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Abstract 
The condensation-evaporation process has been analyzed in detail form the point of view of droplet 
dynamics, i.e., shape of the distribution function, number of droplets, their size and their evolution with 
time. The theoretical study of the process is centered on the Lifshitz-Slyozov (LS) equations that are here 
generalized to take into account such characteristics as the precipitation, the volume distribution of the 
droplets, the time dependences of the droplet number and the average droplet volume. It has been shown, 
among other things that after a rather short time, the distribution function, in a small volume domain, can 
be approximated by a series. It has also been shown that the inverse number of droplets, the average 
droplet volume, and the dimensionless supersaturation (dimensionless critical radius) become linear 
functions of time in agreement with the LS asymptotic solution. Over the entire volume domain, the 
distribution function approaches the asymptotic solution only at large times. 

 

Introduction 
        In our previous studies [1-5] we examined many problems related with the pressure and 

the behavior of perfect, van der Waals and real gases either at the macroscopic and/or 

microscopic level. Throughout the present study we will examine the dynamics and the 

droplet formation during a condensation-evaporation process. This study has a bearing not 

only for the understanding of the specific phase transition but also for the understanding of 

the same concept of phase transition, seen as a general nucleation process. It should be borne 

in mind that the concept of phase transition has not only to do with the behavior of fluids but 

also with weather dynamics, with materials and lately also with the origin-of-life problem 

from a primordial soup [6].    
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     The spinodal♦ phase demixing of binary fluid mixtures occurs in three stages: (i) an early 

stage where loose aggregates are spontaneously formed, (ii) an intermediate stage where the 

equilibrium concentrations in both the majority and minority phases are reached, and (iii) a 

final stage where aggregates grow by coarsening, to reduce their interfacial energy due to the 

minor surface/volume ratio [7-9]. While the early stage is well understood, the intermediate 

stage is still very controversial. The late stage mechanism depends both on the system 

components and composition [10]. For solutions with near-symmetrical compositions, an 

interconnected bicontinuous pattern is developed, while in very asymmetric systems 

polydisperse droplets coexist with a very dilute solution. The coarsening in bicontinuous 

pattern systems is driven by hydrodynamic effects [11, 12], while in asymmetric solutions it 

occurs either by the evaporation-condensation mechanism of Lifshitz-Slyozov-Wagner 

(LSW) [13-15] or by the diffusion-reaction mechanism of Binder-Sauffer (BS) [16, 17]. 

      In the BS mechanism droplets travel by Brownian motion through the majority phase and 

coagulate when they meet. Contrarily, in the LSW mechanism, the translation motion of the 

droplets is negligible and larger droplets grow at the expense of the nearby smaller ones: 

individual molecules leave small droplets, migrate through the majority phase by diffusion, 

and condensate into larger droplets. This results from the decrease of the chemical potential 

with droplet size increase, a phenomenon due to the surface tension. None of the BS and 

LSW mechanisms consider the particle-particle interactions and are restricted to systems with 

low volume fraction of the minority phase [18-20]. The BS mechanism dominates when 

encounters between droplets are frequent. This depends on both the number density of 

droplets and the viscosity of the medium. For this reason the coarsening in dilute viscous 

systems (metal alloys and polymer blends) occurs with the LSW mechanism, while in dilute 

solutions the BS mechanism takes over. Both mechanisms predict a linear increase of the 

average volume of droplets with time, and its slope depends on the volume fraction of the 

minority phase in the BS but not in the LSW mechanism [20]. The coarsening is responsible 

for the increase in droplets volume, reducing their number without changing the majority 

phase composition.  

    The equations describing the coarsening with the BS and LSW mechanisms have obtained 

autonomous mathematical importance [21-23]. As many authors [13, 15] believed that only 

one asymptotic solution to the LS equations (independent on initial volume distribution 

function of droplets) exists, mathematical investigation of the generalized LS equations for 

the search of new possible solutions were started [22, 23]. In this paper, we show that LS 
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asymptotic solution is not unique and there are other solutions that depend on the initial 

conditions. Our conclusions are based not on mathematical methods (theorems and lemmas), 

but on the understanding of the physics of evaporation-condensation process that is described 

by the LS equations. 

    When droplets larger than a critical volume are formed, precipitation occurs [24-25]. 

Notice that precipitation is important in vapors and liquids and is absent in solid solutions 

(metal alloys) where grains of new phase grow.  

     Precipitation and its effect on volume distribution function of droplets within the 

framework of the BS theory were investigated [26] in connection with the late stage phase 

demixing of a very dilute toluene solution of a poly(ethylene oxide) chain labeled at one end 

with pyrene. In this work, we concentrate our attention on the evaporation-condensation 

LSW mechanism. Here the Lifshitz-Slyozov (LS) equations [13, 15] are generalized to take 

into account precipitation, volume distribution function of droplets, time dependences of 

droplet number and average droplet volume are investigated. Considerations done in this 

paper have also some bearing on the problem of quantum dots [27]. 

 
Basic Equations 
      Let the equilibrium concentration CR at the boundary of a droplet be related to the droplet 

radius R by the well known Gibbs-Thomson equation [13, 15], 

 
R

CCR
�

�� �  (1) 

C∞ is the concentration of the saturated solution, C∞ = CR=∞, α = 2σC∞V0/kT [m-2], σ is the 

inter-phase surface tension [Nm-1], and V0 is atomic volume of the solute. Thus, the 

equilibrium concentration of solute near small droplets is larger than the equilibrium 

concentration near large droplets. 

     If we ignore the interaction between droplets (droplet sizes R are small compared with the 

mean distance between them), the diffusion current of solute across the droplet boundary is 

given by the following Fick’s first law, J [m-2s-1], where D0 is the diffusion coefficient [m2s-

1], and C is the population density, i.e., number of particles per volume [m-3]),  

 
Rr

R r
CDJ

��
�

�� 0  (2) 

  

The change of volume of the droplet is determined by the flow of solute atoms, 
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Introduction of the effective diffusion coefficient, D = V0D0 [m5s-1], allows to obtain the 

change of the droplet radius with time, 

 

 
Rrr

CD
dt
dR

��
�

�  (4) 

 

To obtain ∂C/∂r the diffusion equation (5, where, � 2 =  ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2) must be 

solved with the boundary conditions (6), 

 CD
dt
dC 2

0
��  (5) 

 

 RRr
CC �

�
,    CC

r
�

��
 (6) 

 

Here, )(tCC � is the average concentration in solution. At small droplet growing speed, or 

under the condition of small initial supersaturation, 0C - C∞ = Δ0 << 1, )0(0 �� tCC , it is 

enough to solve the stationary diffusion equation, dC/dt = 0, to obtain the flow JR, and the 

result is, 
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Here, ������ CCt)( is the supersaturation at a given time. Finally, for the speed of a 

growing droplet we have, 

 

 �
	



�
�

 ���

RR
D

dt
dR �  (8) 

 

       Equation (8) is valid if the characteristic time scale of the supersaturation change is much 

larger than the time of establishing stationary current JR at the droplet surface. This means 
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that Eq (1) supposes the existence of local thermodynamic equilibrium near the droplet 

surface. 

      Eq. (8) implies that a critical radius Rc (Rc = α/Δ) exists. If the radius of a droplet 

becomes R = Rc than the droplet is in equilibrium with the solution. If R > Rc, the droplet is 

growing, and if R < Rc, the droplet is vanishing, while at the initial time, the critical radius is 

given by, Rc(t = 0) = Rc0 = α/Δ0. 

   Let us work from now on with dimensionless variables, i.e., dimensionless radius ρ = R/Rc, 

dimensionless volume v = ρ3, dimensionless time t΄ = tαD/Rc0
3, and dimensionless 

supersaturation (dimensionless critical radius) x(t) = Δ0/Δ(t) = Rc(t)/Rc0. In this way Eq (8) 

can be rewritten as 

 

 ��
	



��
�



�� 1

)(
)(3

3/1

tx
tv

dt
dv  (9) 

 

From now on we will omit the prime on t, i.e., this omission will be maintained throughout 

the remaining paper. Let function f(v,t) be the volume distribution function so that the 

number of droplets in the unit volume, n(t), is given by, 

 �
�

�
0

),()( dvtvftn  (10) 

 

This function f obeys the following equation of continuity, 

 

 0��
	



�
�



�
�

�
�
�

dt
dvf

vt
f  (11) 

 

By the law of matter conservation we have, 

 

 )()(000 tqtQq ������  (12) 

 

Where Q0 is the total initial supersaturation taking into account that at time t = 0, some 

amount of solute, q0, was present in the droplets (q0 has a meaning of a number of solute 
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atoms initially in the droplets per unit volume); q(t) is the number of solute atoms in the 

droplets per unit volume given by, 

 

 � ��
�

�
0

3
0

0

,
3

41)( dvtvvfR
V

tq c

�  (13) 

 

Taking into account that x(t) = Δ0/Δ(t) = Rc(t)/Rc0, then Eq (12) can be rewritten as, 

 

 �
�

�
�

�
00

0 ),(
)(

11 dvtvvfk
txQ

 (14) 

 

Here, 1
0

1
0

3
03

4 ��� QVRk c� . Equations (9), (11), and (14) together with the corresponding initial 

condition [t = 0, f(v, 0)] allow to obtain the distribution function f.    

 

Lifshitz-Slyozov Asymptotic Solution  

        Lifshitz and Slezov [13, 15] obtained an asymptotic solution for Eqs (9), (11), and (14), 

which is independent on the initial conditions [i.e., on the shape of the distribution function at 

time t = 0, f(v, 0)], 
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Function p(z), which is here estimated at z = 9v/(4t), obeys the normalization condition, 

1)(
0

��
�

dzzp , and has the analytic form, shown in Fig. 1, 
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Fig. 1. Plot of the function p(z) [Figs. 1-7 have been obtained with Mathematica♯] 

 

             From Eqs (15) and (16) it follows that: (i) f(v,t) > 0 at v = 0, (ii) there is a zlim = 27/8 

where f(v,t) = 0 if v > vlim = 3t/2, and (iii) there is a zmax = 27/(16 2 ) where the distribution 

function f(v,t) has a maximum value at v = vmax = 3t/(4 2 ). Notice that vmax grows more 

slowly than vlim and from this follows that the distribution function becomes broader in time.  

The asymptotic character of the function p(z) at z << 1 is, 
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Integrating Eq (11) over the dimensionless volume v taking into account Eqs (9) and (10), we 

obtain, 

 

 � � � �tftvf
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 (18) 

 

This means that at small times, when f(0,t) = 0 (due to the initial conditions), the number of 

droplets in solution is constant (n(t) = const), while the sizes of the droplets is changing: 

small droplets [with ρ < x(t)] decrease their size and large droplets [with ρ > x(t)] increase 

their size. The number of the droplets begins to decrease only when the inequality f(0,t) > 0 is 

fulfilled. At long times Eqs (15) and (16) are valid, then together with Eqs (16) and (17), we 

obtain, 
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The solution to this equation is,  

 

 
t
tn

tn 00)( �  (20) 

 

Here, n0 is the number of droplets in the unit volume at time t0. Cited authors [13, 15] have 

also obtained, 

 

 ttx
9
4)(3 �  (21) 

 

Now, using Eqs (15) and (16), it is possible to obtain, 13/1 �z  and 1296.1�z . Thus, the 

average droplet radius and the average droplet volume, � and v , are, 

 

 3/13
9
4)( ttx ��� , tv 502.03 �� �  (22) 

 

    Authors [13, 15] believe that the obtained results are independent on the initial conditions 

if the initial distribution function has a finite width and is continuous (not a sum of δ-

function). Other authors [22, 23] questioned this statement and found some new solutions 

that contradict it. We begin our investigation of the basic equations with the distribution 

function that equals a sum of δ-function, because it will help us to understand the behavior of 

the distribution function from a physical point of view. 

     Note that the modified distribution function (15) and (16) is often used as distribution 

function of quantum dots [27-29]. Let us introduce the relative radius of the droplets 

(quantum dots) u = �� /  and take into account, according to the definition of z and Eq (22), 

the droplet volume v = ρ3, dv = 3ρ2dρ, and z1/3 = u. If �  is the average radius of the droplets 
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(quantum dots), the normalized distribution function of the droplets (quantum dots) over their 

radius, N(u), �
�

�
0

,1)( �duN  can be obtained from Eqs (15) and (16) [28, 29], 

4 2
2

5/3 7/3 11/3

( , ) 3 1 3 / 2( ) 3 exp , 3 / 2,
( ) 2 ( 3) (3 / 2 ) 3 / 2

( ) 0, 3 / 2.

f v t e uN u u u
n t u u u

N u u
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� �

 

Solution of the basic equations with monodisperse distribution of 
droplets 
        In the case of initial monodisperse distribution of droplets, this distribution, according to 
the basic equations and to the physics of the process, continues to be monodisperse at any 
time. Let at time t = 0 be f(v,0) = n0δ(v-v0), i.e., the initial droplet volume is v(t = 0) = v0. For 
longer times according to the basic equations and the physics of the process under 
investigation, f(v, t) continues to be a δ-function and the number of droplets is constant, i.e., 
f(v, t) = n0δ(v-v(t)) where v(t) senses the droplet volume, v(t) = ρ3(t), and obeys Eq. (9).  At 
this condition, the basic Eq. (14) becomes 
 

 )(
)(

1 tbv
tx

a
��  (23) 

 

Where, a = Δ0/Q0, and b = n0k. Note, that if the initial size v0 of the droplet is larger than the 
critical size, the droplets grows, v1/3(t) > x(t), until the establishment of equilibrium 
conditions, when the droplet stops growing. Thus, the physical process foretells that at some  
t → ∞, dv/dt = 0 and from Eq. (9) we obtain, v(∞) = x3(∞) (Fig. 2).   

 

Fig. 2.  The v(t) (higher curve) and x(t)3 (lower curve) functions at: b = 0.01, and v0 = 5 
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At time t = 0, x(0) = 1, v(0) = v0, and from Eq. (23) we have that, 1 = a + bv0, i.e., a = 1 – bv0. 

From Eq. (23), we get, 
01
)(1)(1

)(
1

bv
tbv

a
tbv

tx �
�

�
�

� . Inserting this equation into Eq (9), we 

obtain, 
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bv
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Equation (24) can be solved with Mathematica♯. For growing droplets (v0 > 1), the 

concentration of the solution and Δ(t) decrease, therefore x(t) = Δ0/Δ(t) increase. At t → ∞, 

the process of droplet growing stops, dv/dt = 0, and in accordance with Eq. (9), v(∞) = x3(∞) 

(see Fig. 2).  For dissolving droplets (v0 < 1), instead, the concentration of the solution and 

Δ(t) increase, therefore x(t) = Δ0/Δ(t) decreases. At some later moment t, all droplets dissolve, 

v(t) = 0, and from Eq. (23), we obtain x(t) = a = 1 – bv0. Fig. 3 illustrates this behavior.  

 

 
Fig. 3.  The v(t) (lower curve)and x(t)3 (upper curve) functions at: b = 0.1, and v0 = 0.9 

 
The distribution function of the droplets is the sum of two δ-
functions 
         According to the basic LS equation (9, 11, and 14) for this case, if the initial 
distribution function is a sum of two δ-functions it continues to be a sum of two δ-functions 
with the same coefficients (the numbers of droplets of two different volumes are constant) at 
later times. Let f(v, t) = n0{δ(v-v1(t)) + δ(v-v2(t))}. For simplicity, we suppose that the 
numbers of the droplets of different size are equal to n0. Their initial volumes are v1(0) = v10 
and v2(0) = v20. With this condition, the basic equations (9) and (14) become, 
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Parameters a and b have the same meaning as before. At time t = 0, x(0) = 1, v1(0) = v10, and 
v2(0) = v20,  and from Eq. (27) we have 1 = a + b(v10 + v20). Thus a = 1 – b(v10 + v20) and from 

Eq (23) we get, 
)(1
))()((1))()((1

)(
1

2010

2121

vvb
tvtvb

a
tvtvb

tx ��
��

�
��

� . Inserting this equation into 

Eq (25) and (26), we obtain, 
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Eqs (28) and (29) can be solved with Mathematica♯. Let us inspect the different situations. 
i. The initial radius of the droplets is smaller than the critical radius (v10 = 0.9, v20 = 0.8) and 
their number is small (b = 0.01). In this case, the droplets dissolve, the concentration of the 
solution increases, therefore x(t) decreases quite slowly (Fig. 4). 

Fig. 4. The v1(t) (middle) v2(t) (bottom), and x(t)3 functions at: v10 = 0.9, v20 = 0.8, and b = 0.01. 
 
ii. The initial radius of the droplets is smaller than the critical radius (v10 = 0.9, v20 = 0.8), and 
their number is large (b = 0.1). In this case the droplets start dissolving and the concentration 
of solution increases, and therefore x(t) decreases. Later on, when radius of the first droplets 
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become larger than the critical radius, the first droplets start increasing, but the next ones 
decrease and, at the end, they dissolve completely (Fig. 5). 

 
Fig. 5. The v1(t) (middle), v2(t) (bottom), and x(t)3 functions at: v10 = 0.9, v20 = 0.8,and b = 0.1. 

 
iii. The initial radius of the first droplets is larger than the critical radius (v10 = 5), the initial 
radius of the following droplets is equal to the critical radius (v20 = 1), and their number is 
small (b = 0.01). In this case, the first droplets grow while the next ones dissolve. The 
concentration of the solution decreases slowly, therefore x(t) increases quite slowly (Fig. 6).   
  

Fig. 6. The v1(t) (top), v2(t), and x(t)3 (middle) functions at: v10 = 5, v20 = 1, and b = 0.01. 
 

iv. The initial radius of the droplets are larger than the critical radius (v10 = 5, v20 = 3.5) and 
their number is small (b = 0.01). In this case the droplets start increasing and the 
concentration of the solution decreases, therefore x(t) increases. Later on, when the radius of 
the next droplets become smaller than the critical radius, the droplets continue to increase, 
but then they begin to dissolve, till when they dissolve completely. During this interval of 
time, the concentration of the solution can even increase and therefore x(t) decreases (Fig. 7). 
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Fig. 7. The v1(t) (top), v2(t) (bottom), and x(t)3 functions at: v10 = 5, v20 = 3.5, and b = 0.01. 

 
     The obtained solutions allow explaining the qualitative behavior of the distribution 
function f(v,t) and the concentration of the droplets n(t). For example, let f(v,t) be a sum of a 
large number of δ-functions at the initial time, t = 0. In this case, during the evaporation-
condensation, the process (for t → ∞) admits only two results,  
i. All droplets dissolve if their initial radius is smaller than the critical radius and their 
concentrations are small. 
ii. At the end of the process, only the largest droplets continue to exist in solution. Their 
number will be equal to the initial number. Their volume and the concentration of the 
solution are, in this case, described by Fig. 2, after that all smaller droplets have disappeared. 
   These conclusions allow explaining the behavior of the volume distribution function of the 
droplets if the initial distribution function is continuous. Let the initial distribution function 
be the sum of a (any) continuous function (located in the low volume domain) and the δ-
function n0δ(v-v0) (located in the large volume domain, v0 >1). Then the distribution function 
will approach a δ-function n0δ(v-v(t)) at t → ∞ (see section 4).  
   Let the distribution function have a form of a rung from the high side of the volumes, i.e., 

f(v,0) > 0 if v < vlim; f(v,0) = 0 if v > vlim, and )()0,(
lim

lim

vv
dt
vdf

vv

��
�

� . Then the distribution 

function preserves this characteristic property at any time. 
     

The distribution function is a continuous broad function. 

     Five situations due to various initial conditions of the distribution function will be 

considered. 

i. The initial distribution function f(v,0) ≠ 0 for v < 1 is, 
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See Fig. 8, curve 1, where f(v,0) ≠ 0 for 0.2 < v < 0.4. Here, the droplets have a radius smaller 

than the critical radius and should dissolve. In this case at the starting time, when there are no 

droplets with almost zero volumes, i.e., f(0,t) = 0, the radius and the volume, v, of the 

droplets decrease and the distribution function f(v,t) displaces to the left (Fig. 8, curves 1 - 5), 

but the number of the droplets remains constant [n(t) = n0, Fig. 9, curve 2]. As time goes by 

the inequality f(0,t) > 0 begins to be fulfilled (Fig. 8, curves 6 - 8), the droplets start to 

disappear and their number decreases (Fig. 9, curve 2). While the droplets dissolve, the 

concentration of the solution increases and approaches a constant value, as a result x(t) 

decreases and approaches a = Δ0/Q0 [x3 → a3] (Eq 14, Fig. 9, curve 1). 

 

Fig. 8. The behavior of f(v,t) at: a = Δ0/Q0 = 0.8. t = 0 (1), 0.01 (2), 0,025 (3), 0.05 (4), 0.1 (5), 0.2 
(6), 0.3 (7), and 0.35 (8). 

 

6
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Fig. 9. The behavior of f(v,t) at: a = Δ0/Q0 = 0.8. 1: x3(t); 2: n(t)/n0.  

 

ii. The initial distribution function f(v,0) ≠ 0 for v > 1  is, 
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vvn

v

vf  

See Fig. 10, curve 1, where f(v,0) ≠ 0 for 3 < v < 5. In this case, all the droplets have radius 

larger than the critical radius and should increase their volumes. For the initial period of time 

when the equality f(0,t) = 0 is valid, the radius and the volumes v of the droplets increase, the 

distribution function f(v,t) shifts to the right (Fig. 10, curve 2), and the number of the droplets 

remains constant (n(t) = n0, Fig. 11, curve 2).  

Fig. 10. The behavior of f(v,t) at: a = 0.5. t = 0 (1), 1 (2), 4 (3), 7 (4), 10 (5), 14 (6), 20 (7). Last 
curve  (- - -) is the asymptotic solution. 

 

    For the intermediate period of time, when the equality f(0,t) = 0 continues to be valid (Fig. 

10, curves 2 - 4), droplets with a radius smaller than the critical one start to appear (see Fig. 
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7), the droplets with radius larger than the critical one continue to grow. As a result, the width 

of the distribution function increases, but the number of the droplets continues to be constant.   

                                        
Fig.11. The behavior of f(v,t) at: a = 0.5. 1: x3(t); 2: n(t)/n0; 3: average droplet volume, 

 )(/),(
0

tndvtvvfv �
�

� . 

 

During the third time period the inequality f(0,t) > 0 starts to be fulfilled (Fig. 10, curves 5 - 

7), i.e., the smallest droplets arise due to the dissolution of the largest ones and start to 

disappear, consequently the number of droplet decreases (Fig. 11, curve 2). The dependence 

of the concentration of the solution on time is not monotonic (Fig. 11, curve 1). It looks like 

that for longer times the distribution function f(v,t) approaches to the asymptotic LS solution 

(dotted curve in Fig. 10). For instance, when the distribution function increases with v, like 

curve 7 in Fig. 10, then it can be approximated with Eq. (15) (dotted curve). 

iii. The initial distribution function f(v,0) ≠ 0 for v < 1 is, 
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See Fig. 12, curve 1, f(v,0) ≠ 0 for 0.7 < v < 0.9. In this case, all the droplets have radius 

smaller than the critical radius and should decrease their volumes. At the initial time, when 

f(0,t) = 0, the radius and the volume v of the droplets decrease, the distribution function f(v,t) 

displaces to the left (Fig. 12, curve 2 - 4), the number of the droplets is constant [n(t) = n0, 

Fig. 13, curve 2]. The concentration of the solution increases (due to the dissolution of the 

droplets), therefore x(t) decreases (Fig. 13, curve 1), and the critical radius decreases.  
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Fig.12. The behavior of f(v,t) at: a = 0.8. t = 0 (1), 0.1 (2), 0.25 (3), 0.5 (4), 0.75 (5), 1 (6), 1.5 (7), 2 
(8). The dotted curve 9 is the LS asymptotic solution. 

 

The critical radius decreases faster than the decreasing of the largest volume of the droplets, 

and, at a certain moment it becomes smaller than the largest droplet volume. From this 

moment on, the largest droplets begin to grow; the distribution function becomes broader 

(Fig. 12, curves 5 - 7). During this period of time the equality f(0,t) = 0 is fulfilled, therefore  

the number of the droplets continues to be constant (Fig. 13, curve 2). During a third time 

period the inequality f(0,t) > 0 starts to be fulfilled (Fig. 12, curves 7 and 8), the smallest 

droplets start to disappear, and the droplet number start to decrease (Fig. 13, curve 2) with 

exponential behavior.  

Fig. 13. The behavior of f(v,t) at: a = 0.8. 1: x3(t); 2:  n(t)/n0; 3:  average droplet volume, 
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     The dependence of the concentration of the solution on time is not monotonic (Fig. 13, 

curve 1). It looks like the one for large times, the distribution function f(v,t) approaches to the 
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LS asymptotic solution (curve 9 in Fig. 12), i.e., curve 8 (within the domain, where the 

distribution function grows with v) can be approximated by Eq (15) (dotted curve 9). 

iv. The initial distribution function f(v,0) ≠ 0 for v < 4 is, 
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See Fig. 14, curve 1, f(v,0) ≠ 0 for 0< v < 4. In this case, the distribution function is broad. 

The largest droplets grow, the distribution function broadens (Figs 14 and 15, for two 

different sets of t, solid curves 1 - 10). The smallest droplets disappear, therefore the droplet 

number decreases from the start (Fig. 16, curve 2). 

 

Fig. 14. The behavior of f(v,t) at: a = 0.8. t = 0 (1), 0.1 (2), 0.5 (3), 1 (4), 1.5 (5), 2 (6), 3 (7), 5 (8), 7 
(9), 10 (10), the dotted curve 11 is the LS asymptotic solution to the curve 10. 

 

The dependence of the concentration of the solution with time is monotonic (Fig. 16, curve 

1). It looks like that for larger times the distribution function f(v,t) approaches to the LS 

asymptotic solution, which gives rise to curve 11 in Fig. 15 (here only odd-numbered  curves 

are given). The solid curve 11 (Fig. 15) can be approximated with Eq. (15), and in this case it 

gives rise to the dotted curve (near curve 11) in Fig. 15. For smaller times, such 

approximation is good only for small droplet volumes (Fig. 14, compare dotted curve 11 and 

solid curve 10).  
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Fig. 15. The behavior of f(v,t) at: a = 0.8. t = 20 (1), 30 (3), 50 (5), 60 (7), 70 (9), 100 (11). The dotted 

lower curve is the LS asymptotic solution. 
 

Notice that for longer times, x(t)3 and 1/n(t) grows linearly with time (Fig. 16, curves 1 and 2) 

in accordance with the LS solution (Eqs 12 and 13a). The growing velocity of the average 

droplet volume ( tv 49.0~ ) is larger than the velocity of growing x(t)3 (x(t)3 ~ 0.42t) in 

accordance with Eqs 21 and 22 where numerical coefficients are 0.502 and 0.444 

respectively. 
 

 

Fig. 16. The behavior of f(v,t) at: a = 0.8. 1:  x3(t); 2: n0/n(t); 3: average droplet volume, 
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0
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�

� . The higher dotted curve obeys the approximation x3(t) = (4/9)t; the lower dotted 

curve that overlaps curve 2 obeys, instead, the approximation n0/n(t) = 1.13+0.0587t. 
 

v. The initial distribution function is wide and has a form of a rectangle, 
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    As a matter of fact, f(v,t) is a trapezium with sharp boundaries limited by the precision of 

numerical calculations (Fig. 17, curve 1).  

 

 

Fig. 17. The behavior of f(v,t) at: a = 0.5, t = 0 (1), 1 (2), 4 (3), 7 (4), 10 (5), 14 (6), 20 (7). 

 

At the start the distribution function widens, a slope at the top of distribution function 

appears, sharp boundaries continue to exist (Fig. 17, curves 1 - 3), and the number of the 

droplets is constant while f(v=0,t) = 0 (Fig. 18, curve 2).   

Fig.18. The behavior of f(v,t) at: a = 0.5, 1: x3(t); 2: n0/n(t); 3: average droplet volume 
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When the left boundary of the distribution function approaches the vertical axis and the 

inequality f(v=0,t) > 0 begins to hold, the smallest droplets start to disappear, the number of 

the droplets start to decrease (Fig. 18, curve 2), the right boundary of the distribution function 

continues to be very sharp and moves to the left (Fig. 17, curves 4 - 7) in agreement with 

known results [23]. The average droplet volume v  and x3(t) grow linearly with time, but with 
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different speeds (Fig. 18, curves 1 and 3). Note that in this time domain, the distribution 

function can be approximated by the series (17) (Fig, 19, dotted curves).  

 

 
 

Fig. 19. The behavior of f(v,t) at: a = 0.5, t = 10 (5), 14 (1), 20 (3). Dotted curves 5, 1, and 3 are 
approximated by the series of eq. (17). 

 

The distribution function under precipitation 
       Let us suppose that precipitation occurs when the droplet volume becomes larger than a 

critical volume, vpr. In this case, Eqs (9) and (11) are still valid, and Eq. (10) takes the form 
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     Now, the number of droplet decreases not only because the smallest droplets dissolves 

(f(0,t) > 0), but also because the droplets with v > vpr start to precipitate, therefore Eq. (19) 

changes to, 
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The first term in Eq. (31) describes the dissolution of the droplets (see Eq. (19)) while the 

second term describes the precipitation. Equation (12) should be rewritten as,  
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s(t) is the number of solute atoms per unit volume that precipitated in the droplets. Here, [see 

Eq. (13)] 
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From Eq. (31), it follows that,  3
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��   Supposing that there 

were no droplets with volumes larger than vpr at the initial time t = 0, we obtain, 
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Finally, Eq. (14) takes the form 
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Here, 1
0

1
0

3
03

4 ��� QVRk c� . To obtain the needed dependences, Eqs (9), (11), (30), (34), and 

(35) must be solved. In the  calculations below, we suppose that vpr = 10 and the initial 

distribution function f(v,0) ≠ 0 for v < 4 (as in the case iv) is, 

 

� �� �
��

�
�
�

�

����
�

4,0

,40,24
32
3

)0,(
2

0

v

vvn
vf  

 

This distribution function is shown in Fig. 20, curve 1.  Solutions of equations (9), (11), (30), 

(34), and (35) for t > 0 are also shown in Fig. 20. For small times, while there are no droplets 

with volumes larger than vpr , f(vpr,t) = 0, curves 1 - 7 (in Fig. 20) repeat curves 1 - 7 in Fig. 

14. In this time domain, the behavior of parameters x3(t), n0/n(t) and v  (Fig. 21) are the same 

as in Fig. 16. 
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Fig. 20. The behavior of f(v,t) at: a = Δ0/Q0 = 0.8. t = 0 (1), 0.1 (2), 0.5 (3), 1 (4), 1.5 (5), 2 (6), 3 (7), 4 
(8), 5 (9), 6 (10), 8 (11), 10 (12), 12 (13), 15 (14), 20 (15) [curves 11-15 are after curve 10 with 

decreasing values]. 
     

      At larger times, when droplets with volumes v = vpr appeared and f(vpr,t) > 0, precipitation 

begins (curves 8 - 15). It follows from Eq. (24), that under condition t → 0, the solution 

concentration approaches a constant value (x(t) → const) as the number of droplets n(t) → 0 

due to precipitation, and therefore x3(t) → const (Fig. 21, curve 1), the number of droplets (as 

approximation shows) increases exponentially (curve 2), and the average droplet volume v  

begins to decrease slowly approaching x3(t) (curve 3).  

 

 

Fig. 21. The behavior of f(v,t) at: a = 0.8, 1:  x3(t); 2: n0/n(t); 3: average droplet volume 
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In this time domain, distribution function is well approximated by the series (17) (Fig. 22, 

solid and dotted curves 1 - 3). Note that the asymptotic behavior of the distribution function 

shown in Fig. 22 is similar to the asymptotic behavior obtained for BS mechanism of the 

coarsening in [26].   
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Fig. 22. The behavior of f(v,t) at: a = 0.8. t = 10 (1), 12 (2), 15 (3). The dotted curves are 
approximations obtained using the series of eq. (17). 

 

Conclusions 
     In the following are the Five conclusions that are possible for our system of droplets. 

1. The solution of LS basic equations for the initial volume distribution function as a sum of 

δ-functions allows a qualitative forecasting of the behavior of the distribution function for 

any initial condition. 

2. If the initial distribution function is continue and it is concentrated in a small volume 

domain (for v < 1) and the number of droplets is small, then all droplets dissolve and the 

distribution function never approached the LS asymptotic solution (as contrasted to statement 

[13, 15]).  

3. After comparatively short time, the distribution function can be approximated (in small 

volume domain) by the series (17); the inverse number of droplets, the average droplet 

volume, and x3(t) become linear functions of time in agreement with the LS asymptotic 

solution, but over all the volume domain, the distribution function approaches the asymptotic 

solution only at very large time. 

4. If the initial distribution function has a sharp boundary from the side of large volumes 

(derivative of the distribution function is a δ-function at this boundary), this sharp boundary 

continues to exist (the derivative continues to be a δ-function) for every time (as contrasted to 

statement [13, 15] and in agreement with obtained results [23]). Thus, such distribution 

function never approaches the LS asymptotic solution, but in a small volume domain, this 

distribution function can be approximated by the series (23). 
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5. If precipitation is taken into account, the distribution function can be approximated by the 

series (23) at large times, the number of droplets decreases almost exponentially, and x3(t) 

approaches a constant value. 
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