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Abstract

The Gutman index (also known as Schultz index of the second kind) of a graph
G is defined as Gut(G) =

∑
u,v∈V (G) d(u)d(v)d(u, v). We show that among all graphs

on n vertices, the star graph Sn has minimal Gutman index. In addition, we present
upper and lower bounds on Gutman index for graphs with minimal and graphs with
maximal Gutman index.
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1 Introduction

The Wiener index, W (G) =
∑

u,v∈V (G) d(u, v), of a connected graph G is a graph

invariant much studied in both mathematical and chemical literature; for details

see the reviews [1, 4, 6, 9–11]. In this paper we are concerned with a variant of the

Wiener index called the Schultz index of the second kind [9], but for which the name

Gutman index has also been used [12]. Throughout this paper, the latter name is

used. Another variant of Wiener index is the edge-Wiener index, defined as the sum

of the distances between all pairs of edges of a connected graph G, i.e., We(G) =∑
e,f∈E(G) d(e, f); where the distance between two edges is the distance between the

corresponding vertices in the line graph of G.

For a vertex v ∈ V (G), we denote by dG(v) the degree of v in G. For the sake

of simplicity, we write d(v) if the graph G is clear from the context. The minimum

vertex degree of a graph G we denote by δ = δ(G), and the maximum degree we

denote by Δ = Δ(G). For v, u ∈ V (G), we denote by dG(u, v) (or simply d(u, v)) the

length of a shortest path in G between u and v.

The Gutman index of a connected graph G is defined as

Gut(G) =
∑

u,v∈V (G)

d(u)d(v)d(u, v).

The Gutman index of graphs attracts attention just recently. Dankelmann et al. [3]

presented an asymptotic upper bound for the Gutman index and also established the

relation between the edge-Wiener index and Gutman index of graphs. Chen and Liu

studied the maximal and minimal Gutman index of unicyclic graphs [2], and maximal

Gutman index of bicyclic graphs was determined by Feng and Liu [8]. Gutman [9]

gave the following relation between the Gutman and the Wiener index for a tree T

on n vertices,

Gut(T ) = 4W (T )− (2n− 1)(n− 1). (1)

In [5] lower and upper bounds for the Wiener index for a graph G on n vertices were

given. Namely, there it was shown that(
n

2

)
= W (Kn) ≤ W (G) ≤ W (Pn) =

(
n+ 1

3

)
, (2)
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where Kn and Pn are the complete graph and path, respectively, on n vertices.

The complete bipartite graph K1,n−1 is called a star, denote by Sn. A tree T is

a complete k-regular if every vertex has degree 1 or k. The diameter of a graph G

is defined as diam(G) = maxu,v∈V (G) d(u, v). A tree where all leaves are on the same

distance to the root is called a balanced tree.

Here, we present upper and lower bounds on the Gutman index, we prove that

among all connected graphs on n vertices a star, Sn, has minimal Gutman index, and

a path, Pn, has maximal Gutman index. We also determine bound of Gutman index

for a connected graph with bounded minimum or maximum degree.

2 The graph with minimal Gutman index

First, we show a general lower bound on Gutman index.

Theorem 2.1. For every connected graph G on n vertices, it holds that

(2n− 3)(n− 1) = Gut(Sn) ≤ Gut(G).

The equality holds if and only if G is star Sn.

Proof. First, consider the case when G has no leaves, i.e., δ(G) ≥ 2. Then,

Gut(G) =
∑

u,v∈V (G)

d(u)d(v)d(u, v) ≥ 4
∑

u,v∈V (G)

d(u, v)

≥ 4

(
n

2

)
= 2n(n− 1) > (2n− 3)(n− 1) = Gut(Sn).

The case when δ(G) = 1, we prove by induction on the number of vertices. For

n = 1 the claim of the proposition is obvious. Assume that the theorem holds for a

graph G on n vertices. We construct a graph G′ on n+1 vertices from G by adding a

leaf x incident to a ∈ V (G). We show that by adding x, the Gutman index increases

by at least 4n− 3 = Gut(Sn+1)−Gut(Sn).

To simplify the exposition of the proof, let DG(u, v) = dG(u)dG(v)dG(u, v), and
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similarly DG′(u, v) = dG′(u)dG′(v)dG′(u, v).

Gut(G′)−Gut(G) =
∑

v∈V (G)\{a}
[DG′(a, v)−DG(a, v)] +

∑
v∈V (G)

DG′(x, v)

+
∑

u,v∈V (G)\{a}
[DG′(u, v)−DG(u, v)].

From the construction of the graph G′, it is obvious that dG′(u, v) = dG(u, v), and

dG′(x, v) = 1 + dG(a, v) for every u, v ∈ V (G). Also notice that the degree of a

increases by 1, but all the other vertex degrees are not changed. It is clear that the

contribution of u, v ∈ V (G) \ {a} is the same in Gut(G′) and in Gut(G). Hence,

Gut(G′)−Gut(G) =
∑

v∈V (G)\{a}
dG(v)dG(a, v) +

∑
v∈V (G)

dG′(v)(dG(a, v) + 1)

= 2
∑

v∈V (G)\{a}
dG(v)dG(a, v) +

∑
v∈V (G)

dG(v) + 1.

Since dG(a, v) ≥ 1 and dG(v) ≥ 1 for every v ∈ V (G) \ {a} and
∑

v∈V (G) dG(v) =

2|E(G)| ≥ 2(n − 1), we infer Gut(G′) − Gut(G) ≥ 4n − 3. Moreover the equality

holds if and only if dG(v) = 1 for every v ∈ V (G) \ {a}, which satisfies only the star

Sn.

From (1) and (2) we find that for every tree T on n vertices Gut(T ) ≤ O(n3).

Together with Theorem 2.1, we obtain the following result.

Corollary 2.1. For every tree T on n vertices, it holds that

(n− 1)(2n− 3) = Gut(Sn) ≤ Gut(T ) ≤ Gut(Pn) =
(n− 1)(2n2 − 4n+ 3)

3
.

3 Bounds on graphs with minimal Gutman index

In this section, we consider graphs with minimal Gutman index. First, we show lower

and upper bounds for graphs with minimum degree at least two.

Proposition 3.1. A connected graph G on n vertices with minimum degree at least

δ ≥ 2 and minimal Gutman index satisfies

δ(δ + 1)n2 > Gut(G) ≥ δ2n

2
(2n− δ − 2).
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Proof. First, we show the lower bound

Gut(G) =
1

2

∑
u

d(u)
∑
v

d(v) d(u, v) ≥ n

2
min
u

(
d(u)
∑
v

d(v) d(u, v)

)

≥ n δ

2
min
u

(
d(u)
∑
v

d(u, v)

)
.

Since there are d(u) vertices on distance one to u, and n − d(u) − 1 vertices on

distance at least two to u, we have further

Gut(G) ≥ n δ

2
min
u

(
d(u)(d(u) + 2(n− d(u)− 1))

)
=

n δ

2
min
u

(
d(u)(2n− d(u)− 2)

)
.

The quadratic function f(x) = x(2n−x− 2) with δ ≤ x ≤ n− 1 has its minimum

at δ. Thus,

Gut(G) ≥ n δ

2
δ(2n− δ − 2).

Now, we show the upper bound. By Erdős-Gallai theorem [7], there exist a graph

H on n− 1 vertices such that

(a) all its vertices are of degree δ − 1 if δ or n is odd; or

(b) a vertex x is of degree δ and all others are of degree δ − 1 if both δ and n are

even

exists.

From H, we construct the graph H∗ by introducing a new vertex y adjacent to

all vertices of H. Observe that eH = |E(H)| =
⌈
(δ − 1) (n− 1)

2

⌉
. The contribution

of y to Gut(H∗) is

∑
v∈V (H)

dH∗(y)dH∗(v)dH∗(y, v) ≤ (n− 1)((n− 2)δ + δ + 1).

The contribution of x to Gut(H∗) is

∑
v∈V (H)

dH∗(x)dH∗(v)dH∗(x, v) ≤ (δ + 1)(δ2 + 2δ(n− δ − 2)),
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and the remaining vertices of H∗ contribute with∑
u,v∈V (H)\{x}

dH∗(u)dH∗(v)dH∗(u, v) = δ2
[
eH − δ + 2

((
n− 2

2

)
− eH + δ

)]
.

Thus,

Gut(H∗) ≤(n− 1)((n− 2)δ + δ + 1) + (δ + 1)(δ2 + 2δ(n− δ − 2))

+ δ2
[
eH − δ + 2

((
n− 2

2

)
− eH + δ

)]

=(n− 1)(nδ − δ + 1) + (δ + 1)(2nδ − δ2 − 4δ) + δ2
[
2

(
n− 2

2

)
− eH + δ

]

<δ(δ + 1)n2 − 1

2
(δ3 + 5δ − 2)n− δ2

2
(δ + 1)− 3δ − 1

<δ(δ + 1)n2.

Corollary 3.1. A connected graph G on n vertices with minimum degree at least

δ ≥ 2 and minimal Gutman index satisfies

δ(δ + 1)n2 −O(n) ≥ Gut(G) ≥ δ2n2 −O(n).

Now, we show an upper bound for graphs with minimal Gutman index and max-

imum degree at most Δ.

Proposition 3.2. A connected graph G on n vertices with maximum degree at most

Δ > 2 and minimal Gutman index satisfies

Gut(G) < 4(n2 − 8n+ 4) logΔ−1 n.

Proof. Let G is a Δ-regular balanced tree on n vertices. If diam(G) = 2k, then

n− 1 = Δ
(Δ− 1)k − 1

Δ− 2
. This tree has Δ(Δ− 1)k−1 = (Δ−2)n+2

Δ−1
leaves and n−2

Δ−1
inner

vertices. Notice that logΔ−1
Δ−2
Δ

n < k < logΔ−1 n.

The tree G has three types of vertex pairs: a pair of two leaves, a leaf and an inner

vertex, and a pair of two inner vertices. Their contribution to the Gutman index is:

• Two leaves : the distance between two leaves is at most diam(G) = 2k, so their

contribution to the Gutman index is at most( (Δ−2)n+2
Δ−1

2

)
2k <

(
(Δ− 2)n+ 2

Δ− 1

)2

k.
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• A leave and an inner vertex : since every inner vertex has degree Δ, and the

distance between any two vertices is at most 2k, these pairs contribution in the

sum is less than
(Δ− 2)n+ 2

Δ− 1
· n− 2

Δ− 1
2kΔ.

• Two inner vertices : these pair contribute at most(
n−2
Δ−1

2

)
2kΔ2 <

(
n− 2

Δ− 1

)2

Δ2k.

Now,

Gut(G) <

(
(Δ− 2)n+ 2

Δ− 1

)2

k +
(Δ− 2)n+ 2

Δ− 1
· n− 2

Δ− 1
2kΔ+

(
n− 2

Δ− 1

)2

Δ2k

=
4k

(Δ− 1)2
(Δ− 1)2(n2 − 8n+ 4)

< 4(n2 − 8n+ 4)logΔ−1 n,

and this proves the upper bound.

Note that if G is a graph with maximum degree Δ ≤ 2, then G is a path.

4 Bounds on graphs with maximal Gutman index

In this section, we consider graphs with maximal Gutman index. First, we show lower

and upper bounds for graphs with maximum degree at most Δ.

Proposition 4.1. Let G be a connected graph on n vertices with maximum degree

Δ(G) ≤ Δ, and maximal Gutman index. Then, the following holds:

(n+ 1)3

27
Δ2 ≤ Gut(G) ≤

(
n+ 1

3

)
Δ2.

Proof. For the lower bound we consider the graph Q which is illustrated in Figure 1.

To simplify the calculation, we assume that s = (Δ + 1)3, bn and 3an/(Δ + 1) are

integers. The graph Q has n vertices, so 2an+ bn = n holds.

A pair (x, y), where x is a vertex from QL and y is a vertex from QR, contributes

to Gut(Q) at least Δ2(bn+1). Since there are an vertices in bough, QL and QR, the

contribution of these vertices is (an)2Δ2(bn + 1). Under the constraint 2a + b = 1,
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KR,1
s

KR,2
s

KR,3
s

KR,p−2
s

KR,p−1
s

KR,p
s

v1 v2 vbn−1 vbn

KL,p
s

KL,p−1
s

KL,p−2
s

KL,3
s

KL,2
s

KL,1
s

xL

yL yR

xR

QL QR

Figure 1: The graph Q consist of two identical parts QL and QR connected by path
on nb vertices. QL (resp. QR) consists of a lexicographic product Pp[Ks], s = Δ+1

3
,

plus the all edges between the vertices of KL,1
s and KL,p

s (resp. KR,1
s and KR,p

s ) except
the edge xLyL (resp. xRyR). The vertices xL and yL (resp. xR and yR) are adjacent
to the vertex v1 (resp. vbn).

the expression (an)2Δ2(bn + 1) attains maximum for a = (n + 1)/3n and b = n−2
3n

.

Finally we have

Gut(Q) ≥ (n+ 1)3

27
Δ2.

Now, we show the upper bound. From (2) and Δ(G) ≤ Δ, it follows that

Gut(G) ≤
∑
u,v

Δ2 d(u, v) = Δ2W (G) ≤ Δ2W (Pn) = Δ2

(
n+ 1

3

)
.

For graphs with bounded maximum degree, we obtain the following result.

Corollary 4.1. Let G be a connected graph on n vertices with bounded maximum

degree Δ. Then,

O(n3) ≥ Gut(G) ≥ Ω(n2 log n),

and those bounds can be attained.

Proof. The lower bound follows directly from Proposition 3.2 and the upper bound

from Proposition 4.1.
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In the sequel, we consider lower and upper bounds for graphs with maximal Gut-

man index and minimum degree at least δ. Dankelmann et al. [3] presented the

following upper bound on Gutman index.

Theorem 4.1. (Dankelmann et al. [3]) Let G be a connected graph on n vertices.

Then

Gut(G) ≤ 24

55
n5 +O

(
n

9
2

)
,

and the coefficient of n5 is the best possible.

Now, we present the lower bound.

Proposition 4.2. A connected graph G on n vertices with minimum degree at least

δ, and maximal Gutman index satisfies

25

55
(n+ δ − 1)5

δ5
< Gut(G).

Proof. To show the bound consider the graph L given in Figure 2. To simplify the

v0 v1 v2 vbn−1 vbn

K1
an

Kbn
δ−1K2

δ−1
K1

δ−1

K2
an

Figure 2: The graph L consists of bn cliques K1
δ−1, . . . , K

bn
δ−1 on δ − 1 vertices, and

bn + 1 other vertices v0, . . . , vbn such that every vertex of clique Ki
δ−1 is adjacent to

vi−1 and vi. Moreover, v0 is adjacent to every vertex of a clique K1
an on an vertices

and vbn is adjacent to every vertex of other clique K2
an on an vertices.

calculations, we assume that the parameters a n and b n of the graph L are integers.

Since L has n vertices, 2an + bnδ + 1 = n. We consider only the contribution of

the pairs (x, y) to Gut(L), where x ∈ V (K1
an), y ∈ V (K2

an), which is more than

(an)42(bn+1). Under the constrain 2an+ bnδ+1 = n, the expression 2(an)4(bn+1)

attains the maximum at bn+ 1 =
n+ δ − 1

5δ
and an = 2(bn+ 1). Thus, we obtain

Gut(G) >
25

55
(n+ δ − 1)5

δ5
.
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