-1)*v[5]))*(b2ˆ(2*v[5]))*
(b1ˆ(v[6]))*(b1ˆ(v[7]))*(b1ˆ(2*v[8]))*
(b1ˆ((-1)*v[9]))*(b2ˆ(2*v[9]))*
(b1ˆ((-1)*v[10]))*(b2ˆ(2*v[10])),[b1,b2]);
SCIcf[3]:=sort(
(b1ˆ(v[1]))*(b1ˆ((-1)*v[2]))*(b2ˆ(v[2]))*
(b2ˆ(v[3]))*(b1ˆ((-1)*v[4]))*(b2ˆ(2*v[4]))*
(b1ˆ(v[5]))*(b2ˆ(v[5]))*
(b1ˆ(v[6]))*(b1ˆ((-1)*v[7]))*(b2ˆ(v[7]))*
(b2ˆ(v[8]))*(b1ˆ((-1)*v[9]))*(b2ˆ(2*v[9]))*
(b1ˆ(v[10]))*(b2ˆ(v[10])),[b1,b2]);
SCIcf[4]:=sort(
(a1ˆ(v[1]))*(a1ˆ(v[2]))*(a1ˆ(2*v[3]))*
(a1ˆ((-1)*v[4]))*(c2ˆ(2*v[4]))*
(a1ˆ((-1)*v[5]))*(c2ˆ(2*v[5]))*
(a1ˆ((-1)*v[6]))*(c2ˆ(v[6]))*
(a1ˆ((-1)*v[7]))*(c2ˆ(v[7]))*
(a1ˆ((-2)*v[8]))*(c2ˆ(2*v[8]))*
(a1ˆ(v[9]))*(c2ˆ(v[9]))*(a1ˆ(v[10]))*(c2ˆ(v[10])), [a1,c2]);
SCIcf[5]:=sort(
(a1ˆ(v[1]))*(a1ˆ((-1)*v[2]))*(c2ˆ(v[2]))*
(c2ˆ(v[3]))*(a1ˆ((-1)*v[4]))*(c2ˆ(2*v[4]))*
(a1ˆ(v[5]))*(c2ˆ(v[5]))*(a1ˆ((-1)*v[6]))*(c2ˆ(v[6]))*
(a1ˆ(v[7]))*(c2ˆ(v[8]))*(a1ˆ(v[9]))*(c2ˆ(v[9]))*
(a1ˆ((-1)*v[10]))*(c2ˆ(2*v[10])),[a1,c2]);
SCIcf[6]:=sort(
(a1ˆ(v[1]))*(a1ˆ(v[2]))*(a1ˆ(2*v[3]))*(a1ˆ(3*v[4]))*
(a1ˆ(3*v[5]))*(a1ˆ((-1)*v[6]))*(c2ˆ(v[6]))*
(a1ˆ((-1)*v[7]))*(c2ˆ(v[7]))*
(a1ˆ((-2)*v[8]))*(c2ˆ(2*v[8]))*
(a1ˆ((-3)*v[9]))*(c2ˆ(3*v[9]))*
(a1ˆ((-3)*v[10]))*(c2ˆ(3*v[10])), [a1,c2]);
SCIcf[7]:=sort(
(b1ˆ(v[1]))*(b1ˆ(v[2]))*
(b1ˆ((-1)*v[3]))*(b3ˆ(v[3]))*
(b3ˆ(v[4]))*(b3ˆ(v[5]))*(b1ˆ(v[6]))*(b1ˆ(v[7]))*
(b1ˆ((-1)*v[8]))*(b3ˆ(v[8]))*
(b3ˆ(v[9]))*(b3ˆ(v[10])),[b1,b2,b3]);
SCIcf[8]:=sort(
(b1ˆ(v[1]))*(b1ˆ((-1)*v[2]))*(b2ˆ(v[2]))*
(b2ˆ(v[3]))*(b1ˆ(v[4]))*(b2ˆ((-1)*v[4]))*(b4ˆ(v[4]))*
(b1ˆ((-1)*v[5]))*(b4ˆ(v[5]))*(b1ˆ(v[6]))*
(b1ˆ((-1)*v[7]))*(b2ˆ(v[7]))*(b2ˆ(v[8]))*
(b1ˆ(v[9]))*(b2ˆ((-1)*v[9]))*(b4ˆ(v[9]))*
(b1ˆ((-1)*v[10]))*(b4ˆ(v[10])), [b1,b2,b3,b4]);
SCIcf[9]:=sort(
(a1ˆ(v[1]))*
(a1ˆ((-1)*v[2]))*(c2ˆ(v[2]))*(c2ˆ(v[3]))*
(a1ˆ(v[4]))*(c2ˆ((-1)*v[4]))*(c4ˆ(v[4]))*
(a1ˆ((-1)*v[5]))*(c4ˆ(v[5]))*
(a1ˆ((-1)*v[6]))*(c2ˆ(v[6]))*
(a1ˆ(v[7]))*(c2ˆ(v[8]))*(a1ˆ((-1)*v[9]))*(c4ˆ(v[9]))*
(a1ˆ(v[10]))*(c2ˆ((-1)*v[10]))*(c4ˆ(v[10])), [a1,c2,c4]);
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SCIcf[10]:=sort(
(a1ˆ(v[1]))*(a1ˆ(v[2]))*(a1ˆ((-1)*v[3]))*(a3ˆ(v[3]))*
(a3ˆ(v[4]))*(a3ˆ(v[5]))*(a1ˆ((-1)*v[6]))*(c2ˆ(v[6]))*
(a1ˆ((-1)*v[7]))*(c2ˆ(v[7]))*
(a1ˆ(v[8]))*(a3ˆ((-1)*v[8]))*(c2ˆ((-1)*v[8]))*(c6ˆ(v[8]))*
(a3ˆ((-1)*v[9]))*(c6ˆ(v[9]))*
(a3ˆ((-1)*v[10]))*(c6ˆ(v[10])),[a1,a3,c2,c6]);

printf("%a, %a, %a, %a, %a, %a, %a, %a, %a, %a",
SCIcf[1],SCIcf[2],SCIcf[3],SCIcf[4],
SCIcf[5],SCIcf[6],SCIcf[7],SCIcf[8],
SCIcf[9],SCIcf[10]);
end proc:

#dominant USCIs
m:= vector([48,0,0,0,0,0,0,0,0,0]); ndSCIcf(m);
m:= vector([24,8,0,0,0,0,0,0,0,0]); ndSCIcf(m);
m:= vector([24,0,4,0,0,0,0,0,0,0]); ndSCIcf(m);
m:= vector([24,0,0,8,0,0,0,0,0,0]); ndSCIcf(m);
m:= vector([24,0,0,0,4,0,0,0,0,0]); ndSCIcf(m);
m:= vector([24,0,0,0,0,24,0,0,0,0]); ndSCIcf(m);
m:= vector([16,0,0,0,0,0,4,0,0,0]); ndSCIcf(m);
m:= vector([12,4,0,0,0,0,0,4,0,0]); ndSCIcf(m);
m:= vector([12,4,0,0,0,0,0,0,4,0]); ndSCIcf(m);
m:= vector([8,0,0,0,0,8,2,0,0,2]); ndSCIcf(m);

#non-dominant USCIs
m:= vector([12,12,0,0,0,0,0,0,0,0]); ndSCIcf(m);
m:= vector([12,4,4,0,0,0,0,0,0,0]); ndSCIcf(m);
m:= vector([12,4,0,8,0,0,0,0,0,0]); ndSCIcf(m);
m:= vector([12,4,0,0,4,0,0,0,0,0]); ndSCIcf(m);
m:= vector([12,0,2,4,2,0,0,0,0,0]); ndSCIcf(m);
m:= vector([12,4,0,4,0,12,0,0,0,0]); ndSCIcf(m);
m:= vector([12,0,2,0,2,12,0,0,0,0]); ndSCIcf(m);
m:= vector([8,0,4,0,0,0,2,0,0,0]); ndSCIcf(m);
m:= vector([8,0,0,0,4,0,2,0,0,0]); ndSCIcf(m);
m:= vector([6,6,2,0,0,0,0,2,0,0]); ndSCIcf(m);
m:= vector([6,2,0,4,2,0,0,2,0,0]); ndSCIcf(m);
m:= vector([6,2,0,2,0,6,0,2,2,0]); ndSCIcf(m);
m:= vector([6,6,0,0,2,0,0,0,2,0]); ndSCIcf(m);
m:= vector([6,2,2,4,0,0,0,0,2,0]); ndSCIcf(m);
m:= vector([6,6,0,6,0,6,0,0,0,0]); ndSCIcf(m);
m:= vector([6,2,2,2,2,6,0,0,0,0]); ndSCIcf(m);
m:= vector([4,4,0,0,0,0,4,0,0,0]); ndSCIcf(m);
m:= vector([4,0,2,0,2,4,1,0,0,1]); ndSCIcf(m);
m:= vector([3,3,1,3,1,3,0,1,1,0]); ndSCIcf(m);
m:= vector([2,2,2,0,0,0,2,2,0,0]); ndSCIcf(m);
m:= vector([2,2,0,2,0,2,2,0,0,2]); ndSCIcf(m);
m:= vector([2,2,0,0,2,0,2,0,2,0]); ndSCIcf(m);
m:= vector([1,1,1,1,1,1,1,1,1,1]); ndSCIcf(m);
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