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Abstract 
 The use of statistical moments in the analysis of linear multicompartmental systems is most 
important in the forward problem; i.e., to obtain analytical symbolic expressions from a known 
linear compartmental system, and in the inverse problem; i.e., when estimating the involved 
fractional transfer constant from fitting experimental data to the symbolic equations. Nowadays, 
however, the use of these statistical moments is practically limited to the zeroth, or the first ones, 
and to very simple compartmental systems. In this work, we obtain general symbolic expressions as 
an explicit function of the fractional transfer constants for the statistical moments of any order and 
for any linear compartmental system, simple or complex, with zero input, open or closed, with or 
without traps. We apply the results to four examples. The numerical values of the statistical 
moments of different orders, together with the corresponding symbolic expressions, enable us to 
evaluate the different transfer constants involved in the linear compartmental system under study. 
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The number of statistical moments obtained (of zero-, first-, second-, etc., order) depends on the 
number of fractional transfer constants to be evaluated. The proposed experimental design depends 
on the form of the corresponding symbolic equations for the moments. Finally, by using the general 
expression for the statistical moment, important pharmacokinetic parameters (such as AUC, AUMC 
and MRT) can be obtained.  
 

1. INTRODUCTION 
The inverse problem of linear compartmental systems consists in the parameter 

estimation from the equations that provide the instantaneous amount of matter or the 

instantaneous rate in one or more system’s compartments. These equations are generally 

multi-exponential, and estimating the parameters is possible by fitting the experimental data 

to one or more of these equations. Although different fitting methods exist, they present 

difficulties. The most important methods are [1]: the curve peeling methods for decay 

exponential curves and the methods for fitting sums of exponentials. A more recent method is 

the statistical moments method of a multi-exponential function, which provides the 

instantaneous amount or rate of substance in a compartment [1-3]. 

 

In chemistry, statistical moments have been widely used for more than fifty years to 

evaluate the mass diffusion phenomenon [4] in chromatography [5, 6], tracer kinetics [7], 

metabolism and distribution studies [8], and in the estimations of rate constants in several 

simple and complex chemical kinetic systems [9]. More recently, the use of moment 

equations to predict the dynamics of systems in stochastic chemical kinetics has increased 

[10-14]. Statistical moments for the parameter estimations of linear multicompartmental 

systems and for other applications are also widely used in different fields of pharmacokinetics 

[15-17], enzyme kinetics [2, 18-20], evaluation of residence times [21, 22], among others [12, 

13, 23-27]. 

 The utility of these statistical moments is twofold: they define the fundamental mean 

kinetic parameters, such as the mean residence time (MRT) [28-30], the Area Under the 

plasma concentration Curve (AUC) or the Area Under the First Moment Curve (AUMC) [9, 

31] to then obtain the corresponding symbolic expressions; as mentioned above, by 

comparing these symbolic expressions with the numerical values of the same corresponding 

statistical moments obtained from the experimental data, it is possible to determine all, or 

some of, the fractional transfer constants involved in the linear compartmental system under 

study. Obtaining the numerical values of statistical moments generally requires a numerical 
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integration to obtain the area under a certain time course curve depending on the order of the 

statistical moment to be obtained. Therefore, statistical moments are useful for two main 

objectives in a compartmental analysis: the forward problem; i.e., obtaining analytical 

symbolic expressions from a known linear compartmental system; the inverse problem; i.e., 

acquisition of the fractional transfer coefficients from fitting experimental data to symbolic 

equations. 

 In spite of its importance, the study of statistical moments in linear compartmental 

systems has, in our opinion, important limitations, which we attempt to circumvent with the 

present contribution. These limitations are: (1) obtaining statistical moments is practically 

limited to open linear compartmental systems as these are handled in pharmacokinetic 

models. Only recently have statistical moments been used by our group in the closed 

compartmental system form by the enzyme forms of three enzyme systems [2, 3, 18]; (2) 

statistical moments in linear compartmental systems have been almost exclusively applied to 

determine the mean MRT, AUC and AUMC parameters in the pharmacokinetics field; this is 

possibly because they involve only zero or first-order statistical moments, which are easy to 

find. Only recently have second-order statistical moments (in addition to zero and one-order 

moments) been used [2, 18]; (3) obtaining statistical moments, even those of low orders, in 

linear compartmental systems of certain complexity prove mathematically laborious [1]; (4) 

general expressions for statistical moments of any order have been given [1, 32-36]; however, 

they are not explicit functions of the fractional transfer constants involved in the linear 

system, but of amplitudes Ai and arguments i�  involved in a sum of the type 
1

i

m
t

i

i

A e�

�

� , and are 

not an explicit function of all the fractional transfer coefficients involved. Only the symbolic 

expressions of zero-order statistical moments have been obtained for simple linear 

compartmental systems and, in some cases, they have been acquired as an explicit function of 

the fractional transfer involved. (5) Obtaining symbolic expressions for statistical moments of 

any order as an explicit function of the transfer constants, even for simple compartmental 

systems, currently implies serious mathematical algebraic problems [1].  

 The main purposes of this contribution are to obtain general symbolic expressions for 

the statistical moments of any order and for any linear compartmental system, simple or 

complex, with zero input, open or closed, with or without traps. The numerical values of the 

statistical moments of different orders, together with the corresponding symbolic expressions, 
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allow us to evaluate the different transfer constants involved in the linear compartmental 

system under study. The number of statistical moments to be obtained (of zero-, first-, 

second-, etc., order) depends on the number of fractional transfers to be evaluated, while the 

proposed experimental design depends on the form of the corresponding symbolic equations 

for the moments.      

 

2. PRELIMINARIES  
 The linear compartmental system model under study in this paper is open or closed, 

with or without traps, in which the matter is injected at t = 0 instantly (zero input or bolus) 

into one system compartment, or more. Seeing that the kinetic behaviour of any open system 

is the equivalent to the corresponding closed one obtained by adding a hypothetical 

compartment, which collects all the excretions, this contribution treats open systems as the 

corresponding closed systems. In this section, aspects of the structure of Closed Linear 

Systems (CLS hereafter) and some definitions and notations required to fulfil this 

contribution’s objectives are summarized and have been taken from previous contributions [1, 

37-46]. The structure of the compartmental systems can be treated from the points of view of 

their connection diagrams and the matrix´s set of linear differential equations describing 

kinetic behaviour. Both aspects of the structure are complementary.  

Regarding connection diagrams, both connectivity diagrams (also called directed 

graphs) and condensation diagrams, by classes, are treated. Regarding the compartmental 

system structure in accordance with the system matrix, there are interesting properties that 

also help fulfil the purposes of this work. 

 

2.1. Connection diagrams 
  The connection diagrams in CLS can be directed graph and condensation diagrams. 

To illustrate the definitions in this section, the directed graph shown in Figure 1 is used. 

 
2.1.1. Directed graphs   

 One of the characteristics of directed graphs is that the origin and destination of all the 

connections (arrows that represent the direct flux of substance between compartments) are at 

one point (identified as a compartment) [1, 37].  
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This contribution selects the points (black circles) and directed segments, as the 
connections between them, as a representation form of the compartments.   
 

2.1.1.1. Notation and definitions 

n: Number of compartments in the CLS, e.g., n = 9 in Fig. 1.  

X1, X2, ..., Xn: Each n compartment of the CLS. In Fig. 1, the compartments are 

denoted by X1, X2, ..., X9. 

 

Path connecting Xi with Xj: Set of oriented segments, which are all in the direction from Xi 

to Xj which connects compartment Xi with Xj but with no repetition of compartments. The 

number of segments in a path is called the length of the path; i.e., in the CLS of Fig. 1, there 

are two paths connecting compartments X2 and X9; one is X2�X3�X4�X7�X8�X9, of  

length 5, while the other is X2�X3�X4�X9 of length 3.  

 

Ki,j (i,j =1, 2, ..., n; i� j): the fractional transfer coefficient, or simply the transfer constant,  

which corresponds to the direct flux of the matter from compartment Xi to compartment Xj. 

These constants are always non-negative. Figure 1(a) indicates all the transfer constants. 

 

Ki,o (i= 1, 2, ..., n): the fractional excretion coefficient, or simply the excretion constant, which 

corresponds to the direct flux of matter in an open linear compartmental system from 

compartment Xi to the environment. When this system is treated as a closed system by adding 

a hypothetic compartment Xn+1, which collects all the excretions, constant Ki,o must be 

replaced with constant Ki,n+1. Once the desired results have been obtained, Ki,n+1 must be 

replaced with Ki,o. These constants are always non-negative.   

 

Successor and precursor compartments of a given compartment: let Xi (i=1,2,...,n) be any 

compartment of a system. We say that compartment Xi is the precursor of compartment Xj (j 

= 1,2,...,n), which is denoted by Xi��  Xj, if there is a path connecting compartment Xi with 

compartment Xj. If Xi�Xj exists, we say that Xj is the successor of Xi. Evidently, a 

compartment is a successor and a precursor of itself. By means of the notation Xm�� Xi, we 

indicate that compartment Xm is not a precursor of compartment Xi.  For example, in the CLS 

of Fig. 1, X3 is the precursor of X8 and, therefore, X8 is the successor of X3, as X8��  X3. 
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Figure 1. Directed graph and condensation diagram corresponding to the same example of a CLS system of 9-
compartments (a) Directed graph: X1, X2, ..., X9 denote the compartments, the directed segments represent the 
flux of substance between compartments, and K1,2, K2,1, ..., K9,7 are the fractional transfer coefficients relating to 
these fluxes. The compartments inside each dashed circle, which are auxiliaries, are those belonging to the same 
class. (b) Condensation diagram: there are 4 classes that have been marked with solid-line circles and they 
correspond to the auxiliary circles from (a). Classes are denoted by C1, C2, C3 and C4 and are: C1 = {X1, X2}, C2 
= {X3, X4}, C3 = {X7, X8, X9}, C4 = {X5, X6}. C1 is an initial class, C2 is a transit class and C3 and C4 are final 
classes. Observe how the connection of two classes is drawn by only one arrow.  

�� : a set whose elements are the subindices of the notation from those compartments in which 

a zero input is made. For example, if in CLS these inputs are made in X2 and X5, then 

	 
2,5� �  

 

ω
expression -dependent

k
k

�
� :  sum extended to absolutely all the elements of set �   

 

2.1.2. Condensation diagrams 

 Directed graph elements can be grouped according to certain criteria to obtain 

representations known as condensation diagrams. 
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2.1.2.1. Notation and definitions 

 Class or strong component of a directed graph: a set of system’s compartments; any 

of them can be a precursor of all the others belonging to this set. If a compartment is a 

precursor of all the other compartments in the class, it is also the successor of them all. We 

can conclude that the compartments belonging to a class are simultaneously precursors and 

successors of them all. All the CLS compartments belong to only one class. Thus, a directed 

graph may consist in one or more classes; in turn, a class may contain one or more 

compartments. Therefore in a directed graph, we can distinguish several subgraphs, one for 

each class of the system. The class concept [44] is the equivalent to the strong component [1], 

and is the second word of equivalence class due to the following relationship between 

compartments: "to be a successor and a predecessor of" has reflexive, symmetric and 

transitive properties. Therefore, it creates a partition of the set to which it is applied (the 

compartmental system) in the subsets that are equivalence classes, and each is formed for the 

compartments that fulfil the relationship. Figure 1 depicts the four classes and the 

compartments  belonging to each one. The scheme resulting in the representation of a directed 

graph, corresponding to a compartmental system, through its classes (circles, although points 

are talk) and the flow of the matter between them (directed segments) is called a condensation 

diagram by classes. Figure 1 (b) shows the condensation diagram of the directed graph of 

Fig. 1 (a). 

�: a class to which compartment Xi belongs. For example, in the CLS of Fig. 1,       is the 

class to which compartment X6 belongs, e.g., class C3={X5, X6}.       

                                   

Initial class: a class to which compartments are not the successors of the compartments 
belonging to the other classes. In the condensation diagram of Fig. 1(b), C1 is an initial class.  

Final class: a class whose compartments are not the precursors of the compartments 
belonging to the other classes. The final class concept coincides with the definition of a 
simple trap [1, 37]. In the CLS of Fig. 1(b), C3 and C4 are final classes. 

Transit class: any system class that does not fulfil the initial or final class conditions defined. 
In the condensation diagram of Fig. 1(b), C2 is a transit class. 
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 In a condensation diagram corresponding to a CLS, there will always be an initial and 

a final class. There may be no transit classes. If a condensation diagram is formed by only one 

class, then it is considered a final class [44]. 

2.2. The system matrix and some of its properties 

 The knowledge of the properties of this matrix, its eigenvalues, its characteristic 

polynomial, its minors of the (n-1)-th order, etc., is essential to obtain the kinetic equations of 

compartmental systems [38, 40, 43-45]. This matrix is an essential connection between the 

structural and kinetic study of CLS [38, 40, 43-45]. To illustrate this section, we will use the 

CLS indicated in Fig. 2.  

 

2.2.1. Notations and definitions 

 In addition to the notations and definitions already used in this section, some 

additional definitions and notations have been included [38, 40, 43-45] which are useful for 

the CLS analysis. To support this task, the CLS shown in Fig. 2(a) are also employed.  

 

K: the matrix of the set of differential equations system that describes the kinetics of the CLS 

under study. This is given by: 

 

1,1 2,1 ,1

1,2 2,2 ,2

1, 2, ,

n

n

n n n n

K K K
K K K

K K K

� 

� �
� ��
� �
� �
� �


1K
�

,1 

1
�K �,2K ��K �

,

�, ,

�
��

�
��
�,

�K �,n,K ��K �

K              (1) 

 

where elements Ki,j (i=1,2,...,n; i≠j) are the above-defined fractional transfer coefficients, 

while the elements of the main diagonal Ki,i (i=1,2,...,n) are defined by the expression below: 

 

, ,
1

n

i i i j
j
j i

K K
�
�

� ��        (i = 1, 2, ..., n)                                                                                    (2)                             

For the example of Fig. 2, this matrix is:  
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1,1 2,1

1,2 2,2

2,3

1,4

0 0
0 0

0 0 0
0 0 0

K K
K K

K
K

� 

� �
� ��
� �
� �
� �

K                                                                                                       (3) 

where: 

1,1 1,2 1,4

2,2 2,1 2,3

( )
( )

K K K
K K K

� � �
�� � �

=
=

                                                                                              (4) 

X1 X2

2,3K2,1K

1,2K

X3X4

(a)

(b)

1,4K

C1={X1,X2}

C2={X3}C3={X4}

 
Figure 2 (a) Directed graph of CLS. (b) Condensation diagram where the classes and compartments belonging to 
each one are shown. C1 is an initial class and C2 and C3 are final classes.  
 
Characteristic polynomial, D (λ): the determinant of matrix K of the system. This 
determinant is given by the following expression: 
 

1,1 2,1 ,1

1,2 2,2 ,2

1, 2, ,

( )

n

n

n n n n

K K K
K K K

D

K K K

�
�

�

�

�
�

�

�

,1K

,2K
,

, , ,

,n,K �

                                                                        (5) 
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The expansion of this determinant leads to its polynomial form; i.e., the characteristic 

polynomial of matrix K. By following the example of Fig. 2(a), this determinant is:  

1,1 2,1

1,2 2,2

2,3

1,4

0 0
0 0

( )
0 0

0 0

K K
K K

D
K

K

�
�

�
�

�

�
�

�
�

�

                                                                                 (6) 

 

 λj (j = 1, 2, ..., n): eigenvalues of matrix K. They coincide with the roots of the characteristic 

polynomial D(λ). 

u: number of non-null eigenvalues of matrix K. This number coincides with the number of  
non-null roots of polynomial D(λ). 
 

λ1, λ1, …, λu: non-null roots of characteristic polynomial D(λ). Therefore, they are the non-

null eigenvalues of matrix K. In this contribution, we assume that the non-null eigenvalues of 

matrix K are simple, i.e., they are not repeated, which is the most probable and frequent 

situation. Hearon [47] demonstrated that the non-null eigenvalues of a dominant diagonal 

matrix, like matrix K, are real, negative or complex with the real negative part, and that they 

are never purely imaginary (i.e., complex with the real part null). 

 

c: number of null eigenvalues of matrix K; i.e.,  number of null roots of polynomial D(λ). 

This value coincides with the number of final classes of CLS. Because the system is closed, 

then c ≥ 1 is fulfilled [1, 40, 44]; i.e., at least one null root exists. Because the number of 

eigenvalues of matrix K is n, it is obvious that:  

 

n = u + c                                                                                                                (7) 

Dk,i(λ) (k,i = 1, 2, ..., n): is the resulting determinant of order n-1, when the k-th row and the 

i-th column have been removed from ( )D � . For example, the determinants D1,2(λ), D2,2(λ), 

D1,3(λ) and D2,3(λ) corresponding to the system of Fig. 2 are:  
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1,2

1,2

1,4

0 0
( ) 0 0

0

K
D

K
� �

�
� �

�
                                                                                          (8) 

 

1,1

2,2

1,4

0 0
( ) 0 0

0

K
D

K

�
� �

�

�
� �

�
                                                                                     (9) 

 

1,2 2,2

1,3 2,3

1,4

0
( ) 0 0

0

K K
D K

K

�
�

�

�
�

�
                                                                                   (10) 

 

1,1 2,1

2,3 2,3

1,4

0
( ) 0 0

0

K K
D K

K

�
�

�

�
�

�
                                                                                             (11) 

2.2.2. Some properties of the characteristic polynomial D(λ) 

 The expansion of characteristic polynomial, D(λ), given by Eq. (5), leads to the 

following polynomial [38, 43]: 

 

( ) ( 1) ( )n cD T� � �� �             (12) 

 

Where: 

0
( )

u
u q

q
q

T F� � �

�

��       (F0 =1)           (13) 

  

The coefficients Fq (q=0, 1, ..., n-1) in Eq. (13), where F0 is always equal to 1, may be 

obtained by expanding the characteristic polynomial D(λ) corresponding to Eq. (5). However, 

this procedure may prove very tedious and can be prone to possible human error, even when 

systems are not very complex. Varon et al. (1995) [38] proposed an alternative, simple and 

systematic method to obtain these coefficients, which avoids this problem. More recently, 
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Garcia-Meseguer et al. [43] implemented a software called COEFICOM, available at 

http://oretano.iele-ab.uclm.es/~fgarcia/COEFICOM/), which provides these coefficients in a 

suitable fashion, as well as the u and c values.   

According to the polynomial theory, eigenvalues h� (h = 1,2,...,u), which are the roots 

of polynomial ( )T � , have the following properties:  

  

1 2 1

1 2 1 3 1 2

1 2

···
···

··· ( 1)

u

u n

u
u u

F
F

F

� � �
� � � � � �

� � �

�

� � � � � �
�� � � � �
�
�
�� � �

        (14) 

 

The sum of all the product q-narys of eigenvalues h� (h =1,2,...,u) is denoted by Pq 

(q= 1,2,...,u). For completeness purposes, P0 = F0 = 1 is done. The relation between Pq and Fq 

is: 

 

( 1)q
q qP F� �       (q =0,1,2,...,u)                                                                                    (15) 

Then, by way of example, the expressions of the coefficients of the characteristic 

polynomial D(λ) corresponding to Fig. 2(a) are provided. After taking Eq. (6) into account, 

D(λ) for this scheme is: 

 
2 2

1 2( ) ( )D F F� � � �� � � �                                                                                                  (16) 

 

Therefore, determinant ( )T �  is given by: 
2

1 2( )T F F� � �� � �                                                                                                             (17) 

where 

F1 = K1,2 + K1,4 + K2,1 + K2,3                                                                                             (18) 

 

F2  = K1,2K2,3 + K1,4K 2,1 + K1,4K2,3                                                                                       (19) 

and it is verified that u = 2 and c =2. For this example, polynomial D(λ) has four roots; two 

are null and two are non-null (λ1 and  λ2), which coincide with the roots of polynomial 

( )T � given by Eq. (17).  
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2.2.3. Some properties of determinant Dk,i(λ) (k,i = 1, 2, …,n) 

 The expansion of Dk,i(λ) (k,i = 1, 2, …, n) leads to [38, 39, 43, 48, 49] 

1 1
, ,

0
( ) ( 1) ( )

u
n i k c u q

k i k i q
q

D f� � �� � � � �

�

� � �  [(fk,i)0 = 0 si k ≠ i; (fk,i)0 = 1 si k = i]                   (20) 

where coefficients (fk,i)q, if not 0 or 1, consist in a sum of terms involved in the corresponding 

coefficient Fq and they are always non-negative. The coefficients (fk,i)q (q = 1, 2, ..., u) of this 

minor can be obtained in different ways: 1) expansion of determinant Dk,i(λ) and using 

Eq. (20). 2) It is easier to use the corresponding coefficients Fq (q = 1, 2, ..., u) in polynomial 

D(λ) through a systematic procedure, which avoids expanding the minor [43]. 3) The 

aforementioned COEFICOM software [43] also provides coefficients  (fk,i)q (q = 1, 2, ..., u).  
 

 Below, we provide an example of how to use the aforementioned (1): the expressions 

of coefficients (fk,i)q (k=1,2; i=2,3; q=0,1,2) result from expanding determinant Dk,i(λ) (k=1,2; 

i=2,3) expressed in Eqs. (8)-(11). Thus for k=1 and i=2, the expansion of the determinant in 

the Eq. (8) is: 
 

2
1,2 1,2( )D K� ��                                                             (21) 

 

 On the other hand, we have general equation (20) which can, in this case be k=1, i=2, 

n = 4, u = 2 and c = 2, and can be written as so: 
 

� �2
1,2 , 0 , 1 , 2( ) ( ) ( ) ( )k i k i k iD f f f� � � �� � �                                         (22) 

 

By comparing Eqs. (21) and (22), the following is immediately obtained: 

� �
� �
� �

1,2 0

1,2 1,2  1

1,2 2

 0

  

 0

f

f K

f

��
��� �
�

� ��

                                                                                                                                                                       (23) 

  

By reasoning analogously with determinants 2,2 ( )D � , 1,3 ( )D �  and 2,3 ( )D � , we find 

that:  
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� �
� �
� �

2,2 0

2,2 1,2 1,41

2,2 2

 1

    

  0

f

f K K

f

��
��� � �
�

� ��

                                                                                                                                                             (24) 

 

� �
� �
� �

1,3 0

1,3 1

1,3 1,2 2,32

  0

 0

  

f

f

f K K

��
��� �
�

� ��

                                                                                                                                                                      (25) 

� �
� �
� �

2,3 0

2,3 2,31

2,3 1,2 2,3 1,4 2,32

 0

 

    

f

f K

f K K K K

��
��� �
�

� � ��

                                       (26)

   

2.2.4. Some properties of coefficients (fk,i)q (q=1,2,…,u) relating with the structure of the 
CLS  
 

 It is possible to apply the following additional characteristics, a)-d) [43, 44] to 

coefficients (fk,i)q as so: 

  

 a) If � (i = 1, 2, ..., n) is not a final class, then  

(fk,i)u = 0           (27) 

b) If Xk (k = 1, 2, ..., n) ��  Xi (i = 1, 2, ..., n), then all the coefficients (fk,i)q (q = 0, 1, ..., u) are 
null and vice versa, i.e.,: 

Xk  (k = 1, 2, ..., n) ��  Xi (i = 1, 2, ..., n) �  (fk,i)0 = (fk,i)1 = ... = (fk,i)u = 0           (28) 

c) If  Xk (k = 1, 2, ..., n) �  Xi (i = 1, 2, ..., n) then (fk,i)u-1 � 0 and vice versa, i.e.,: 

Xk  (k = 1, 2, ..., n) �  Xi (i = 1, 2, ..., n) �  (fk,i)u-1 � 0     (29) 

d) If  Xk (k = 1, 2, ..., n) �  Xi (i = 1, 2, ..., n) and � is a final class, then (fk,i)u � 0 and vice 
versa, i.e.,: 

Xk  (k = 1, 2, ..., n) �  Xi (i = 1, 2, ..., n) and � is a final class �  (fk,i)u � 0  (30) 
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3. THEORY 
3.1. Instantaneous amount of the matter in the compartments of a CLS with 

a zero input 
 In the equations corresponding to the instantaneous amount of matter in any 

compartment Xi a, the CLS with a zero input in one or more of its compartments are [39, 43, 

50]:  
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If there is one non-null eigenvalue, 1� , then the denominator of Eq. (33) is 1� , and is 

equal to –F1. The amplitudes Ai,h (h = 1,2,...,u), given by Eq. (33) are explicit functions of the 

corresponding eigenvalue h�  (h = 1,2,...,u) and of the remaining u-1 eigenvalues p�  

(p=1,2,...,u; p h� ) of the transfer rate constants involved in the process through coefficients 

(fk,i)q (q=0,1,2,…,u), and of the initial amount of matter in the different compartments. Ai,0 is a 

non-negative quantity that depends on the transfer constants involved in the process through 

coefficients ,( )k i uf k ��  ( )  and Fu, and of the initial amounts of matter in the different 

compartments, whose meaning is the value of xi at high t-values, or, mathematically as so: 

 

,0 limi it
A x

�"
�               (34) 

 

If compartment Xi does not belong to a final class, then Ai,0=0 because, in this case, all 

the coefficients ,( )k i uf k ��  ( )  involved in Eq. (32) are null, as indicated in the previous 

section. Moreover, Eq. (31) can be written as: 
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with ,i hA given by: 
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thus ,( ) 0k i uf k �� �  ( )  is the numerator of Eq (33); therefore, we can have eigenvalue h�  as a 

common factor which is cancelled by the value of its denominator.  

If ,0 0iA � , which happens if, and only, if ,( ) 0  ( )k i uf k �� � , then Eqs. (31)-(33)  

remain unchanged. If, in this case, we take the time derivative in Eq. (31) and we take into 

account Eq. (33), we obtain: 
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3.2. Definition of function gi(t) associated with function xi 

We define function gi(t) associated with function xi as follows: 
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i.e., 
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where: 
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      (40) 

 

 3.3. The statistical moments of function gi(t) 

 From the well-known definition of the statistical moment of order j of one function 

[51-54], the j-th (j = 0,1,2,....) statistical moment (which we denote Mj,i ) of any of the above-

defined functions gi(t) is given by:  

 

, 0
( )j

j i iM t g t dt
"

� '    (j = 0,1,2,....)                  (41) 

 

The j-th statistical moment, Mj,i, can be obtained as either a symbolic expression from 

the expressions of gi(t) and the analytical integration indicated in Eq. (41), or numerically 

from the experimental time course of gi(t) by considering that the integral on the right-hand 

side of Eq. (41) coincides with the area below the curve ( )j
it g t between t = 0 and t �"  

( t �"must be interpreted as a time, and arbitrarily chosen by the worker, at which it is 

assumed that ( )j
it g t 0� ).  

 

If in Eq. (41) we insert Eq. (39), we find that: 
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The integral in Eq. (42) is the well-known Gamma Function [51], given by: 
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If we bear in mind that Eq. (43), then Eq. (42) can be written as: 
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The Mj,i expression is obtained with Eq. (44) by replacing the expressions of ,i h&  

(h= 1,2,...,u), by subsequently performing the indicated sum and by finally considering the 

relationships between arguments h�  (h = 1,2,...u). By proceeding in this way, the general 

symbolic expressions Mj,i for those cases in which Ai,0 is zero, or not, is obtained 

 

3.2.1. Derivation of expression Mj,i for the case of Ai,0 = 0 

 In this case, ,i h&  (h = 1,2,...,u) is given by the first of the Eqs. (40). If we replace this 

expression in Eq.(44), we obtain: 
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Eq. (45) can also be written as: 
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Eq. (25) shows the expression: 
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Which is of this type: 
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where r = j+1-(u-1)+q. In the following cases, we will write rq instead of r to indicate that r 

depends on q; i.e.,: 

 

rq = j+1-(u-1)+q          (49) 

  

 Our work group has developed an algorithm [55-57], which is summarized in the 

Appendix, that allows us to easily obtain the sum indicated in Eq. (48). We slightly adapt the 

expressions in the Appendix by replacing n with u, r with rq and v with q. As seen in the next 

section, this algorithm allows us to obtain this sum expressed as a function of the coefficients 

F1, F2,…, Fu involved in polynomial ( )T � . The result of the sum depends on the relative 

values of u and rq, and on rq being negative, positive or null.  

 Should we replace the expression given by Eq. (47) in Eq. (46) in accordance with  

Eq. (A1) in the Appendix, then we obtain: 
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3.2.2. Derivation of expression Mj,i for the case ,0 0iA �  

 In this case, h&  (h = 1,2,...,u) is given by the second of the Eqs. (40). If we replace this 

expression in Eq. (44), we obtain: 
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Eq. (51) can also be written as: 
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Eq. (52) shows the expression: 
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which is of the same type as Eq. (48) where: 

 

 r = j+1-u+q                                                                                                                    (54) 

 

As in the case before, we can write rq instead of r to indicate that r depends on q; i.e.: 

 

rq = j+1-u+q                                                                                                                  (55) 

  

 If in Eq. (52) we replace the expression given by Eq. (51) with the corresponding one 

in accordance with Eq. (A1) in the Appendix, then we obtain: 
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4. RESULTS AND DISCUSSION 
 In this contribution, we obtain the general equations to determine the moments of any 

order j (j=0,1,2,…) corresponding to function, gi(t), which gives either the instantaneous 

amount of matter, xi, in compartment Xi (i=1,2,…,n), when Ai,0 =0 [Eq. (50)], or the time 

derivative of this instantaneous amount, in which case, Ai,0 ≠0 [Eq. (56)]. The reason to 

choose function gi(t) as dxi/dt  when Ai,0 ≠0 is that the j-th moment (j=0,1,2,…) defined by Eq. 

(41) is finite. However, if we use xi instead of dxi/dt, then the integral of Eq. (41) is infinite. 

 Both Eqs. (50) and (56) are involved in the initial amount of matter 0   ( )kx k �� in 

compartments Xk  ( )k �� , where a zero input is made with the u parameter, the coefficients 

(fk,i)q [q=0,1,…,u-1 in Eq. (50); q=0,1,…,u in Eq. (56)], and quantities Q(u,rq). Quantities 
0   ( )kx k ��  are either known or arbitrarily fixed. There are several strategies to obtain u 

values and (fk,i)q expressions, which are explained in the previous section. Hence, the 

expressions of sums Q(u,rq) are given by Eqs. (A2)-(A8) in the Appendix by replacing n with 

u and r with rq, and they depend on u and rq. Apart from the cases in which rq = 0, and 

-rq < u-1 (where rq < 0) and –rq = u-1 (where rq < 0), in which Q(u,rq) is equal to 0, 0 and 

(-1)u-1, respectively, in the remaining cases, Q(u,rq) depends on one or more quantities 

qP (q=1,2,…,u), and on the sum of all the different combinations of the u null eigenvalues 

taken from p to p. For instance, if u = 4; then: 

 

1 1 2 3 4P � � � �� � � �                                                                                                    (57) 

2 1 2 1 3 1 4 2 3 2 4 3 4P �� �� �� � � � � � �� � � � � �                                                                   (58) 

3 1 2 3 1 2 4 1 3 4 2 3 4P �� � �� � �� � � � �� � � �                                                                             (59) 

 4 1 2 3 4P � � � �� .                                                                                                              (60) 

 

Either of these sums of products qP  (q = 1,2,…,u) and P0 may relate to the coefficients qF  

(q=0,1,2,…; u; F0 = 1) of polynomial ( )T �  given by the equation shown below:  

 

Pq = (-1)uFq       (q=0,1,…,u; P0 = F0 = 1)                                                                   (61) 
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If we take into account Eq. (61), determinants R(u,rq) and R’(u,rq) which are featured 

in Eqs. (A5) and (A8) of the Appendix, can be expressed as: 
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(63) 

Thus by knowing coefficients qF  (q=0,1,2,…u), we can establish the determinants of 

Eqs. (62) and (63). Therefore, by considering the results of the Appendix and by then 

adapting the notation, the expressions of sums Q(u,rq), for the different possibilities of the  rq 

values are given by:  
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 Should Ai,0 = 0, then moment Mj,i is always positive, unless none of the compartments 

Xk ( )k �� is a precursor of Xi. If this is the case, then Mj,i is zero because all the coefficients 

(fk,i)q (q = 0,1,2,…,u) are zero and, therefore gi(t)=0 [see Eqs. (28) and (29)]. If conversely Ai,0 

≠0, then moment Mj,i can be positive, negative or zero since function gi(t) is the time 

derivative of the amount of matter in compartment Xi; so it can take positive, negative or zero 

values. 

In some cases, we find that there are parts of CLS that have no influence on the 

moment that has to be determined; hence, the corresponding transfer constants and, in which 

case, the initial amount of the matter in the compartments, should not influence and, therefore, 

should not be included, in the expression of the statistical moment under study. There are two 

procedures to ensure that this is so: (1) simplify the resulting equations by cancelling the 

corresponding transfer constants and initial amount of the matter in the numerator and 

denominator; (2) annul all the transfer constants Km,n in the moment expression so that Xm and 

Xn do not belong to the intersection set of successor compartments Xk ( )k ��  and precursors 

Xi. For example, if we wish to determine any moment Mj,5 (j = 0,1,2,…), that is, the j-th 

moment of function g5(t) [in this case g5(t) is dx5/dt because X5 belongs to a final class], when 

considering that a zero input is made in compartments X1 and X3, because the intersection of 

successors X1 and X3 and precursors X5 is the set {X1, X2, X3, X4, X5, X6}, it is necessary to 

eliminate the transfer constants K7,8, K8,9 and K9,7 from the Mj,5 moment expression (j = 

0,1,2,…). As this procedure may lead to uncertainties of type 0/0, these are solved by making 

each null constant equal to* and by then performing 0* � , as done in some enzyme kinetics 

cases to obtain some equations from each other [58]. Obviously, tracks (1) and (2) lead to the 

same result.  

 It is also noteworthy that, given the superposition principle, the moment expressions 

given by Eqs. (50) and (56) are the exactly the same as if they had been obtained by 

determining the j-th statistical moment of gi(t), when a zero input is made in all the 

compartments Xk ( )k �� , and by then adding these expressions.  

 

4.1. Simplifications of the general equations (50) and (56) when a zero input 
is made in only one compartment Xk.  

 The advantage of having a zero input in more than one compartment is that the 

symbolic equations obtained actually depend on the initial amount of matter in these 
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compartments. Therefore, when fitting experimental data to the obtained equation, we obtain 

several variables 0 ( )kx k �� . This means that when varying each of them for the fixed values 

of the others, we obtain more equations to be fitted to the experimental data obtained under 

the same conditions. However, the most commonplace practice involves making a zero input 

in only one compartment Xk ; for example, in a blood vessel. Here the advantage gained is 

that Eqs. (50) and (56) are considerably simpler because, in this case, 	 
k� � . However, 

there is one disadvantage as there is only one variable 0
kx available for proposing an 

experimental design of the experimental data.   

 If we consider that 	 
k� � in Eqs. (50) and (56), they can be simplified, respectively, 

in the following Eqs. (65) and (66): 
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4.2.1. Applicability of Eqs. (50) and (56) 

Equations (50) and (56) are valid for any linear compartmental system, irrespectively 

of it being open or closed, because, as mentioned above, an open system is treated as a closed 

one by adding a hypothetical compartment, Xn+1, which collects all the excretions. The 

addition of this compartment does not affect any of the original open system’s kinetic 

properties of the n compartments; therefore, none of the statistical moments is affected. A 

linear compartmental system has some general compartments for which Ai,0 = 0,  and others 

for which Ai,0 ≠ 0. There are two ways to determine if Ai,0 = 0 or Ai,0 ≠ 0: (1) if compartment 

Xi does not belong to a final class, then Ai,0=0; otherwise, if any of the compartments Xk 

( k �� ) is a precursor of Xi, then Ai,0=0; (2) to determine u and coefficients (fk,i)u ( k �� ) 

(which is very easy using the COEFICOM software). If all coefficients (fk,i)u ( k �� )  are null, 

then Ai,0=0, otherwise Ai,0 ≠ 0. 
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As previously mentioned, Eqs. (50) and (56), apart from being valid for any system 

with open or closed compartments, are also valid regardless of whether compartments have a 

zero input, or if their amount of matter or their time derivative is to be determined. In 

addition, moments are independent of the u-value; i.e., the number of non-null roots of the 

characteristic polynomial. The only condition for the validity of these equations is that the u 

non-zero eigenvalues are simple which, in practice, is most likely. 

For a zero input in one compartment, Xk, Eqs. (50) and (56) are simplified to Eqs. (65) 

and (66), respectively, as indicated above. Moreover, when applying any of the Eqs. (50), 

(56), (65) or (66) to a particular CLS, depending on the i, k and u, q and j values, it is possible 

that one or more of the coefficients (fk,i)q ( k �� ; k,i=1,2,…,n; q=0,1,2,…,u;), or one or more 

of the quantities Q(u,rq), can be null. This implies that when applying these equations, they 

can considerably reduce, thus making it easier to obtain the desired moments. In Section 4.3 

below, general equations are applied to different examples to illustrate these situations.  

 
4.3. Calculus examples of the symbolic expressions of the statistical 
moments in CLS 
 We now go on to apply the previous results to four examples. The power and 

advantages of the analysis in this contribution are evidenced when applied to complex CLS or 

when considering higher-order moments. However, and in order to not make this contribution 

lengthy, we limit these examples to simple systems to avoid loss in generality and to illustrate 

the procedure properly. The examples cover all possible casuistry; i.e., closed or open 

systems, Ai,0 equals to zero or not, and with different j values. Examples 1 and 2 correspond 

to a closed system, as indicated in Figure 2 (a), while Examples 3 and 4 correspond to an open 

system, as seen in Figure 3 (a). Examples 1 and 3 correspond to cases in which Ai,0 = 0, 

whereas Examples 2 and 4 are cases in which Ai,0 ≠0. 

 

4.3.1. Example 1 

Determination of the moments of the order 0, 1 and 2 corresponding to function x2 when a 

zero input in compartments X1 and X2 of the closed system, as indicated in Fig. 2(a) is made  

 

In this case, 	 
1,2� � and A2,0=0 (because X2 does not belong to a final class). So we 

can apply Eq. (50). The u parameter, equal to 2, and the coefficients F1, F2, (f1,2)0, (f1,2)1, 
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(f1,2)2, (f2,2)0, (f2,2)1, (f2,2)2, obtained by any of the methods explained below, are indicated in 

Eqs. (18), (19), (23) and (24). 

 

X1 X2

2,3K2,1K

1,2K

X3
(a)

(b)

1,oK

X1 X2

2,3K2,1K

1,2K

X3X4

1,oK

 
Figure 3. (a) Connectivity diagram of the open linear compartmental system corresponding to Examples 3 and 4. 
There is an excretion to the environment from compartment X1 and the excretion constant is K1,o  (b) A directed 
graph of the closed linear compartmental system, which is kinetically equivalent to the open one indicated in (a). 
This closed linear system is obtained by adding a hypothetical compartment, X4, indicated by the unfilled circle, 
which collects the excretion in the environment. Note that the closed system is the same as that indicated in Fig. 
1(a) after replacing K1,4 with K1,o.  
 

Derivation of M0,2 

If we use Eq. (50) and bear in mind that u=2 and j=0 and that Eq. (49) gives rq, we 

accomplish the following:  

 

	 
 	 
0,2
0 0
1 1,2 0 1,2 1 2 2,2 0 2,2 1(2,0) (2,1) (2,0) (2,1)( ) ( ) ( ) ( )M Q Q Q Qx f f x f f� �� �  

                                                                                                                                             (67) 
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If we take into account the two first Eqs. (64) in Eq. (67) and the expressions of (f1,2)0, (f1,2)1, 

(f2,2)0, and (f2,2)1, we obtain:   

 

1,2 1,2 1,4
0,2

2 2

0 0
1 2

K K K
M

F F
x x�

� �                                                                               (68) 

 

with F2 given by Eq. (19). 

 

Derivation of M1,2 

If we use Eq. (50) and take into account that u =2 and j =1, as well as the Eq. (49) 

which gives rq, it is fulfilled that:  

 

	 
 	 
0 0
1,2 1 1,2 0 1,2 1 2 2,2 0 2,2 1( ) (2,1) ( ) (2,2) ( ) (2,1) ( ) (2,2)M x f Q f Q x f Q f Q� 
� � � � �� �

 
                                                                                                                                             (69) 

 

If we take into account the second and third of the Eqs. (64) in Eq. (69) and the expressions of 

1,2 0( )f  1,2 1( )f , 2,2 0( )f  and 2,2 1( )f , we obtain:  

 
0 01 1

1,2 1,2 1 1,2 1,4 22
2 2 2

1 ( ) 1F FM K x K K x
F F F

# �
� � � �$ �

% �
                                         (70) 

 

with F1 and F2 given by Eqs. (18) and (19). 

 

Derivation of M2,2 

In this case, when we bear in mind that u = j = 2 and that Eq. (49) gives rq, from Eq. 

(50), we obtain: 

	 
 	 
0 0
2,2 1 1,2 0 1,2 1 2 2,2 0 2,2 12 ( ) (2,2) ( ) (2,3) ( ) (2,2) ( ) (2,3)M x f Q f Q x f Q f Q� 
� � � �� �  (71) 

If we take into account the third of the Eqs. (64) in Eq. (71) and the expressions of 1,2 0( )f  

1,2 1( )f  , 2,2 0( )f  and 2,2 1( )f , given by Eqs. (23-24), the result is:  
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2 2
0 01 2 1 1 2

2,2 1,2 1 1,2 1,4 23 2 3
2 2 2

2 ( )F F F F FM K x K K x
F F F

� 
# �� �
� � � � �$ �� �

% �� �
                 (72) 

where we bear in mind that Q(2,3), according to the third of the Eqs. (64), is:  

 

1
2

2 1 1 2
3 3

2 2

1

(2,3)

F
F F F FQ

F F

�
� �

� �                                                                               (73) 

4.3.2. Example 2 

Determination of the moment of order 2 corresponding to function dx3/dt; i.e., M2,3, when a 

zero input in compartments X1 and X2 of the closed system indicated in Figure 2(a) is made. 

 

 In this case as A3,0 ≠ 0 (because X3 does not belong to any final class), we have to 

necessarily apply Eq. (56 ), with u = 2 , j = 3 and 	 
1,2� � , to obtain, and as a result, that Eq. 

(55) gives rq, the following: 

 

	 
 	 
+ ,0 0

2 ,3 1 1 ,3 0 1 ,3 1 1 ,3 2 2 2 ,3 0 2 ,3 1 2 ,3 2
2 ( ) (2,1) ( ) (2, 2) ( ) (2, 3) ( ) (2,1) ( ) (2, 2) ( ) (2, 3)M x f Q f Q f Q x f Q f Q f Q� � � � � �  (74) 

Moreover, if in Eq. (74) the second and third expressions of Equations (64) and the 

expressions of (f1,3)0, (f1,3)1, (f1,3)2, (f2,3)0, (f2,3)1  given by Eqs. (25) and (26) are all considered, 

after reordering, we obtain:  

 

2 2
0 01 2 1 1 2

2,3 1,2 2,3 1 2,3 1,2 1,4 23 2 3
2 2 2

2 ( )F F F F FM K K x K K K x
F F F

� 
# �� �
� � � � �$ �� �

% �� �
        (75) 

 

4.3.3. Example 3 

Determining the moment of order 2 for function x2, i.e., M2,2, when zero input X1 and X2 in 

the compartmental open system, as indicated in Fig. 3(a), is made.  

 

The open compartments system shown in Fig. 3(a) is kinetically equivalent to the 

closed system in Fig. 3(b), which coincides with that of Fig. 2(a) by substituting K1,4 with 

K1,o. In this way, the moment M2,2 in the open system in Figure 3(a) is exactly the same as that 
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given in the system of Fig. 2(a) when only replacing transfer constant K1,4 with excretion K1,o 

in the result [Eqs. (72), (18) and (19)].  

 

4.3.4. Example 4 

Determination of the moment of order 2 corresponding to function dx3/dt; i.e., M2,3, when a 

zero input in compartments X1 and X2 of the open system as indicated in Fig. 3(b) is made.  

 

 The open compartmental system shown in Fig. 3(a) is kinetically equivalent to the 

closed system in Fig. 3(b) which matches that in Fig. 2(a) when replacing K1,4 with K1,o. The 

moment M2,3 in the open system in Fig. 3(a) is exactly the same as that determined for the 

system in Fig. 2(a), and it is only necessary to replace fractional transfer constant K1,4 with 

excretion K1,o in the results [Eqs. (75), (18) and (19)]. 

 

4.4. General symbolic expressions of AUC, AUMC and MRT. 

 The general symbolic expressions obtained in this contribution can be widely applied, 

as discussed above. In this section, we apply them to obtain the symbolic expressions of the 

mean kinetic and widely used parameters AUC, AUMC, particularly in pharmacokinetics [9, 

31, 59-61], in relation to a compartment, Xi (usually a blood vessel, for which Ai,0 = 0), and to 

obtain the symbolic expression of MRT. In addition, and for convenience purposes, we only 

consider the case that a zero input is made in only one compartment, Xk, which should be 

used to determine the moments; see Eq. (65). The symbolic expressions obtained for these 

kinetic parameters are valid for any open linear compartmental system (which we study as the 

equivalent closed one). As far as we know, the literature offers no similar expressions that 

provide these parameters for any type of system, regardless of its complexity, as explicit 

functions of the transfer constants of the excretion constants. To date, only analytical 

expressions of these parameters have been obtained as a function of the transfer and excretion 

constants for very specific simple systems [62-64].   

 

4.4.1. AUC, Area Under the Curve  

 AUC is the zeroth moment [9, 59, 60] and, therefore, if in Eq. (65) it is set as j = 0, we 

obtain: 
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� �
1

0
,

0
1 ( ) ( , )

u
u

k k i q q
q

AUC x f Q u r
�

�

� � �                                                                             (76) 

The general equation shown above can be simplified considerably if we bear in mind the 

values of Q(u,rq) for the different values of rq (q=0,1,2….u-1) indicated in Table 1. Table 1 is 

general for any u value; however, the results it provides are also the number of rows in it. The 

values in each cell vary depending on the particular u value. For example, if  u = 1, there will 

only be a single row of values of q, rq and Q(1,rq), which will be 0, 1 and -1/F1, respectively.  

 

Table 1 
Values of q (q=0,1,…u-1), the corresponding values of rq [obtained from Eq. (49) with j=0] and the expressions 
of the corresponding quantities Q(u,rq) [obtained according to Eqs. (64)]. In gray, the q values that give a 
negative value of rq, such as - rq<u-1, are indicated. In these cases, and according to the fourth of the Eqs. (64), 
then Q(u,rq)=0.  In black, we see the q value that gives a null value of rq. In this case, and according to the first 
of the Eqs. (64), then Q(u,rq) = 0  
 

q rq - rq Q(u,rq) 

0 2-u u-2  (<u-1) 0 

1 3-u u-3 (<u-1) 0 

    

u-3 -1 (=u-1-u) 1 (<u-1) 0 

u-2 0  0 

u-1 1  ( 1) /u
uF�  

 

Eq. (76) for AUMC can be simplified to the following Eq. (77) if we consider the values of 

Q(u,rq) for the possible different values of rq (q=0,1,2.,u-1) indicated in Table 1. 

, 1 0( )k i u
k

u

f
AUC x

F
��                                                                                                           (77) 

That is, the expression of AUMC relates to compartment Xi when the matter is injected into 

Xk. Note that the expression given for AUC in Eq. (77) is an explicit function of the fractional 

transfer and excretion constants, just as , 1( )k i uf � and uF  are. 
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4.4.2. AUMC, Area Under the First Moment Curve  

 AUMC is defined as the first moment [6, 9, 15, 65] and, therefore, if in Eq. (50) we set 

j = 1, we obtain: 

 

� �
1

1 0
,

0
1 ( ) ( , )

u
u

k k i q q
q

AUMC x f Q u r
�

�

�

� � �                                                                         (78) 

 By reasoning similarly to the case of AUC, and by taking into account that we now 

find that j=1, we obtain the results shown in Table 2. 

Table 2 
The values of q (q=0,1,…u-1), the corresponding values of rq [obtained from Eq. (55) where j=1] and the 
expressions of the corresponding quantities Q(u,rq) [obtained according to the Eqs. (64 )]. In gray, the q values  
that give a negative value of rq, such as - rq<u-1, are indicated. In these cases, and according to the fourth of the 
Eqs. (64), then Q(u,rq)=0. In black, the q value that gives a null value of rq is indicated. In this case, and 
according to the first of the Eqs. (64), then Q(u,rq) = 0 
 

q rq - rq Q(u,rq) 

0 3-u u-3  (<u-1) 0 

1 3-u u-3 (<u-1) 0 

    

u-4 -1 (=u-1-u) 1 (<u-1) 0 

u-3 0  0 

u-2 1  ( 1) /u
uF�  

u-1 2  1 2
1( 1) /u

u uF F�
��  

 

Eq. (78) for AUMC can be simplified to the following Eq. (79) if we consider the values of 

Q(u,rq) for the possible different values of rq (q=0,1,2.,u-1), as indicated in Table 2. 

 

, 2 01
, 1 2

)
) k i uu

k i u k
u u

fFAUMC f x
F F

��
�

� 

� �� �

� �
                                                                        (79) 

 

That is, the expression of AUMC relates to compartment Xi when matter is injected into Xk. 

Note that the expression given for AUC in Eq. (79) is an explicit function of the fractional 

transfer and excretion constants, just as , 1( )k i uf � and uF  are. 
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4.4.3. AMUC/AUC 

 This ratio, according to Eqs. (77) and (79), is given by:  

 

, 21

, 1

)
( )

k i uu

u k i u

fAUMC F
AUC F f

��

�

� �                                                                                            (80) 

which is the expression of AUMC/AUC in relation to compartment Xi when the matter is 

injected into Xk.  

 

 In open systems without traps in which the matter is injected into only one 

compartment Xk and the matter is eliminated from this same compartment (i = k), parameter 

AUMC/AUC, denoted in these cases by MRT, matches the mean matter residence time in the 

whole system [39, 66, 67] and, according to Eq. (80) and k=i, is given by: 

 

, 21

, 1

( )
( )

k k uu

u k k u

fFMRT
F f

��

�

� �                                                                                                (81) 

  

 Note that, as expected, MRT depends on what compartment Xk is. Note also that the 

expression given for MRT in Eq. (81) is an explicit function of the fractional transfer and the 

excretion constants, just as , 1( )k k uf � , , 2( )k k uf � , uF and 1uF �  are. 

 

4.5. Final remarks 

 The statistical moments and their expressions offer very interesting applications in 

chemistry to estimate the kinetic rate constant in enzyme kinetics, to determine the time of 

enzyme activity in unstable systems [2] and the important pharmacokinetic parameters AUC, 

AUMC, MRT [31, 59-61] and, in general, to establish the kinetic parameters involved in a 

compartment by adjusting the statistical moments corresponding to the symbolic expressions 

obtained experimentally from AUC ( )j
it g t to between 0 and infinity. Experimentally, infinite 

is a long time chosen with certain criteria; this has been recently done in an enzyme system 

under experimental conditions in such a way that the enzyme forms involved are treated as 

compartments of a linear compartmental system [2, 3].   
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 In this contribution, we provide general symbolic expressions for the statistical 

moments in compartmental systems in terms of the fractional transfer constants and initial 

quantities of matter in the compartments. However, the utility of these symbolic expressions 

is complete if we fit them to the corresponding statistical moments obtained numerically from 

the area under the experimental or the simulated progress curves, ( )j
it g t  to between 0 and a 

long time, t, which is arbitrarily chosen, in such a way that t �"  

 The use of statistical moments implies the inherent error of the numerical 

determination of an AUC which has a discrete set of points; however, this number is very 

large. Obviously, the larger the number of points, the more minimal the numerical error when 

determining the area numerically. Currently in measuring devices or in numerical simulation 

methods, the number of points (t, gi(t)) of curve gi(t), from which we obtain curve, ( )j
it g t can 

be very high. Therefore, the error due to the numerical determination of the AUC can be 

negligible. Another source of error [1] is that, evidently in practice, a t �"  time in 

experimental curves is not reached, rather some finite time, which we denote as tfinal. This 

error can be minimized by using the correction method suggested by Isenberg and Dyson 

(1969) [33, 36]. 

 Apart from their intrinsic values to define mean kinetic parameters (i.e., AUC, 

AUMC, MRT and others), as symbolic expressions of statistical moments are useful for 

determining kinetic parameters from the experimental data of statistical moments, our group 

plans to submit a contribution to this journal which implements a software that provides the 

numerical values of the statistical moments of any order from experimental or simulated data 

(t, gi(t)) [from which the data collection (t, ( )j
it g t ) is immediate], which are entered as either 

a text file or manually.  
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Appendix 

 

This Appendix summarizes the results obtained [56] for the sums, like those indicated 

in Eq. (41) in the main text, that appear in our dynamic linear time-invariant systems analysis.  

In the sum type indicated in Eq. (41), n is an integer number higher than the unity (i.e., 

n =2,3…), r is any positive, negative or null integer number, while  �h and �p (h, p = 1,2,3, 

…,n) are different, complex numbers, and none is null. For simplification, we denote 

expressions type, like those in Eq. (41), to be Q(n,r); i.e.: 

  

1

1

1( , )
( )

n

n
rh
h p h

p
p h

Q n r
s � ��

�
�

-
�

�
!

         (A1) 

 

We provide (derivation not provided) the following summarized results: 

 

1

( , ) if  r 0

( , )
( 1) '( , ) if  r 0

r
n

n

R n r
P

Q n r
R n r�

# .�
��� $
� � )�
�%

                        (A2) 

where: 

( ,0) 0R n �                             (A3) 

( ,1) 1R n �                               (A4) 

1 2 1

1 2

3

1

· · ·
· · ·

0 · · ·
( , ) · · · · · · if  1

· · · · · ·
· · · · · ·
0 0 · · ·

n n n r

n n n r

n n r

n

P P P
P P P

P P
R n r r

P

� � � �

� � �

� �

�

� (                    (A5) 

'( , ) 0 if - -1R n r r n� )                  (A6) 
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'( , ) 1 if - -1R n r r n� �                  (A7) 

 

1

2 1

3 2 1

( 1) ( ) ( 1) 1

1 0 · · · 0
1 · · · 0

· · · 0
· · · · · · ·'( , ) if  - -1
· · · · · · ·
· · · · · · ·

· · ·n r n r n r

P
P P
P P P

R n r r n

P P P P� � � � � � � �

� (            (A8) 

 

In Eqs. (A5) and (A8), Pv (v= 1,2,…,n) is equal to the sum of all the v-nary 

( )v n/ products that differ from �1, �2,…,0�n. P0 always appears and is observed as P0= 1.  

 From the definition of Pv (v = 1,2,…,n) and Eq. (4), we find that: 

 

v
v

v FP )1(��                    (A9) 

 

Therefore, R(n,r) (for r > 1) and R’(n,r) (for –r > n-1) can be expressed in terms of 

the coefficients F1, F2,…,Fn in Eq. (2) rather than in terms of their roots �1, �2, …,0�n.  
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