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Abstract

We report lower bounds for the Kirchhoff index of a connected (molecular) graph
in terms of its structural parameters such as the number of vertices (atoms), the
number of edges (bonds), maximum vertex degree (valency), second maximum ver-
tex degree and minimum vertex degree. Also we give the Nordhaus–Gaddum-type
result for Kirchhoff index.

In this paper we define the resistance distance energy as the sum of the absolute
values of the eigenvalues of the resistance distance matrix and also we obtain lower
and upper bounds for this energy.

1 Introduction

It is well known that the resistance distance between two arbitrary vertices in an electrical

network can be obtained in terms of the eigenvalues and eigenvectors of the combinatorial

Laplacian matrix and normalized Laplacian matrix associated with the network. By

studying Laplacian matrix, people have proved many properties of resistance distances

[1,2]. The resistance distance is a novel distance function on a graph proposed by Klein and
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Randić [3]. The term “resistance distance” was used because of the physical interpretation

(see [4], for the details).

Throughout this paper G will denote a simple undirected graph and the vertices of it

will be labeled by v1, v2, . . . , vn. Let di be the degree of vertex vi for i = 1, 2, . . . , n. The

minimum vertex degree is denoted by δ, the maximum by Δ and the second maximum

by Δ2. In [5], it has been depicted that the standard distance between two vertices vi

and vj of a connected graph G, denoted by dij, is defined as the length (=number of

edges) of a shortest path that connects vi and vj. Moreover in order to examine other

distances in graphs (or more formally, molecular graphs), Klein and Randić [6] considered

the resistance distance between vertices of a graph G, denoted by rij, as defined in [1]. In

fact the resistance distance concept has been much studied in the chemical studies (see,

for instance, [2, 6]). In [6, 7], it has been introduced the sum of resistance distances of all

pairs of vertices of a molecular graph G,

Kf(G) =
∑
i<j

rij

that named as the “Kirchhoff index”.

Let J denote the square matrix of order n such that all of whose elements are unity.

Then for all connected graphs (with two or more vertices) the matrix L +
1

n
J is non-

singular, its inverse

X = ‖xij‖ =
(
L+

1

n
J
)−1

exists and, as depicted in [1], rij = xii+xjj − 2xij. The matrix whose (i, j)-entry is rij, is

called the resistance distance matrix and will be denoted by RD = RD(G). This matrix

is symmetric and has a zero diagonal.

The Laplacian matrix of a graph G is L(G) = D(G) − A(G), where D(G) is the

diagonal matrix of vertex degrees and A(G) is the (0, 1)-adjacency matrix of graph G.

Let λ1 ≥ λ2 ≥ · · · ≥ λn = 0 denote the eigenvalues of L(G). They are usually called the

Laplacian eigenvalues of G.

The Kirchhoff index Kf(G) can also be written as

Kf(G) = n

n−1∑
k=1

1

λk
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where λ1 ≥ λ2 ≥ · · · ≥ λn = 0 are the eigenvalues of the Laplacian matrix L(G). As

usual, Kn, K1,n−1 and Kp,q denote respectively the complete graph, the star and complete

bipartite graph. The union (∪) of two graphs is the graph whose set of vertices is the

union of the sets of vertices of the two graphs, and whose set of edges is the union of the

sets of edges of the two graphs. The graph join (∨) of two graphs is their graph union

with all the edges that connect the vertices of the first graph with the vertices of the

second graph.

Now we study the Kirchhoff index in more detail, especially its relationship with the

the number of vertices (atoms), the number of edges (bonds), maximum vertex degree

(valency), second maximum vertex degree and minimum vertex degree. The paper is

organized as follows. In section 2, we present the lower bounds on the Kirchhoff index of

graph, and, the Nordhaus–Gaddum-type result for the Kirchhoff index. In section 3, we

obtain the various lower and upper bounds on the resistance distance energy (resistance

distance energy is the sum of the absolute values of the eigenvalues of the resistance

distance matrix).

2 Lower bounds on the Kirchhoff index

In this section we give an upper bound on the resistance-distance index.

Lemma 2.1. [8] Let G be a connected (molecular) graph on n > 2 vertices, m edges with

maximum degree Δ. Then

Kf(G) ≥ n

Δ+ 1
+

n(n− 2)2

2m−Δ− 1
(1)

with equality holding if and only if G ∼= K1,n−1 or G ∼= Kn .

Lemma 2.2. [9] Let G be a connected (molecular) graph of order n and maximum degree

Δ with at least one edge. Then λ1 ≥ Δ+1 with equality holding if and only if Δ = n− 1 .

Lemma 2.3. [10] Let G be a connected (molecular) graph of order n ≥ 3. Then

λ2 ≥ Δ2

with equality holding if G is a complete bipartite graph Kr,s or a tree with degree sequence

π(T ) =
(

n
2
, n
2
, 1, 1, . . . , 1

)
, where n ≥ 4 is even.
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Lemma 2.4. [11] Let G ( �= Kn) be a connected (molecular) graph with minimum degree

δ. Then λn−1 ≤ δ.

Lemma 2.5. [12] Let G be a connected (molecular) graph on n vertices. Then λ2 =

λ3 = · · · = λn−1 if and only if G ∼= K1,n−1 or G ∼= Kn or G ∼= KΔ,Δ.

Now we are ready to give lower bound on Kirchhoff index and characterize extremal

graphs.

Theorem 2.6. Let G be a connected (molecular) graph on n > 2 vertices, m edges with

maximum degree Δ, second maximum degree Δ2 and minimum degree δ. Then

Kf(G) ≥ n

Δ+ 1
+

n

2m−Δ− 1

(
(n− 2)2 +

(Δ2 − δ)2

Δ2δ

)
(2)

with equality holding if and only if G ∼= K1,n−1 or G ∼= Kn.

Proof: If G = Kn, then the equality holds in (2). Otherwise, G �= Kn. By Lemma 2.3,

λ2 ≥ Δ2 and by Lemma 2.4, λn−1 ≤ δ. So, we have√
λ2

λn−1

−
√

λn−1

λ2

≥ Δ2 − δ√
Δ2δ

. (3)

Now,

n−1∑
i=2

λi

n−1∑
i=2

1

λi

= n− 2 +
∑

1<i<j<n

(λi

λj

+
λj

λi

)

= n− 2 + (n− 2)(n− 3) +
∑

1<i<j<n

(λi − λj)
2

λiλj

≥ (n− 2)2 +
(Δ2 − δ)2

Δ2δ
as

√
λi

λj

−
√

λj

λi

≥ 0 for 1 < i < j < n (4)

and by (3).

Since
∑n−1

i=1 λi = 2m, from (4), we get

n−1∑
i=1

1

λi

≥ 1

λ1

+
1

2m− λ1

(
(n− 2)2 +

(Δ2 − δ)2

Δ2δ

)
.

Note that

f(x) =
1

x
+

1

2m− x

(
(n− 2)2 +

(Δ2 − δ)2

Δ2δ

)
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is an increasing function for [Δ+1, n] as (n− 2)x ≥ 2m−x, that is, (n− 1)x ≥ 2m =∑n
i=1 di. Since λ1 ≥ Δ+ 1, we get the required result (2).

Now we suppose that the equality holds in (2). Then all inequalities in the above

argument must be equalities. Since λ1 = Δ + 1, we have Δ = n − 1, by Lemma 2.2.

From equality in (4), we get λ2 = λ3 = · · · = λn−1. By Lemma 2.5, we conclude that

G ∼= K1,n−1. For G = K1,n−1, both λ2 = Δ2 and λn−1 = δ holds. Hence G ∼= K1,n−1 or

G ∼= Kn.

Conversely, one can easily see that the equality holds in (2) for star K1,n−1 or complete

graph Kn.

Remark 2.7. One can easily see that our lower bound (2) is better than the previous

lower bound (1).

A kite Kin,ω is the graph obtained from a clique Kω and a path Pn−ω by adding an

edge between a vertex from the clique and an end point from the path. We now give

another lower bound for Kirchhoff index and characterize extremal graphs.

Theorem 2.8. Let G (�= Kn) be a connected (molecular) graph on n > 2 vertices, m

edges with maximum degree Δ and minimum degree δ. Then

Kf(G) ≥ 1 +
n

δ
+

n(n− 3)2

2m−Δ− δ − 1
(5)

with equality holding if and only if G ∼= K1,n−1 or G ∼= Kin,n−1 or G ∼= Kn − e, where

Kn − e is the graph of order n, obtained from Kn by deleting an edge.

Proof: We have

Kf(G) =
n

λ1

+
n

λn−1

+
n−2∑
i=2

n

λi

≥ 1 +
n

λn−1

+
n(n− 3)2

2m− λ1 − λn−1

(6)

by λ1 ≤ n and by arithmetic–harmonic mean inequality

≥ 1 +
n

λn−1

+
n(n− 3)2

2m−Δ− λn−1 − 1
by Lemma 2.2. (7)
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Note that

f(x) =
1

x
+

(n− 3)2

2m−Δ− x− 1
, x ≤ δ

is a decreasing function if and only if (n−2)x ≤ 2m−δ−1, that is, (n−2)x ≤∑n
i=2 di−1,

which is true for x ≤ δ and G is connected. Thus we have

f(x) ≥ 1

δ
+

(n− 3)2

2m−Δ− δ − 1
.

From above we get the required result (5).

Now we suppose that the equality holds in (5). Then all inequalities in the above

argument must be equalities. From equality in (7), we get

λ1 = Δ+ 1

that is, Δ = n− 1, by Lemma 2.2. From equality in (6), we get

λ1 = n and λ2 = λ3 = · · · = λn−2 .

Thus we conclude that G is disconnected with at least one isolated vertex and

S(G) = (n− λn−1, n− λ2, n− λ2, . . . , n− λ2︸ ︷︷ ︸
n−3

, 0, 0).

If G has exactly two connected components, then G ∼= K1 ∪K1,n−2 or G ∼= K1 ∪Kn−1

or G ∼= K1 ∪ Kn−1
2

,n−1
2
, n is odd, by Lemma 2.5. Since λ2 = λ3 = · · · = λn−2, we must

have G ∼= Kin,n−1 or G ∼= K1,n−1. Otherwise, G contains at least n− 2 isolated vertices.

Since G �= Kn, we must have G ∼= (n− 2)K1 ∪K2, that is, G ∼= Kn − e.

Conversely, one can easily see that the equality holds in (5) for star K1,n−1 or for kite

Kin,n−1 or for Kn − e. This completes the proof.

Remark 2.9. The lower bound in (5) is sharp for K1,n−1, Kin,n−1 or Kn − e. But (1)

and (2) are sharp only for K1,n−1 or Kn.

Lemma 2.10. [12] Let G be a graph of order n with at least one edge. Then λ1 = λ2 =

· · · = λn−1 if and only if G ∼= Kn.

Lemma 2.11. [9] Let G be a connected (molecular) graph with diameter d. Suppose

L(G) has exactly k distinct eigenvalues. Then d+ 1 ≤ k.
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Zhou and Trinajstić [8] obtained the following Nordhaus–Gaddum-type result for the

Kirchhoff index:

Lemma 2.12. Let G be a connected (molecular) graph on n ≥ 5 vertices with a connected

G. Then

Kf(G) +Kf(G) ≥ 4n− 2 .

Another structure–descriptor introduced long time ago [13] is the so-called first Zagreb

index (M1) equal to the sum of the squares of the degrees of all vertices of G. Some basic

properties of M1 can be found in [14, 15]. Denote by H∗, a graph of diameter 2 such

that λ1(H
∗) = · · · = λk(H

∗) �= λk+1(H
∗) = · · · = λn−1(H

∗), λk(H
∗) + λn−1(H

∗) = n for

some value of k, 1 ≤ k < n − 1. For example, cycle of length 5, C5 is H∗-type graph as

S(C5) = (3.618, 3.618, 1.382, 1.382, 0) and diameter of C5 is 2. We now give lower bound

for Kf(G) +Kf(G):

Theorem 2.13. Let G be a connected (molecular) graph of order n (≥ 5) and m edges

with connected G. Then

Kf(G) +Kf(G) ≥ n2(n− 1)2

2m(n− 1)−M1(G)
(8)

where M1(G) is the first Zagreb index of G. Moreover, the equality holds in (8) if and

only if G ∼= H∗.

Proof: We have

Kf(G) +Kf(G) = n

n−1∑
i=1

( 1

λi

+
1

n− λi

)

= n2

n−1∑
i=1

1

λi(n− λi)

≥ n2(n− 1)2

2mn−∑n−1
i=1 λ2

i

by arithmetic–harmonic mean inequality. (9)

Since 2m =
∑n

i=1 di, we have
∑n−1

i=1 λ2
i =
∑n

i=1 di(di + 1) = M1(G) + 2m, we get (8)

from (9).

Now suppose that the equality holds in (8). Then the equality holds in (9). From

equality in (9), we get

λi(n− λi) = λj(n− λj) for all vi, vj ∈ V ,
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that is,

(λi − λj)(n− λi − λj) = 0 for all vi, vj ∈ V ,

that is, either λi = λj or λi + λj = n for all vi, vj ∈ V . Thus λ1 = λ2 = · · · = λn−1 or

λ1 = · · · = λk �= λk+1 = · · · = λn−1, λk + λn−1 = n for some value of k, 1 ≤ k < n− 1. If

λ1 = λ2 = · · · = λn−1, then by Lemma 2.10, G ∼= Kn, a contradiction as G is connected.

Otherwise, λ1 = · · · = λk �= λk+1 = · · · = λn−1, λk + λn−1 = n for some value of k,

1 ≤ k < n− 1. By Lemma 2.11, d = 2 as G �= Kn. Hence G ∼= H∗.

Conversely, let G be isomorphic to some H∗. Then

Kf(G) +Kf(G) =
nk

λ1

+
n(n− k − 1)

n− λ1

+
n(n− k − 1)

λ1

+
kn

n− λ1

=
n2(n− 1)

λ1(n− λ1)

=
n2(n− 1)2

2m(n− 1)−M1(H∗)
as
∑n

i=1 λ
2
i =
∑n

i=1 di(di + 1) .

Hence the theorem.

3 Bounds for resistance-distance energy

Graph spectral theory, based on eigenvalues of the adjacency matrix, has well and long

known applications in chemistry [16,17]. One of the chemically (and also mathematically)

most interesting graph-spectrum that based quantities in the graph energy is defined as

follows:

Let G be a simple graph on n vertices and let A be its adjacency matrix. Let

μ1, μ2, · · · , μn be the eigenvalues of A. These are said to be the eigenvalues of the graph

G and to form of its spectrum [18]. The energy E(G) of the graph G is defined as the

sum of the absolute values of its eigenvalues

E = E(G) =
n∑

i=1

|μi| .

For more details on graph energy one can see, for instance, the reference [19].

In view of evident success of the concept of graph energy, and because of the rapid

decrease of open mathematical problems in its theory, energies based on the eigenvalues
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of other graph matrices have, one-by-one, been introduced. Of these, the Laplacian

energy LE(G), pertaining to the Laplacian matrix, sees to be the first [20]. Followed

the distance energy [21] based on the distance matrix, and variety of energy - like graph

invariants - introduced by Consonni and Todeschini [22]. After that Nikiforov extended

the definition of energy to arbitrary matrices [23], making thus possible to conceive the

incidence energy [24], based on the incidence matrix, etc.

Along these above lines of reasoning, we could think of the resistance-distance energy

as the sum of absolute values of the eigenvalues of the resistance-distance matrix. More

formally, let ρ1, ρ2, · · · , ρn be the eigenvalues of the resistance-distancematrix RD. Know-

ing that these eigenvalues are necessarily real numbers, the resistance-distance energy can

be defined as

RDE = RDE(G) =
n∑

i=1

|ρi| . (10)

It is easy to see that this definition can be applicable to all graphs in the literature. Yet,

the actual route to resistance-distance energy is somewhat less straightforward.

In this section, by considering the definition in (10), we first present some fundamental

results for convenience.

Lemma 3.1. [1] Let G has n ≥ 2 vertices. Assume that λ1 and λn−1 are the largest

and smallest positive Laplacian eigenvalues of G, respectively. Then, for 1 ≤ s ≤ n, each

eigenvalue ρs of the resistance-distance matrix RD satisfy the inequality

ν1(B) +min
( −2

λn−1

,−2
)
≤ ρ1 ≤ ν1(B)− 2

λ1

(11)

min
( −2

λn−1

,−2
)
≤ ρk ≤ −2

λ1

; 2 ≤ k ≤ n− 1

νn(B) +min
( −2

λn−1

,−2
)
≤ ρn ≤ νn(B)− 2

λ1

where the matrix B whose (i, j)-entry is equal to xii + xjj (for X = ‖xij‖ = (L+ 1
n
J)−1,

J denote the square matrix of order n such that all of whose elements are unity) and each

νs(B) (1 ≤ s ≤ n) is an s-th largest eigenvalue of the matrix B.

Lemma 3.2. [1] Let G has n ≥ 2 vertices (possessing t(G) > 0 spanning trees) and

let λ1, λ2, · · · , λn−1, λn = 0 be its Laplacian eigenvalues. Then the determinant of its

resistance-distance matrix RD is equal to

(−1)n−1 2n−1

nt(G)

(
S + 2

n−1∑
k=1

1

λk

)
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where

S =
n

2
(x11, x22, · · · , xnn)L(x11, x22, · · · , xnn)

T .

Now we are ready to give some bounds on the resistance-distance energy:

Theorem 3.3. Let G has n ≥ 2 vertices and let λ1, λ2, · · · , λn−1, λn = 0 be its Laplacian

eigenvalues. Then

RDE = RDE(G) ≤ M +
√

(n− 1)(D −M2) (12)

where D is the sum of the squares of entries of the resistance-distance matrix, B is given

as in Lemma 3.1 and, by (11),

M = ν1(B) +min
( −2

λn−1

,−2
)
. (13)

Proof. Let ρ1 ≥ ρ2 ≥ · · · ≥ ρn be the eigenvalues of the resistance-distance matrix RD.

We know that

RDE =
n∑

i=1

|ρi| and
n∑

i=1

ρ2i = D =
n∑

i=1

n∑
j=1

(rij)
2.

By the Cauchy–Schwarz inequality, we get

n∑
i=2

|ρi| ≤
√√√√(n− 1)

n∑
i=2

(ρi)2 =
√

(n− 1)(D − ρ21).

Therefore

RDE ≤ ρ1 +
√

(n− 1)(D − ρ21).

By Lemma 3.1, since

ρ1 ≥ ν1(B) +min
( −2

λn−1

,−2
)

we obtain the required result.

Theorem 3.4. Let G be a graph with n ≥ 2 vertices. Then

RDE = RDE(G) ≤
√
nD (14)

where D is the sum of the squares of entries of the resistance-distance matrix.

Proof: We have that

RDE =
n∑

i=1

|ρi| and
n∑

i=1

ρ2i = D =
n∑

i=1

n∑
j=1

(rij)
2.
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By the Cauchy–Schwarz inequality, we get

RDE ≤ |ρ1|+ |ρn|+
√√√√(n− 2)

n−1∑
i=2

ρ2i = |ρ1|+ |ρn|+
√
(n− 2)(D − ρ21 − ρ2n) .

Consider the function

f(x, y) = x+ y +
√

(n− 2)(D − x2 − y2) x > 0, y > 0.

Now our aim is to find the maximum value of f(x, y). For this, we calculate

fx = 1− x
√
n− 2√

D − x2 − y2
, fy = 1− y

√
n− 2√

D − x2 − y2
, fxx = − (D − y2)

√
n− 2

(D − x2 − y2)3/2

fxy = fyx = − xy
√
n− 2

(D − x2 − y2)3/2
and fyy = − (D − x2)

√
n− 2

(D − x2 − y2)3/2
.

Now,

fx = fy = 0 ⇒ x = y =

√
D

n
.

For x = y =
√

D
n
,

fxx < 0, fxxfyy − f 2
xy =

(n− 2)(D − x2 − y2)

(D − x2 − y2)3
> 0 .

From above we conclude that f(x, y) has a maximum value at x = y =
√

D
n
and maximum

value is 2
√

D
n
+

√
(n− 2)

(
D − 2D

n

)
=

√
nD. Hence the theorem.

Lemma 3.5. [1] The resistance matrix of any connected (molecular) graph on n vertices,

n ≥ 2, has exactly one positive eigenvalue and exactly n− 1 negative eigenvalues.

Lemma 3.6. [4] Let G be a graph of order n, m edges with diameter d. For all vi, vj ∈ V

(i �= j), the (i, j)-th element of the resistance distance matrix RD(G) is

1

2

( 1
di

+
1

dj

)
≤ rij ≤ 2md

( 1
di

+
1

dj

)
(15)

where di is the degree of vertex vi in G.

Lemma 3.7. [25] Let B = ||bij|| be an n×n irreducible non-negative matrix with spectral

radius λ1(B) , and let Ri(B) be the i-th row sum of B , i. e., Ri(B) =
n∑

j=1

bij . Then

min{Ri(B) : 1 ≤ i ≤ n} ≤ λ1(B) ≤ max{Ri(B) : 1 ≤ i ≤ n} . (16)

Moreover, if the row sums of B are not all equal, then both inequalities in (16) are strict.
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Now we are ready to give another bound on the resistance-distance energy.

Theorem 3.8. Let G be a graph of order n ≥ 2 with m edges and diameter d. Then

min
i

(n− 2

di
+

n∑
j=1

1

dj

)
≤ RDE(G) ≤ 4md max

i

(n− 2

di
+

n∑
j=1

1

dj

)

where di is the degree of the vertex vi in G.

Proof: By Lemma 3.5, we have

RDE = RDE(G) = 2ρ1 .

By Lemma 3.6 and Lemma 3.7, we have

min
i

(n− 2

di
+

n∑
j=1

1

dj

)
≤ 2min

i

n∑
j=1,j �=i

rij ≤ RDE(G) ≤ 2max
i

n∑
j=1,j �=i

rij

≤ 4md max
i

(n− 2

di
+

n∑
j=1

1

dj

)
.

Hence the theorem.

The following lemma can be helped to show different bounds for resistance-distance

energy.

Lemma 3.9. [26] Let a1, a2, · · · , an be non-negative numbers. Then

n

⎡
⎣ 1
n

n∑
i=1

ai −
(

n∏
i=1

ai

)1/n
⎤
⎦ ≤ n

n∑
i=1

ai −
(

n∑
i=1

√
ai

)2

≤ n(n− 1)

⎡
⎣ 1
n

n∑
i=1

ai −
(

n∏
i=1

ai

)1/n
⎤
⎦ .

Theorem 3.10. Let G has n ≥ 2 vertices (possessing t(G) > 0 spanning trees). Then√
n(n− 1)[det(RD)]2/n +D ≤ RDE(G) ≤

√
(n− 1)D + n[det(RD)]2/n,

where

D =
n∑

i=1

n∑
j=1

(rij)
2.

Remark 3.11. We note that, by considering the references [1,4], the bounds of RDE, that

obtained in the left hand and right hand side of the inequality in the above theorem, can

also be written in terms of the eigenvalues and eigenvectors of the combinatorial Laplacian

and normalized Laplacian matrices.
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Proof. Note that

D =
n∑

i=1

ρ2i =
n∑

i=1

n∑
j=1

(rij)
2 and RDE =

n∑
i=1

|ρi| .

For 1 ≤ i ≤ n, by taking ai = ρ2i in Lemma 3.9, we obtain

K ≤ n

n∑
i=1

ρ2i − (
n∑

i=1

|ρi|)2 ≤ (n− 1)K

that is,

K ≤ nD − [RDE]2 ≤ (n− 1)K

where

K = n

⎡
⎣ 1
n

n∑
i=1

ρ2i −
(

n∏
i=1

ρ2i

)1/n
⎤
⎦ = n

⎡
⎣ 1
n
D −

(
n∏

i=1

|ρi|
)2/n
⎤
⎦ = D − n [det(RD)]2/n .

Hence the result.

In [5, 27], for any n-vertex tree T ,

det(A(T )) = det(RD(T )) = (−1)n−1(n− 1)2n−2 (17)

where A(T ) is the adjacency matrix of tree T .

Now using (17) in Theorem 3.10, we give the following result.

Corollary 3.12. For any n-vertex tree T ,

√
D + n[(n− 1)n+24n−2]1/n ≤ RDE(T ) ≤

√
(n− 1)D + n[(n− 1)24n−2]1/n

where D is defined as in Theorem 3.10.

In [28], Bapat obtained the following two results:

(i) For unicyclic graph G of order n with unique cycle Ck of length k (≥ 3), then

det(RD(G)) = (−1)n−12n−2 · 3kn− 2k2 − 1

3k2
.

(ii) For cycle Cn of order n (≥ 3), then

det(RD(Cn)) = (−1)n−12n−2 · n
2 − 1

3n2
.

Using above results, we give the following corollary.
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Corollary 3.13. (i) For unicyclic graph G of order n with unique cycle Ck of length k

(≥ 3), then√
D + n(n− 1)

[
2n−2 · 3kn− 2k2 − 1

3k2

]2/n
≤ RDE(T ) ≤√

(n− 1)D + n
[
2n−2 · 3kn− 2k2 − 1

3k2

]2/n
where D is defined as in Theorem 3.10.

(ii) For cycle Cn of order n (≥ 3), then√
D + n(n− 1)

[
2n−2 · n

2 − 1

3n2

]2/n
≤ RDE(T ) ≤

√
(n− 1)D + n

[
2n−2 · n

2 − 1

3n2

]2/n
where D is defined as in Theorem 3.10.
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